An equation $\dot{z}=z^{2}+p(t)$ with no 2π-periodic solutions

Dariusz Miklaszewski

Abstract

The Mawhin conjecture - that there exists a 2π-periodic $p: \mathbf{R} \rightarrow \mathbf{C}$ such that $\dot{z}=z^{2}+p(t)$ has no 2π-periodic solutions - is confirmed by the use of Fourier expansions.

In 1992 R.Srzednicki [4], [5] proved that for any 2π-periodic continuous $p: \mathbf{R} \rightarrow \mathbf{C}$ the equation $\dot{z}=\bar{z}^{2}+p(t)$ has a 2π-periodic solution. J.Mawhin [3] conjectured that the similarly looking problem $\dot{z}=z^{2}+p(t)$ could have no 2π-periodic solutions for some p. The first example of such p was constructed by J.Campos and R.Ortega [1]. This work was intended as an attempt to provide with another example by the use of a quite different method. During the preparation of this paper J.Campos [2] determined all the possible dynamics of this equation and found other examples.

Conjecture 1 There exists $R_{0} \in[1,2]$ such that the equation

$$
\begin{equation*}
\dot{z}=z^{2}+R e^{i t} \tag{1}
\end{equation*}
$$

has no 2π-periodic solutions for $R=R_{0}$.
Let us define the sequence

$$
\begin{equation*}
a_{1}=1, \quad a_{n}=\frac{1}{n} \sum_{k=1}^{n-1} a_{k} a_{n-k} \tag{2}
\end{equation*}
$$

[^0]Conjecture $2 \forall_{n}>1 a_{n}^{2}<a_{n-1} a_{n+1}$.
The main result of this paper is the following
Theorem 1 Conjecture 2 implies Conjecture 1.
The proof of this theorem will follow after two lemmas. It is easily seen that equation (1) is formally solved by

$$
\begin{equation*}
z_{R}(t)=\sum_{k=1}^{\infty}(-1)^{k} i e^{i k t} a_{k} R^{k} . \tag{3}
\end{equation*}
$$

Lemma 1 Let R_{0} denote the radius of convergence of (3).
Then (i) $R_{0} \in[1,2]$,
(ii) $\forall_{R \in\left(-R_{0}, R_{0}\right)} z_{R}$ is a 2π-periodic solution of (1),
(iii) $\lim _{R \rightarrow R_{0}} i^{-1} z_{R}(\pi)=+\infty$.

Lemma 2 If Conjecture 2 is true then
(i) there is a seqence $R_{n} \in\left(0, R_{0}\right)$ convergent to R_{0} such that the sequence $z_{R_{n}}(0)$ is convergent,
(ii) there exists $\lim _{R \rightarrow R_{0}-} \quad \sum_{k=1}^{\infty}(-1)^{k} \frac{1}{k} a_{k} R^{k}$.

The lemmas will be proved later, now we use them to prove Theorem 1.
Proof of Theorem 1. To obtain a contradiction, suppose that there exists $s: \mathbf{R} \rightarrow \mathbf{C}$ which is a 2π-periodic solution of equation (1) for $R=R_{0}$. A standard argument shows that for R sufficiently close to R_{0} there exists the solution $s_{R}:[0,2 \pi] \rightarrow \mathbf{C}$ of (1) with initial condition $s_{R}(0)=s(0)$. Moreover, $\lim _{R \rightarrow R_{0}} s_{R}(t)=s(t)$, uniformly in $[0,2 \pi]$. Let R_{n} be the sequence from Lemma 2 and $\omega=\lim _{n \rightarrow \infty} z_{R_{n}}(0)$. If $s(0)=\omega$ then $\lim _{n \rightarrow \infty} z_{R_{n}}(t)=s(t)$, uniformly in $[0,2 \pi]$, contrary to Lemma 1 (iii). Thus $s(0) \neq \omega$ and $s_{R_{n}}(0) \neq z_{R_{n}}(0)$ for $n>n_{0}$. Functions $s_{R_{n}}, z_{R_{n}}$ are two different solutions of Riccati equation (1). The standard computation shows that the function $u_{n}=\frac{1}{s_{R_{n}-}-z_{R_{n}}}$ is a solution of the linear equation $\dot{u}=-2 z_{R_{n}} u-1$, so

$$
u_{n}(2 \pi)=\left[u_{n}(0)-\int_{0}^{2 \pi} e^{2 \int_{0}^{t} z_{R_{n}}(\tau) d \tau} d t\right] e^{-2 \int_{0}^{2 \pi} z_{R_{n}}(\tau) d \tau}
$$

From (3) we obtain

$$
\int_{0}^{2 \pi} z_{R_{n}}(\tau) d \tau=0, \quad \int_{0}^{t} z_{R_{n}}(\tau) d \tau=c_{0, n}+\sum_{k=1}^{\infty} c_{k, n} e^{i k t}
$$

where $c_{0, n}=-\sum_{k=1}^{\infty} c_{k, n}, c_{k, n}=(-1)^{k} \frac{1}{k} a_{k} R_{n}^{k}$. Thus

$$
u_{n}(0)-u_{n}(2 \pi)=2 \pi e^{2 c_{0, n}} .
$$

According to Lemma 2 (ii) $\lim _{n \rightarrow \infty} 2 \pi e^{2 c_{0, n}}>0$, but $\lim _{n \rightarrow \infty}\left(u_{n}(0)-u_{n}(2 \pi)\right)=$ $\frac{1}{s(0)-\omega}-\frac{1}{s(2 \pi)-\omega}=0$, a contradiction.

Proof of Lemma 1. Taking $b_{n}(R)=a_{n} R^{n}$ we can rewrite (2) as

$$
b_{1}(R)=R, \quad b_{n}(R)=\frac{1}{n} \sum_{k=1}^{n-1} b_{k}(R) b_{n-k}(R) .
$$

Consider numbers $R>0, n>1$ and suppose that

$$
\begin{equation*}
\exists_{C(R)} \forall_{k<n} \quad b_{k}(R) \leq \frac{C(R)}{k} . \tag{4}
\end{equation*}
$$

Hence $\quad b_{n}(R) \leq \frac{1}{n} \sum_{k=1}^{n-1} \frac{C(R)}{k} \frac{C(R)}{n-k}=\frac{(C(R))^{2}}{n^{2}} \sum_{k=1}^{n-1}\left(\frac{1}{k}+\frac{1}{n-k}\right)$,

$$
\begin{gather*}
b_{n}(R) \leq 2 \cdot C(R)^{2} \cdot \frac{\ln (n-1)+1}{n^{2}} \tag{5}\\
b_{n}(R) \leq \frac{C(R)}{n}, \quad \text { if only } \tag{6}\\
\frac{\ln (n-1)+1}{n} \leq \frac{1}{2 C(R)} \tag{7}
\end{gather*}
$$

Consider $R=1$ and take $C(1)=1$. In this case we have (7) for every $n \geq 5$, (4) for $n=5$ and (5), (6) for every $n>1$, by induction. Consequently the series $\sum_{n=1}^{\infty} b_{n}(1)$ is convergent and $R_{0} \geq 1$. The easy induction shows that $b_{n}(2) \geq 2$ for every n, so $R_{0} \leq 2$, which gives (i). Since (ii) is evident, it remains to prove (iii) -that $\lim _{R \rightarrow R_{0}} \sum_{k=1}^{\infty} a_{k} R^{k}=+\infty$. It suffices to show that $\sum_{k=1}^{\infty} b_{k}\left(R_{0}\right)=$ $+\infty$, because $a_{k}>0$. Conversely, suppose that $\sum_{k=1}^{\infty} b_{k}\left(R_{0}\right)<+\infty$. It follows that $\left(\sum_{k=1}^{\infty} b_{k}\left(R_{0}\right)\right)^{2}=\sum_{n=2}^{\infty} \sum_{k=1}^{n-1} b_{k}\left(R_{0}\right) b_{n-k}\left(R_{0}\right)=\sum_{n=2}^{\infty} n \cdot b_{n}\left(R_{0}\right)<+\infty$. Hence $\exists_{C} \forall_{n} b_{n}\left(R_{0}\right)<\frac{C}{n}$. Choose n_{0} such that $\frac{\ln (n-1)+1}{n}<\frac{1}{2 C}$ for $n \geq n_{0}$. Take $R_{1}>R_{0}$ satisfying $b_{k}\left(R_{1}\right)<\frac{C}{k}$ for every $k<n_{0}$. Let $C\left(R_{1}\right)=C$. Then (7) holds for every $n \geq n_{0}$, (4) - for $n=n_{0}$ and (5),(6) hold for every $n>1$. This shows that $\sum_{n=1}^{\infty} b_{n}\left(R_{1}\right)$ is convergent, which contradicts the fact that R_{0} is the radius of convergence.

Proof of Lemma 2. By Conjecture 2, the sequence $\frac{a_{n+1}}{a_{n}}$ is increasing. Therefore $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\frac{1}{R_{0}}, a_{n+1} R_{0}^{n+1}<a_{n} R_{0}^{n}$. If $\lim _{n \rightarrow \infty} a_{n} R_{0}^{n}=0$ then according to the Abel theorem, we have

$$
\lim _{R \rightarrow R_{0}-} z_{R}(0)=i \cdot \lim _{R \rightarrow R_{0}-} \sum_{k=1}^{\infty}(-1)^{k} a_{k} R^{k}=i \cdot \sum_{k=1}^{\infty}(-1)^{k} a_{k} R_{0}^{k}
$$

The same argument shows (ii). Now assume that $\lim _{n \rightarrow \infty} a_{n} R_{0}^{n}>0$. Let

$$
\begin{gathered}
x=-a_{1} R_{0}+\sum_{n=1}^{\infty}\left(a_{2 n} R_{0}^{2 n}-a_{2 n+1} R_{0}^{2 n+1}\right), \\
y=\sum_{n=1}^{\infty}\left(-a_{2 n-1} R_{0}^{2 n-1}+a_{2 n} R_{0}^{2 n}\right) \\
x_{R}=-a_{1} R+\sum_{n=1}^{\infty}\left(a_{2 n}-a_{2 n+1} R_{0}\right) R^{2 n},
\end{gathered}
$$

$$
y_{R}=\sum_{n=1}^{\infty}\left(-a_{2 n-1}+a_{2 n} R_{0}\right) R^{2 n-1} .
$$

By Abel theorem, $\lim _{R \rightarrow R_{0}-} x_{R}=x$ and $\lim _{R \rightarrow R_{0}-} y_{R}=y$. Moreover, $x_{R} \leq$ $\sum_{k=1}^{\infty}(-1)^{k} a_{k} R^{k} \leq y_{R}$ for $R \in\left(0, R_{0}\right)$, which gives (i).

Remark $1 R_{0}=1.445796 \ldots$
Remark 2 Using a new variable $s=\frac{i}{z+i \sqrt{R}}$ one can prove that (1) has a 2π-periodic solution for some $R>R_{0}$.

References

[1] J.Campos and R.Ortega, Nonexistence of periodic solutions of a complex Riccati equation, Differential and Integral Equations 9 (1996), 247-249.
[2] J.Campos, Möebius transformations and periodic solutions of complex Riccati equations, Preprint.
[3] J.Mawhin, Periodic solutions of some planar nonautonomus polynomial differential equations, Differential and Integral Equations 7 (1994), 1055-1061.
[4] R.Srzednicki, A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Séminaire d'analyse moderne No.22, Université de Sherbrooke, 1992.
[5] R.Srzednicki, On periodic solutions of planar polynomial differential equations with periodic coefficients, J.Diff.Eq. 114 (1994), 77 - 100.

Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul.Chopina 12/18, 87-100
Toruń, POLAND

[^0]: Received by the editors July 1995.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 34, 40, 42.
 Key words and phrases : Riccati equations, periodic solutions, Fourier series, power series, complex plane, inequalities.

