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Abstract

The Mawhin conjecture - that there exists a 2π-periodic p : R → C such
that ż = z2 + p(t) has no 2π-periodic solutions - is confirmed by the use of
Fourier expansions.

In 1992 R.Srzednicki [4], [5] proved that for any 2π-periodic continuous
p : R → C the equation ż = z2 + p(t) has a 2π-periodic solution. J.Mawhin
[3] conjectured that the similarly looking problem ż = z2 + p(t) could have no
2π-periodic solutions for some p. The first example of such p was constructed by
J.Campos and R.Ortega [1]. This work was intended as an attempt to provide with
another example by the use of a quite different method. During the preparation of
this paper J.Campos [2] determined all the possible dynamics of this equation and
found other examples.

Conjecture 1 There exists R0 ∈ [1, 2] such that the equation

ż = z2 +Reit (1)

has no 2π-periodic solutions for R = R0.

Let us define the sequence

a1 = 1 , an =
1

n

n−1∑
k=1

akan−k. (2)
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Conjecture 2 ∀n > 1 a2
n < an−1an+1.

The main result of this paper is the following

Theorem 1 Conjecture 2 implies Conjecture 1.

The proof of this theorem will follow after two lemmas. It is easily seen that
equation (1) is formally solved by

zR(t) =
∞∑
k=1

(−1)kieiktakR
k. (3)

Lemma 1 Let R0 denote the radius of convergence of (3).
Then (i) R0 ∈ [1, 2],
(ii) ∀R∈(−R0,R0) zR is a 2π-periodic solution of (1),
(iii) limR→R0 i

−1zR(π) = +∞.

Lemma 2 If Conjecture 2 is true then
(i) there is a seqence Rn ∈ (0, R0) convergent to R0 such that the sequence zRn(0)
is convergent,
(ii) there exists limR→R0−

∑∞
k=1(−1)k 1

k
akR

k.

The lemmas will be proved later, now we use them to prove Theorem 1.

Proof of Theorem 1. To obtain a contradiction, suppose that there exists
s : R → C which is a 2π-periodic solution of equation (1) for R = R0. A
standard argument shows that for R sufficiently close to R0 there exists the so-
lution sR : [0, 2π] → C of (1) with initial condition sR(0) = s(0). Moreover,
limR→R0 sR(t) = s(t), uniformly in [0, 2π]. Let Rn be the sequence from Lemma
2 and ω = limn→∞ zRn(0). If s(0) = ω then limn→∞ zRn(t) = s(t), uniformly in
[0, 2π], contrary to Lemma 1 (iii). Thus s(0) 6= ω and sRn(0) 6= zRn(0) for n > n0.
Functions sRn, zRn are two different solutions of Riccati equation (1). The stan-
dard computation shows that the function un = 1

sRn−zRn
is a solution of the linear

equation u̇ = −2zRnu− 1, so

un(2π) =
[
un(0) −

∫ 2π

0
e2
∫ t

0
zRn (τ )dτdt

]
e−2

∫ 2π

0
zRn (τ )dτ .

From (3) we obtain

∫ 2π

0
zRn(τ )dτ = 0,

∫ t

0
zRn(τ )dτ = c0,n +

∞∑
k=1

ck,ne
ikt,

where c0,n = −∑∞k=1 ck,n, ck,n = (−1)k 1
k
akR

k
n. Thus

un(0)− un(2π) = 2πe2c0,n.

According to Lemma 2 (ii) limn→∞ 2πe2c0,n > 0, but limn→∞(un(0) − un(2π)) =
1

s(0)−ω −
1

s(2π)−ω = 0, a contradiction.
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Proof of Lemma 1. Taking bn(R) = anR
n we can rewrite (2) as

b1(R) = R, bn(R) =
1

n

n−1∑
k=1

bk(R) bn−k(R).

Consider numbers R > 0, n > 1 and suppose that

∃C(R) ∀k<n bk(R) ≤ C(R)

k
. (4)

Hence bn(R) ≤ 1
n

∑n−1
k=1

C(R)
k

C(R)
n−k = (C(R))2

n2

∑n−1
k=1

(
1
k

+ 1
n−k

)
,

bn(R) ≤ 2 · C(R)2 · ln(n− 1) + 1

n2
, (5)

bn(R) ≤ C(R)

n
, if only (6)

ln(n− 1) + 1

n
≤ 1

2C(R)
. (7)

Consider R = 1 and take C(1) = 1. In this case we have (7) for every n ≥ 5,
(4) for n = 5 and (5), (6) for every n > 1, by induction. Consequently the series∑∞
n=1 bn(1) is convergent and R0 ≥ 1. The easy induction shows that bn(2) ≥ 2

for every n, so R0 ≤ 2, which gives (i). Since (ii) is evident, it remains to prove
(iii) -that limR→R0

∑∞
k=1 akR

k = +∞. It suffices to show that
∑∞
k=1 bk(R0) =

+∞, because ak > 0. Conversely, suppose that
∑∞
k=1 bk(R0) < +∞. It follows

that (
∑∞
k=1 bk(R0))2 =

∑∞
n=2

∑n−1
k=1 bk(R0)bn−k(R0) =

∑∞
n=2 n · bn(R0) < +∞. Hence

∃C∀nbn(R0) <
C
n

. Choose n0 such that ln(n−1)+1
n

< 1
2C

for n ≥ n0. Take R1 > R0

satisfying bk(R1) < C
k

for every k < n0. Let C(R1) = C . Then (7) holds for
every n ≥ n0, (4) - for n = n0 and (5),(6) hold for every n > 1. This shows
that

∑∞
n=1 bn(R1) is convergent, which contradicts the fact that R0 is the radius of

convergence.

Proof of Lemma 2. By Conjecture 2, the sequence an+1

an
is increasing. Therefore

limn→∞
an+1

an
= 1

R0
, an+1R

n+1
0 < anR

n
0 . If limn→∞anR

n
0 = 0 then according to the

Abel theorem, we have

lim
R→R0−

zR(0) = i · lim
R→R0−

∞∑
k=1

(−1)kakR
k = i ·

∞∑
k=1

(−1)kakR
k
0 .

The same argument shows (ii). Now assume that limn→∞ anR
n
0 > 0. Let

x = −a1R0 +
∞∑
n=1

(
a2nR

2n
0 − a2n+1R

2n+1
0

)
,

y =
∞∑
n=1

(
−a2n−1R

2n−1
0 + a2nR

2n
0

)
,

xR = −a1R +
∞∑
n=1

(a2n− a2n+1R0)R2n,
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yR =
∞∑
n=1

(−a2n−1 + a2nR0)R
2n−1.

By Abel theorem, limR→R0− xR = x and limR→R0− yR = y. Moreover, xR ≤∑∞
k=1(−1)kakR

k ≤ yR for R ∈ (0, R0), which gives (i).

Remark 1 R0 = 1.445796...

Remark 2 Using a new variable s = i
z+i
√
R

one can prove that (1) has a 2π-periodic
solution for some R > R0.
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