An equation $\dot{z} = z^2 + p(t)$ with no 2π -periodic solutions

Dariusz Miklaszewski

Abstract

The Mawhin conjecture - that there exists a 2π -periodic $p : \mathbf{R} \to \mathbf{C}$ such that $\dot{z} = z^2 + p(t)$ has no 2π -periodic solutions - is confirmed by the use of Fourier expansions.

In 1992 R.Srzednicki [4], [5] proved that for any 2π -periodic continuous $p : \mathbf{R} \to \mathbf{C}$ the equation $\dot{z} = \overline{z}^2 + p(t)$ has a 2π -periodic solution. J.Mawhin [3] conjectured that the similarly looking problem $\dot{z} = z^2 + p(t)$ could have no 2π -periodic solutions for some p. The first example of such p was constructed by J.Campos and R.Ortega [1]. This work was intended as an attempt to provide with another example by the use of a quite different method. During the preparation of this paper J.Campos [2] determined all the possible dynamics of this equation and found other examples.

Conjecture 1 There exists $R_0 \in [1,2]$ such that the equation

$$\dot{z} = z^2 + Re^{it} \tag{1}$$

has no 2π -periodic solutions for $R = R_0$.

Let us define the sequence

$$a_1 = 1, \ a_n = \frac{1}{n} \sum_{k=1}^{n-1} a_k a_{n-k}.$$
 (2)

Received by the editors July 1995.

Communicated by J. Mawhin.

Key words and phrases : Riccati equations, periodic solutions, Fourier series, power series, complex plane, inequalities.

Bull. Belg. Math. Soc. 3 (1996), 239-242

¹⁹⁹¹ Mathematics Subject Classification : 34, 40, 42.

Conjecture 2 $\forall_{n > 1} a_n^2 < a_{n-1}a_{n+1}$.

The main result of this paper is the following

Theorem 1 Conjecture 2 implies Conjecture 1.

The proof of this theorem will follow after two lemmas. It is easily seen that equation (1) is formally solved by

$$z_R(t) = \sum_{k=1}^{\infty} (-1)^k i e^{ikt} a_k R^k.$$
(3)

Lemma 1 Let R_0 denote the radius of convergence of (3). Then (i) $R_0 \in [1,2]$, (ii) $\forall_{R \in (-R_0,R_0)} z_R$ is a 2π -periodic solution of (1), (iii) $\lim_{R \to R_0} i^{-1} z_R(\pi) = +\infty$.

Lemma 2 If Conjecture 2 is true then

(i) there is a sequence $R_n \in (0, R_0)$ convergent to R_0 such that the sequence $z_{R_n}(0)$ is convergent,

(ii) there exists $\lim_{R\to R_0-} \sum_{k=1}^{\infty} (-1)^k \frac{1}{k} a_k R^k$.

The lemmas will be proved later, now we use them to prove Theorem 1.

Proof of Theorem 1. To obtain a contradiction, suppose that there exists $s : \mathbf{R} \to \mathbf{C}$ which is a 2π -periodic solution of equation (1) for $R = R_0$. A standard argument shows that for R sufficiently close to R_0 there exists the solution $s_R : [0, 2\pi] \to \mathbf{C}$ of (1) with initial condition $s_R(0) = s(0)$. Moreover, $\lim_{R \to R_0} s_R(t) = s(t)$, uniformly in $[0, 2\pi]$. Let R_n be the sequence from Lemma 2 and $\omega = \lim_{n \to \infty} z_{R_n}(0)$. If $s(0) = \omega$ then $\lim_{n \to \infty} z_{R_n}(t) = s(t)$, uniformly in $[0, 2\pi]$, contrary to Lemma 1 (iii). Thus $s(0) \neq \omega$ and $s_{R_n}(0) \neq z_{R_n}(0)$ for $n > n_0$. Functions s_{R_n}, z_{R_n} are two different solutions of Riccati equation (1). The standard computation shows that the function $u_n = \frac{1}{s_{R_n} - z_{R_n}}$ is a solution of the linear equation $\dot{u} = -2z_{R_n}u - 1$, so

$$u_n(2\pi) = \left[u_n(0) - \int_0^{2\pi} e^{2\int_0^t z_{R_n}(\tau)d\tau} dt \right] e^{-2\int_0^{2\pi} z_{R_n}(\tau)d\tau}.$$

From (3) we obtain

$$\int_0^{2\pi} z_{R_n}(\tau) d\tau = 0, \quad \int_0^t z_{R_n}(\tau) d\tau = c_{0,n} + \sum_{k=1}^\infty c_{k,n} e^{ikt},$$

where $c_{0,n} = -\sum_{k=1}^{\infty} c_{k,n}$, $c_{k,n} = (-1)^k \frac{1}{k} a_k R_n^k$. Thus

$$u_n(0) - u_n(2\pi) = 2\pi e^{2c_{0,n}}.$$

According to Lemma 2 (ii) $\lim_{n\to\infty} 2\pi e^{2c_{0,n}} > 0$, but $\lim_{n\to\infty} (u_n(0) - u_n(2\pi)) = \frac{1}{s(0)-\omega} - \frac{1}{s(2\pi)-\omega} = 0$, a contradiction.

An equation $\dot{z} = z^2 + p(t)$ with no 2π -periodic solutions

Proof of Lemma 1. Taking $b_n(R) = a_n R^n$ we can rewrite (2) as

$$b_1(R) = R, \ b_n(R) = \frac{1}{n} \sum_{k=1}^{n-1} b_k(R) \ b_{n-k}(R).$$

Consider numbers R > 0, n > 1 and suppose that

$$\exists_{C(R)} \ \forall_{k < n} \ b_k(R) \le \ \frac{C(R)}{k}.$$
(4)

Hence $b_n(R) \leq \frac{1}{n} \sum_{k=1}^{n-1} \frac{C(R)}{k} \frac{C(R)}{n-k} = \frac{(C(R))^2}{n^2} \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k}\right),$

$$b_n(R) \le 2 \cdot C(R)^2 \cdot \frac{\ln(n-1) + 1}{n^2},$$
(5)

$$b_n(R) \le \frac{C(R)}{n}$$
, if only (6)

$$\frac{\ln(n-1)+1}{n} \le \frac{1}{2C(R)}.$$
(7)

Consider R = 1 and take C(1) = 1. In this case we have (7) for every $n \ge 5$, (4) for n = 5 and (5), (6) for every n > 1, by induction. Consequently the series $\sum_{n=1}^{\infty} b_n(1)$ is convergent and $R_0 \ge 1$. The easy induction shows that $b_n(2) \ge 2$ for every n, so $R_0 \le 2$, which gives (i). Since (ii) is evident, it remains to prove (iii) -that $\lim_{R\to R_0} \sum_{k=1}^{\infty} a_k R^k = +\infty$. It suffices to show that $\sum_{k=1}^{\infty} b_k(R_0) =$ $+\infty$, because $a_k > 0$. Conversely, suppose that $\sum_{k=1}^{\infty} b_k(R_0) < +\infty$. It follows that $(\sum_{k=1}^{\infty} b_k(R_0))^2 = \sum_{n=2}^{\infty} \sum_{k=1}^{n-1} b_k(R_0) b_{n-k}(R_0) = \sum_{n=2}^{\infty} n \cdot b_n(R_0) < +\infty$. Hence $\exists_C \forall_n b_n(R_0) < \frac{C}{n}$. Choose n_0 such that $\frac{ln(n-1)+1}{n} < \frac{1}{2C}$ for $n \ge n_0$. Take $R_1 > R_0$ satisfying $b_k(R_1) < \frac{C}{k}$ for every $k < n_0$. Let $C(R_1) = C$. Then (7) holds for every $n \ge n_0$, (4) - for $n = n_0$ and (5),(6) hold for every n > 1. This shows that $\sum_{n=1}^{\infty} b_n(R_1)$ is convergent, which contradicts the fact that R_0 is the radius of convergence.

Proof of Lemma 2. By Conjecture 2, the sequence $\frac{a_{n+1}}{a_n}$ is increasing. Therefore $\lim_{n\to\infty}\frac{a_{n+1}}{a_n} = \frac{1}{R_0}, a_{n+1}R_0^{n+1} < a_n R_0^n$. If $\lim_{n\to\infty}a_n R_0^n = 0$ then according to the Abel theorem, we have

$$\lim_{R \to R_0^-} z_R(0) = i \cdot \lim_{R \to R_0^-} \sum_{k=1}^\infty (-1)^k a_k R^k = i \cdot \sum_{k=1}^\infty (-1)^k a_k R_0^k.$$

The same argument shows (ii). Now assume that $\lim_{n\to\infty} a_n R_0^n > 0$. Let

$$x = -a_1 R_0 + \sum_{n=1}^{\infty} \left(a_{2n} R_0^{2n} - a_{2n+1} R_0^{2n+1} \right),$$
$$y = \sum_{n=1}^{\infty} \left(-a_{2n-1} R_0^{2n-1} + a_{2n} R_0^{2n} \right),$$
$$x_R = -a_1 R + \sum_{n=1}^{\infty} \left(a_{2n} - a_{2n+1} R_0 \right) R^{2n},$$

$$y_R = \sum_{n=1}^{\infty} \left(-a_{2n-1} + a_{2n} R_0 \right) R^{2n-1}.$$

By Abel theorem, $\lim_{R\to R_0-} x_R = x$ and $\lim_{R\to R_0-} y_R = y$. Moreover, $x_R \leq \sum_{k=1}^{\infty} (-1)^k a_k R^k \leq y_R$ for $R \in (0, R_0)$, which gives (i).

Remark 1 $R_0 = 1.445796...$

Remark 2 Using a new variable $s = \frac{i}{z+i\sqrt{R}}$ one can prove that (1) has a 2π -periodic solution for some $R > R_0$.

References

- [1] J.Campos and R.Ortega, Nonexistence of periodic solutions of a complex Riccati equation, Differential and Integral Equations 9 (1996), 247-249.
- [2] J.Campos, Möebius transformations and periodic solutions of complex Riccati equations, Preprint.
- [3] J.Mawhin, Periodic solutions of some planar nonautonomus polynomial differential equations, Differential and Integral Equations 7 (1994), 1055 - 1061.
- [4] R.Srzednicki, A Geometric Method for the Periodic Problem in Ordinary Differential Equations, Séminaire d'analyse moderne No.22, Université de Sherbrooke, 1992.
- [5] R.Srzednicki, On periodic solutions of planar polynomial differential equations with periodic coefficients, J.Diff.Eq. 114 (1994), 77 - 100.

Faculty of Mathematics and Informatics, Nicholas Copernicus University, ul.Chopina 12/18, 87–100 Toruń, POLAND