Existence of Solutions for Quasilinear Elliptic Boundary Value Problems in Unbounded Domains.

A. Ait Ouassarah

A. Hajjaj

Abstract

Under suitable assumptions we prove, via the Leray-Schauder fixed point theorem, the existence of a solution for quasilinear elliptic boundary value problem in $C^{2, \alpha}(\bar{\Omega}) \cap W^{2, q}(\Omega), q>N$ which satisfies in addition the condition, $\left(1+|x|^{2}\right)^{\frac{1}{2}} u \in C^{2, \alpha}(\bar{\Omega})$.

1 Introduction

Let G be a bounded, open and not empty subset of \mathbb{R}^{N} with $C^{2, \alpha}$ boundary, $N \geq 2,0<\alpha<1$ and let $\Omega:=\mathbb{R}^{N} \backslash \bar{G}$. In this paper we consider quasilinear elliptic boundary value problems of the form,
$(\mathcal{P}) \quad\left\{\begin{aligned} \sum a_{i j}(x, u) D_{i j} u-u & =f(x, u, D u) & & \text { in } \Omega \\ u & =0 & & \text { on } \quad \partial \Omega\end{aligned}\right.$
These problems have been investigated by many authors under various assumptions (see [3], [8], [10] and references mentioned there). Our aim is to establish, using the Leray-Schauder fixed point theorem, the existence of smooth solutions for (\mathcal{P}), under the assumptions listed below:
(A1) The function $g(x, z, p):=\left(1+|x|^{2}\right)^{\frac{1}{2}} f(x, z, p) \quad$ satisfies the conditions:
i) $|g(x, z, p)| \leq \varphi(|z|)\left(1+|p|^{2}\right) \quad$ for all $x \in \Omega, z \in \mathbb{R}$ and $p \in \mathbb{R}^{N}$.

[^0]ii) $\left|g(x, z, p)-g\left(x^{\prime}, z^{\prime}, p^{\prime}\right)\right| \leq \varphi(L)\left\{\left|x-x^{\prime}\right|^{\alpha}+\left|z-z^{\prime}\right|+\left|p-p^{\prime}\right|\right\}$, for all $L \geq 0 ; x, x^{\prime} \in \bar{\Omega} ; \quad z, z^{\prime} \in[-L, L] \quad$ and $\quad p, p^{\prime} \in B_{L}(0)$.
where φ is a positive increasing function.
(A2) Suppose that all eventual solutions of the problem (\mathcal{P}) in the space $C^{2}(\bar{\Omega})$ tending to zero at infinite are a priori bounded in $L^{\infty}(\Omega)$.
\[

$$
\begin{equation*}
\text { i) } \quad \nu|\xi|^{2} \leq \sum a_{i j}(x, z) \xi_{i} \xi_{j} \leq \mu|\xi|^{2} \tag{A3}
\end{equation*}
$$

\] for all $x \in \Omega, \quad z \in \mathbb{R}$ and $\xi \in \mathbb{R}^{N}$

ii) $\left|a_{i j}(x, z)-a_{i j}\left(x^{\prime}, z^{\prime}\right)\right| \leq \psi(L)\left\{\left|x-x^{\prime}\right|^{\alpha}+\left|z-z^{\prime}\right|\right\}$,

$$
\text { for all } L>0 ; x, x^{\prime} \in \Omega \text { and } z, z^{\prime} \in[-L, L] .
$$

where ν and μ are positive constants and ψ is an increasing function.
(A4) We suppose that $2 \mu-(N-1) \nu<1+R^{2}$
where R is the radius of the largest ball contained in $G=\mathbb{R}^{N} \backslash \bar{\Omega}$.

Remarks 1.1

a. The assumption (A2) is satisfied if one of the following conditions holds:
(A'2) f is continuously differentiable with respect to the p and z variables. Furtheremore, for some constant $\lambda>-1$ we have,

$$
\frac{\partial f}{\partial z}(x, z, 0) \geq \lambda \quad \forall x \in \Omega, \quad \forall z \in \mathbb{R} .
$$

(A"2) There exists a constant Λ such that,

$$
z f(x, z, 0)>-z^{2}, \quad \text { for all } x \in \Omega \text { and }|z| \geq \Lambda
$$

b. By a further translation of the domain we assume, without loss of generality, that the ball $B_{R}(0)$ is contained in G. That is, $|x| \geq R \quad \forall x \in \Omega$.
c. Our results can be generalized for general unbounded subdomains of \mathbb{R}^{N} with smooth boundary.

The main result of this paper is stated as follows :
Theorem 1.1 If the assumptions (A1); (A2); (A3) and (A4) are satisfied, then for any $q>N$, the problem (\mathcal{P}) has a solution u in the space $C^{2, \alpha}(\bar{\Omega}) \cap W^{2, q}(\Omega)$. Furtheremore, $\quad\left(1+|x|^{2}\right)^{\frac{1}{2}} u \in C^{2, \alpha}(\bar{\Omega})$.
Let $p \geq \frac{N}{1-\alpha}$ be fixed. From now on we suppose that the assumptions (A1); (A2); (A3) and (A4) are satisfied.

2 A priori estimates

The purpose of this section is to establish the following theorem,
Theorem $2.1 \quad$ There exists a constant $c>0$ such that any solution $u \in W^{2, p}(\Omega) \cap C^{2, \alpha}(\bar{\Omega})$ of the problem (\mathcal{P}) satisfies,
i) $\left\|\left(1+|x|^{2}\right)^{\frac{1}{2}} u\right\|_{2, \alpha, \Omega} \leq c$.
ii) $\|u\|_{2, p, \Omega^{\prime}} \leq c\left\|\left(1+|x|^{2}\right)^{-\frac{1}{2}}\right\|_{L^{p}\left(\Omega^{\prime}\right)} \quad \forall \Omega^{\prime} \subset \Omega$.

Where, here and in the following, we use the notations:

$$
\begin{aligned}
& \|v\|_{0,0, \Omega}:=\sup _{x \in \Omega}|v(x)| \quad, \quad[v]_{\alpha, \Omega}:=\sup _{x, y \in \Omega, x \neq y} \frac{|v(x)-v(y)|}{|x-y|^{\alpha}} \\
& \|v\|_{k, \alpha, \Omega}=\|v\|_{C^{k, \alpha}(\bar{\Omega})}:=\sum_{|s| \leq k}\left\|D^{s} v\right\|_{0,0, \Omega}+\sum_{|s|=k}\left[D^{s} v\right]_{\alpha, \Omega} \\
& \|v\|_{k, p, \Omega}=\|v\|_{W^{k, p}(\Omega)}:=\left[\sum_{|s| \leq k} \int_{\Omega}\left|D^{s} v\right|^{p} d x\right]^{1 / p} .
\end{aligned}
$$

By a standard regularity argument it is easy to verify that any solution of (\mathcal{P}) in the space $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ has the property: $\quad\left(1+|x|^{2}\right)^{\frac{1}{2}} u \in C^{2, \alpha}(\bar{\Omega})$.
Before proving the theorem 2.1, we establish the following lemmas:
Lemma $2.2 \quad$ There exists a constant $c>0$ such that any solution $u \in C^{2, \alpha}(\bar{\Omega}) \cap W^{2, p}(\Omega)$ of (\mathcal{P}) satisfies the estimate,

$$
\|D u\|_{0, \alpha, \Omega} \leq c
$$

Proof: The technique used here is similar to the one used in the first part of [9]. Let $\bar{x} \in \partial \Omega, q \geq 0$ and ζ be a real-valued function in $C^{\infty}\left(\mathbb{R}^{N}\right)$ with $\zeta(x)=1$ for $|x| \leq \frac{1}{2}$ and $\zeta(x)=0$ for $|x| \geq 1$. For $r \in(0,1)$, we define the function ζ_{r} by setting, $\quad \zeta_{r}(x):=\zeta\left(\frac{x-\bar{x}}{r}\right)$.
In what follows c and $c(r)$ denote generic constants that depend only on ν, μ, N, q, $M:=\|u\|_{0,0, \Omega}$, and eventualy on r. By the elliptic regularity of the Laplacian together with the assumption (A3) we have,

$$
\begin{equation*}
\int_{\Omega_{r}} \sum\left|D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x \leq c \int_{\Omega_{r}}\left|\sum a_{i j}(\bar{x}, u(\bar{x})) D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x \tag{2.1}
\end{equation*}
$$

Where $\Omega_{r}:=\Omega \cap B_{r}(\bar{x})$.
On the other hand by [6, theorem 1], there exist a constant $r_{1}<1$ depending only on $\partial \Omega$, and two constants $c>0$ and $\beta \in(0,1)$ depending only on ν, μ, M, r_{1} and $\partial \Omega$ such that,

$$
\begin{equation*}
[u]_{\beta, \Omega_{r_{1}}} \leq c \tag{2.2}
\end{equation*}
$$

According to (A3), (2.1), (2.2) and the triangle inequality, we may choose $r_{2} \leq r_{1}$ small enough so that for any $r \leq r_{2}$ we have,

$$
\begin{equation*}
\int_{\Omega_{r}} \sum\left|D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x \leq c \int_{\Omega_{r}}\left|\sum a_{i j}(x, u(x)) D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x \tag{2.3}
\end{equation*}
$$

By differentiation we obtain,
$D_{i}\left(\zeta_{r}^{2} u\right)=\zeta_{r}^{2} D_{i} u+2 \zeta_{r} u D_{i} \zeta_{r}$
$D_{i j}\left(\zeta_{r}^{2} u\right)=\zeta_{r}^{2} D_{i j} u+2 \zeta_{r}\left[D_{i} u D_{j} \zeta_{r}+D_{j} u D_{i} \zeta_{r}\right]+2 u D_{i} \zeta_{r} D_{j} \zeta_{r}+2 \zeta_{r} u D_{i j} \zeta_{r}$
Using (2.4), (A1) and (A3), it is easy to verify that for any $r \leq r_{2}$ we have,

$$
\begin{equation*}
\int_{\Omega_{r}}\left|\sum a_{i j}(x, u(x)) D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x \leq c \int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q+2} d x+c(r) \tag{2.5}
\end{equation*}
$$

and,

$$
\begin{align*}
& \int_{\Omega_{r}} \sum\left(\zeta_{r}^{2}\left|D_{i j} u\right|\right)^{q+2} d x \leq \tag{2.6}\\
& \quad c\left\{\int_{\Omega_{r}} \sum\left|D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x+\int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q+2} d x\right\}+c(r)
\end{align*}
$$

Combining the identities (2.4), (2.5) and (2.6) with the following interpolation inequality [9], [7] :
$\int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q+2} d x \leq c\left\{\left(\frac{\delta}{r}\right)^{4} \int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q} d x+\delta^{q+2} \int_{\Omega_{r}} \sum\left(\zeta_{r}^{2}\left|D_{i j} u\right|\right)^{q+2} d x\right\}$
where, $\delta:=\|u-u(\bar{x})\|_{0,0, \Omega_{r}}$
we obtain for any $r \leq r_{2}$ the inequality,

$$
\begin{align*}
& \int_{\Omega_{r}} \sum\left|D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x+\int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q+2} d x \leq \tag{2.7}\\
& \quad c \delta^{q+2}\left\{\int_{\Omega_{r}} \sum\left|D_{i j}\left(\zeta_{r}^{2} u\right)\right|^{q+2} d x+\int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q+2} d x\right\} \\
& \quad+c .\left(\frac{\delta}{r}\right)^{4} \int_{\Omega_{r}}\left(\zeta_{r}^{2}|D u|^{2}\right)^{q} d x+c(r)
\end{align*}
$$

Then, from (2.2) and (2.7), we get for \bar{r} small enough,

$$
\begin{align*}
& \int_{\Omega_{\bar{r}}} \sum\left|D_{i j}\left(\zeta_{\bar{r}}^{2} u\right)\right|^{q+2} d x+\int_{\Omega_{\bar{r}}}\left(\zeta_{\bar{r}}^{2}|D u|^{2}\right)^{q+2} d x \leq \tag{2.8}\\
& c(\bar{r}) \int_{\Omega_{\bar{r}}}\left(\zeta_{\bar{r}}^{2}|D u|^{2}\right)^{q} d x+c(\bar{r})
\end{align*}
$$

This inequality is valid for any nonnegative real q then, by induction we deduce the estimate,

$$
\begin{equation*}
\int_{\Omega_{\bar{r}}}\left(\zeta_{\bar{r}}^{2}|D u|^{2}\right)^{q} d x \leq c(\bar{r}) \tag{2.9}
\end{equation*}
$$

Combining the identities (2.4), (2.8) and (2.9) we obtain,

$$
\left\|\zeta_{\bar{r}}^{2} u\right\|_{W^{2, q+2}(\Omega)} \leq c(\bar{r})
$$

Then, because of the arbitrariness of q in \mathbb{R}^{+}, the Sobolev imbedding theorem [1] yields,

$$
\left\|\zeta_{\bar{r}}^{2} u\right\|_{1, \alpha, \Omega} \leq \bar{c}
$$

where \bar{c} is a constant depending only on α and the parameters indicated previously. In particular,

$$
\begin{equation*}
\|u\|_{1, \alpha, \Omega \cap B_{\overline{\bar{x}}}(\bar{x})} \leq \bar{c} \quad \forall \bar{x} \in \partial \Omega \tag{2.10}
\end{equation*}
$$

Similarly, there exist constants $r_{0}<\frac{\bar{r}}{8}$ and $c_{0}>0$ depending only on $\nu, \mu, \alpha, r_{0}, \bar{r}, N$ and M such that for any $x_{0} \in \Omega$, satisfying $\operatorname{dist}\left(x_{0}, \partial \Omega\right)>\frac{\bar{r}}{3}$ we have:

$$
\begin{equation*}
\|u\|_{1, \alpha, B_{r_{0}}\left(x_{0}\right)} \leq c_{0} \tag{2.11}
\end{equation*}
$$

It then follows from (2.10) and (2.11) that,

$$
\sum_{i}\left\|D_{i} u\right\|_{0, \alpha, \Omega} \leq 3 r_{0}^{-\alpha} \max \left(c_{0}, \bar{c}\right) .
$$

Lemma 2.3 There exists a constant $c>0$ such that any solution u of (\mathcal{P}) in the space $C^{2, \alpha}(\bar{\Omega}) \cap W^{2, p}(\Omega)$ satisfies:

$$
\sup _{x \in \Omega}\left(1+|x|^{2}\right)^{\frac{1}{2}}|u(x)| \leq c
$$

Proof: The desired estimate will be obtained by the construction of suitable comparaison functions in bounded subdomains Ω^{\prime} of Ω. Precisely let us set,

$$
w(x):=\|u\|_{0,0, \partial \Omega^{\prime}}+K\left(1+|x|^{2}\right)^{-\frac{1}{2}}
$$

where K is a positive constant to be specified later. By differentiation we have,

$$
\begin{aligned}
& D_{i} w=-K x_{i}\left(1+|x|^{2}\right)^{-\frac{3}{2}} \\
& D_{i j} w=3 K x_{i} x_{j}\left(1+|x|^{2}\right)^{-\frac{5}{2}}-K \delta_{i j}\left(1+|x|^{2}\right)^{-\frac{3}{2}}
\end{aligned}
$$

By a direct calculation we obtain,

$$
\begin{aligned}
\bar{L} w= & 3 K\left(1+|x|^{2}\right)^{-\frac{5}{2}} \sum \bar{a}_{i j}(x) x_{i} x_{j}-K\left(1+|x|^{2}\right)^{-\frac{3}{2}} \sum \bar{a}_{i i}(x) \\
& -K\left(1+|x|^{2}\right)^{-\frac{1}{2}}-\|u\|_{0,0, \partial \Omega^{\prime}}
\end{aligned}
$$

Let $\lambda_{1} \leq \ldots \leq \lambda_{N}$ be the eigenvalues of the matrix $A:=\left[\bar{a}_{i j}(x)\right]$.
Then, Since $\sum \bar{a}_{i i}(x)=\sum \lambda_{i}$ we have,

$$
\begin{aligned}
\bar{L} w & \leq K\left(1+|x|^{2}\right)^{-\frac{3}{2}}\left[3 \lambda_{N}-\sum \bar{a}_{i i}(x)\right]-K\left(1+|x|^{2}\right)^{-\frac{1}{2}} \\
& \leq K\left(1+|x|^{2}\right)^{-\frac{3}{2}}\left[2 \lambda_{N}-\sum_{i=1}^{N-1} \lambda_{i}\right]-K\left(1+|x|^{2}\right)^{-\frac{1}{2}} \\
& \leq K\left(1+|x|^{2}\right)^{-\frac{3}{2}}[2 \mu-(N-1) \nu]-K\left(1+|x|^{2}\right)^{-\frac{1}{2}}
\end{aligned}
$$

But by (A1) we have, $\quad|f(x, u(x), D u(x))| \leq M_{1}\left(1+|x|^{2}\right)^{-\frac{1}{2}} \quad$ where,
$M_{1}=\varphi\left(\|u\|_{0,0, \Omega}\right)\left[1+\|D u\|_{0,0, \Omega}^{2}\right]$. Then, for having $\bar{L}(w \pm u) \leq 0$ in Ω it suffies to have,

$$
2 \mu-(N-1) \nu \leq\left(1-\frac{M_{1}}{K}\right)\left(1+|x|^{2}\right) \quad \forall x \in \Omega
$$

If we seek K in $] M_{1},+\infty[$, the last condition holds if the following inequality is satisfied,

$$
2 \mu-(N-1) \nu \leq\left(1-\frac{M_{1}}{K}\right)\left[1+R^{2}\right]
$$

by (A4) this inequality is equivalent to the choice,

$$
K \geq K_{0}:=M_{1}\left[1-\frac{2 \mu-(N-1) \nu}{1+R^{2}}\right]^{-1}
$$

for this choice we have,

$$
\left\{\begin{array}{cc}
\bar{L}(w \pm u) & \leq 0 \quad \text { in } \quad \Omega^{\prime} \\
w \pm u & \geq 0 \quad \text { on } \partial \Omega^{\prime}
\end{array}\right.
$$

It then follows from the weak maximum principle that,

$$
|u(x)| \leq\|u\|_{0,0, \partial \Omega^{\prime}}+K\left(1+|x|^{2}\right)^{-\frac{1}{2}} \quad \forall x \in \Omega^{\prime}
$$

Consequently, letting $\Omega^{\prime} \longrightarrow \Omega$, we obtain the desired estimate.

Proof of the theorem 2.1

Let us set $\quad v(x):=\left(1+|x|^{2}\right)^{\frac{1}{2}} u$.
By differentiation we obtain,

$$
\begin{align*}
D_{i} v= & \left(1+|x|^{2}\right)^{\frac{1}{2}} D_{i} u+x_{i}\left(1+|x|^{2}\right)^{-\frac{1}{2}} u \\
D_{i j} v= & \left(1+|x|^{2}\right)^{\frac{1}{2}} D_{i j} u+\left(1+|x|^{2}\right)^{-\frac{1}{2}}\left[x_{j} D_{i} u+x_{i} D_{j} u\right] \tag{2.12}\\
& +\delta_{i j}\left(1+|x|^{2}\right)^{-\frac{1}{2}} u-x_{i} x_{j}\left(1+|x|^{2}\right)^{-\frac{3}{2}} u
\end{align*}
$$

Using (2.12), we obtain by a direct calculation,

$$
\begin{align*}
\bar{L} v= & g(x, u, D u)+2\left(1+|x|^{2}\right)^{-\frac{1}{2}} \sum \bar{a}_{i j}(x) x_{i} D_{j} u \\
& +\left(1+|x|^{2}\right)^{-\frac{1}{2}} u \sum \bar{a}_{i i}-\left(1+|x|^{2}\right)^{-\frac{3}{2}} u \sum \bar{a}_{i j}(x) x_{i} x_{j} \tag{2.13}
\end{align*}
$$

Now, we show that,

$$
\begin{gather*}
\left\|\bar{a}_{i j}\right\|_{0, \alpha, \Omega} \leq c \tag{2.14}\\
\|g(., u, D u)\|_{0, \alpha, \Omega} \leq c \tag{2.15}
\end{gather*}
$$

By the assumption (A3) we have,

$$
\begin{equation*}
\left\|\bar{a}_{i j}\right\|_{0,0, \Omega} \leq 2 \mu \tag{2.16}
\end{equation*}
$$

And for $x, x^{\prime} \in \Omega$ we have,

$$
\begin{align*}
\left|\bar{a}_{i j}(x)-\bar{a}_{i j}\left(x^{\prime}\right)\right| & :=\left|a_{i j}(x, u(x))-a_{i j}\left(x^{\prime}, u\left(x^{\prime}\right)\right)\right| \\
& \leq \psi\left(\|u\|_{0,0, \Omega}\right)\left[\left|x-x^{\prime}\right|^{\alpha}+\left|u(x)-u\left(x^{\prime}\right)\right|\right] \tag{2.17}\\
& \leq \psi\left(\|u\|_{0,0, \Omega}\right)\left[1+\|u\|_{0, \alpha, \Omega}\right]\left|x-x^{\prime}\right|^{\alpha}
\end{align*}
$$

Then, by virtue of the assumption (A2) and the lemma 2.2 , the inequalities (2.16) and (2.17) imply the estimates (2.14). In the other hand by the lemma 2.2 and the assumptions (A1)-(A2) we have,

$$
\begin{aligned}
\|g(., u, D u)\|_{0,0, \Omega} & \leq \varphi\left(\|u\|_{0,0, \Omega}\right)\left[1+\|D u\|_{0,0, \Omega}^{2}\right] \\
& \leq c
\end{aligned}
$$

and,

$$
\begin{aligned}
\mid g(x, u(x) & , D u(x))-g\left(x^{\prime}, u\left(x^{\prime}\right), D u\left(x^{\prime}\right)\right) \mid \\
& \leq \varphi\left(\|u\|_{1,0, \Omega}\right)\left\{\left|x-x^{\prime}\right|^{\alpha}+\left|u(x)-u\left(x^{\prime}\right)\right|+\left|D u(x)-D u\left(x^{\prime}\right)\right|\right\} \\
& \leq \varphi\left(\|u\|_{1,0, \Omega}\left\{1+\|u\|_{0, \alpha, \Omega}+\|D u\|_{0, \alpha, \Omega}\right\}\left|x-x^{\prime}\right|^{\alpha}\right. \\
& \leq c\left|x-x^{\prime}\right|^{\alpha} .
\end{aligned}
$$

The estimate (2.15) is then established. So, using the estimates (2.14)-(2.15) and the identity (2.13), we deduce the estimate,

$$
\begin{equation*}
\|\bar{L} v\|_{0, \alpha, \Omega} \leq c \tag{2.18}
\end{equation*}
$$

We apply now the Schauder estimate in unbounded domain [5], [2] to obtain,

$$
\begin{equation*}
\|v\|_{2, \alpha, \Omega} \leq c\left\{\|\bar{L} v\|_{0, \alpha, \Omega}+\|v\|_{0,0, \Omega}\right\} \tag{2.19}
\end{equation*}
$$

Hence, by virtue of the lemma 2.3, the estimates (2.18) and (2.19) imply,

$$
\begin{equation*}
\|v\|_{2, \alpha, \Omega} \leq c \tag{2.20}
\end{equation*}
$$

The first assertion of the theorem 2.1 is then established. Let now Ω^{\prime} be arbitrary subdomain of Ω. Using the estimate (2.20) we obtain,

$$
\begin{aligned}
\|u\|_{2, p, \Omega^{\prime}}^{p} & :=\sum_{|s| \leq 2} \int_{\Omega^{\prime}}\left|D^{s} u(x)\right|^{p} d x \\
& \leq \sum_{|s| \leq 2} \int_{\Omega^{\prime}}\left(1+|x|^{2}\right)^{-\frac{p}{2}}\left[\left(1+|x|^{2}\right)^{\frac{1}{2}}\left|D^{s} u(x)\right|\right]^{p} d x \\
& \leq c \int_{\Omega^{\prime}}\left(1+|x|^{2}\right)^{-\frac{p}{2}} d x
\end{aligned}
$$

The theorem 2.1 is then proved

3 Proof of the main theorem

Let \bar{E} and \bar{F} be the closures of the sets,

$$
E:=\left\{u \in C^{2, \alpha}(\bar{\Omega}) /\left(1+|x|^{2}\right)^{\frac{1}{2}} u \in C^{2, \alpha}(\bar{\Omega}) \quad \text { and } \quad u=0 \text { on } \partial \Omega\right\}
$$

and

$$
F:=\left\{h \in C^{0, \alpha}(\bar{\Omega}) / \quad\left(1+|x|^{2}\right)^{\frac{1}{2}} h \in C^{0, \alpha}(\bar{\Omega})\right\}
$$

respectively in the Hölder spaces $C^{2, \alpha}(\bar{\Omega})$ and $C^{0, \alpha}(\bar{\Omega})$.

Let v be arbitrary and fixed in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ and define the linear operators :

$$
\begin{aligned}
L_{0} & :=\sum_{i} \frac{\partial^{2}}{\partial x_{i} \partial x_{i}}-1 \\
L_{1} & :=\sum a_{i j}(x, v(x)) D_{i j}-1 \\
L_{t} & :=t L_{1}+(1-t) L_{0}, \quad t \in[0,1]
\end{aligned}
$$

Using the Schauder estimate in unbounded domains (see [5], [2]) the maximum principle and the fact that the elements of \bar{E} vanish on $\partial \Omega$ and tend to zero at infinite we obtain the estimate :

$$
\begin{equation*}
\|u\|_{2, \alpha, \Omega} \leq c\left\|L_{t} u\right\|_{0, \alpha, \Omega} \quad \forall u \in \bar{E}, \quad \forall t \in[0,1] . \tag{3.1}
\end{equation*}
$$

On the other hand it is well known that for any function $f \in F$, the linear equation $L_{0} u=f$ has a unique solution in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ (see [2]). By a standard regularity argument this solution belongs in fact to the space E. Consequently, by the density of F in \bar{F} and the estimate (3.1) it is easy to see that L_{0} is onto from the Banach space \bar{E} into \bar{F}. So, the method of continuity and the estimate (3.1) ensure that the linear operator L_{1} is onto from \bar{E} into \bar{F}. By a standard regularity argument it is easy to see that L_{1} restricted to E is onto from E into F. In the other hand the assumption (A1) asserts that $f(., v, D v)$ belongs to F. Then, the
linear problem,

$$
\left(P_{v}\right)\left\{\begin{aligned}
\sum a_{i j}(x, v) D_{i j} u-u & =f(x, v, D v) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

is uniquely solvable in E. Hence, the operator T which assigns for each v in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ the unique solution of $\left(P_{v}\right)$ is well defined. To prove that T is completely continuous from $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ into itself, let $\left(v_{n}\right)_{n}$ be a bounded sequence in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ and set $u_{n}:=T v_{n}$. A similar argument as that used in the theorem 2.1 leads to the estimates:

$$
\begin{array}{llrl}
\left\|u_{n}\right\|_{2, \alpha, \Omega} & \leq c & \forall n \in \mathbb{N} \\
\left\|u_{n}\right\|_{2, p, \Omega^{\prime}} & \leq c\left\|\left(1+|x|^{2}\right)^{-\frac{1}{2}}\right\|_{0, p, \Omega^{\prime}} & \forall n \in \mathbb{N}, & \forall \Omega^{\prime} \subset \Omega \tag{3.3}
\end{array}
$$

Using the estimates (3.2) and (3.3), it is easy to verify that the sequences of derivatives of u_{n} up to order 2 , satisfy the assumptions of [1, theorem 2.22]. The sequence $\left(u_{n}\right)$ is then precompact in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. The continuity of T follows easily. According to theorem 2.1 the fixed points of the family of operators $(\sigma . T)_{\sigma \in[0,1]}$ are apriori bounded in $W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$ by the same constant then, the LeraySchauder fixed point theorem [4, theorem 11.3] asserts that T has a fixed point u. It is clear that u solves (\mathcal{P}) and satisfies, $\left(1+|x|^{2}\right)^{\frac{1}{2}} u \in C^{2, \alpha}(\bar{\Omega})$. In particular, $u \in C^{2, \alpha}(\bar{\Omega}) \cap W^{2, q}(\Omega)$ for any $q>N$. The main theorem is then established.

References

[1] R. ADAMS , "Sobolev spaces" ,Academic press (1975)
[2] S. AGMON, A. DOUGLIS, L. NIRENBERG "Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary value condition I" Comm. Pure Appl. Math. 12 (1959), 623-727.
[3] N. P. CÁC, "Nonlinear elliptic boundary value problems for unbounded domains" J.Differential Equations 45 (1982), 191-198
[4] D. GILBARG, N.S. TRUDINGER "Elliptic Partial Differential Equations of second order." Second Edition, Springer-Verlag (1983).
[5] M. KONIG , "Schauder's estimates and boundary value problems for quasilinear partial differential equations."
(S.M.S. les presses de l' université de Montréal 1985).
[6] O.A.LADYZHENSKAYA, N.N. URAL'TSEVA "Estimates of the Hölder norm of the solutions of second-order quasilinear elliptic equations of the general form" Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 96 (1980), 161-168
[7] L. NIRENBERG " On elliptic partial differential equations"Ann. Scuola Norm. Sup. Pisa. Ser. 3, 13, (1954), 115-162.
[8] E.S.NOUSSAIR, "On the existence of solutions of nonlinear elliptic boundary value problems" J.Differential Equations 34 (1979), 482-495
[9] F. TOMI "Uber semilineare elliptische differentialgleichungen zweiter ordnung" Math. Z. 111 (1969), 350-366
[10] J.YAPING, L.LIJIANG"The Dirichlet problem for quasilinear elliptic differential equations in unbounded domains "
J.Differential Equation 84 (1990), 62-72.

Département de Mathématiques
Faculté des sciences Semlalia B.P. S15
Marrakech - MAROC

[^0]: Received by the editors July 1995.
 Communicated by J. Mawhin.

