An alternate proof of Hall's theorem on a conformal mapping inequality

R. Balasubramanian

S. Ponnusamy*

In this note we give a different and direct proof of the following result of Hall [2], which actually implies the conjecture of Sheil-Small [3]. For details about the related problems we refer to [1, 3].
THEOREM. Let f be regular for $|z|<1$ and $f(0)=0$. Further, let f be starlike of order $1 / 2$. Then

$$
\int_{0}^{r}\left|f^{\prime}\left(\rho e^{i \theta}\right)\right| d \rho<\frac{\pi}{2}\left|f\left(r e^{i \theta}\right)\right|
$$

for every $r<1$ and real θ.
Proof. As in [2, p.125] (see also [1]), to prove our result it suffices to show that

$$
\begin{equation*}
J=I(t, \tau)+I(\tau, t)<\pi-2 \text { for } 0<t<\tau<\pi \tag{1}
\end{equation*}
$$

where

$$
I(t, \tau)=\int_{0}^{1} \frac{2|\sin (t / 2)|}{\sqrt{1-2 \rho \cos t+\rho^{2}}}\left\{\frac{1}{\sqrt{1-2 \rho \cos \tau+\rho^{2}}}-\frac{1-\rho \cos \tau}{1-2 \rho \cos \tau+\rho^{2}}\right\} d \rho .
$$

To evaluate these integrals we define k by

$$
k^{2}=\frac{\sin ^{2}(\tau / 2)-\sin ^{2}(t / 2)}{\cos ^{2}(t / 2) \sin ^{2}(\tau / 2)}
$$

[^0]so that
\[

$$
\begin{equation*}
\cos t=\frac{\cos \tau+k^{2} \sin ^{2}(\tau / 2)}{1-k^{2} \sin ^{2}(\tau / 2)} \tag{2}
\end{equation*}
$$

\]

and

$$
\sin ^{2}(t / 2)=\frac{\left(1-k^{2}\right) \sin ^{2}(\tau / 2)}{1-k^{2} \sin ^{2}(\tau / 2)}
$$

Further we let

$$
\begin{equation*}
\rho=\frac{\sin \theta}{\sin (\theta+\tau)}, \quad 0 \leq \theta \leq \frac{\pi-\tau}{2} . \tag{3}
\end{equation*}
$$

(The idea of change of variables already occurs in $[2,3]$). Then, from (2) and (3), we easily have

$$
\begin{gathered}
d \rho=\frac{\sin \tau}{\sin ^{2}(\theta+\tau)} d \theta \\
\left|1-\rho e^{i \tau}\right|^{2}=\frac{\sin ^{2} \tau}{\sin ^{2}(\theta+\tau)}=1-2 \rho \cos \tau+\rho^{2} \\
\left|1-\rho e^{i t}\right|^{2}=\frac{\sin ^{2} \tau\left[1-k^{2} \sin ^{2}(\theta+\tau / 2)\right]}{\sin ^{2}(\theta+\tau)\left[1-k^{2} \sin ^{2}(\tau / 2)\right]}
\end{gathered}
$$

and

$$
1-\rho \cos t=\frac{\sin \tau\left[\cos \theta-k^{2} \sin (\tau / 2) \sin (\theta+\tau / 2)\right]}{\sin (\theta+\tau)\left[1-k^{2} \sin ^{2}(\tau / 2)\right]}
$$

After some work we find that

$$
\begin{equation*}
J=I(t, \tau)+I(\tau, t)=\int_{0}^{(\pi-\tau) / 2} H(k, \tau, \theta) d \theta \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
H(k, \tau, \theta)=\frac{1}{\cos (\tau / 2)}\left[\sqrt{\frac{1-k^{2} \sin ^{2}(\tau / 2)}{1-k^{2} \sin ^{2}(\theta+\tau / 2)}-\frac{\cos \theta-k^{2} \sin (\tau / 2) \sin (\theta+\tau / 2)}{1-k^{2} \sin ^{2}(\theta+\tau / 2)}+} \begin{array}{c}
\left.+\frac{\sqrt{\left(1-k^{2}\right)}(1-\cos \theta)}{\sqrt{1-k^{2} \sin ^{2}(\theta+\tau / 2)}}\right]
\end{array} .\right.
\end{gathered}
$$

We put

$$
\frac{\pi-\tau}{2}=\lambda
$$

to obtain

$$
\begin{align*}
J & =\int_{0}^{(\pi-\tau) / 2} H\left(k, \tau, \frac{\pi-\tau}{2}-\theta\right) d \theta \tag{5}\\
& =\int_{0}^{\lambda}[F(k, \lambda, \theta)+G(k, \lambda, \theta)] d \theta
\end{align*}
$$

where F and G are defined by $F(k, \lambda, \theta)$

$$
\begin{aligned}
& =\frac{1}{\sin \lambda}\left[\sqrt{\frac{1-k^{2} \cos ^{2} \lambda}{1-k^{2} \cos ^{2} \theta}}-\frac{\cos (\lambda-\theta)-k^{2} \cos \lambda \cos \theta}{1-k^{2} \cos ^{2} \theta}\right] \\
& =\frac{1}{\sin \lambda}\left[\frac{\left(1-k^{2}\right) \sin ^{2}(\lambda-\theta)}{\left(1-k^{2} \cos ^{2} \theta\right)\left[\sqrt{1-k^{2} \cos ^{2} \lambda} \sqrt{1-k^{2} \cos ^{2} \theta}+\cos (\lambda-\theta)-k^{2} \cos \lambda \cos \theta\right]}\right]
\end{aligned}
$$

and

$$
G(k, \lambda, \theta)=\frac{\sqrt{1-k^{2}}(1-\cos (\lambda-\theta))}{\sin \lambda \sqrt{1-k^{2} \cos ^{2} \theta}} .
$$

Therefore

$$
\frac{\partial J}{\partial \lambda}=\int_{0}^{\lambda} \frac{\partial F(k, \lambda, \theta)}{\partial \lambda} d \theta+\int_{0}^{\lambda} \frac{\partial G(k, \lambda, \theta)}{\partial \lambda} d \theta+F(k, \lambda, \lambda)+G(k, \lambda, \lambda)
$$

Since $F(k, \lambda, \lambda)=0=G(k, \lambda, \lambda)$ the above becomes

$$
\frac{\partial J}{\partial \lambda}=\int_{0}^{\lambda} \frac{\partial F}{\partial \lambda} d \theta+\int_{0}^{\lambda} \frac{\partial G}{\partial \lambda} d \theta
$$

A simple calculation shows that

$$
\begin{aligned}
\frac{\partial F}{\partial \lambda}= & \frac{\left(1-k^{2}\right) \sin (\lambda-\theta)}{\left(1-k^{2} \cos ^{2} \theta\right) X^{2}}\left[\sqrt{\frac{1-k^{2} \cos ^{2} \theta}{1-k^{2} \cos ^{2} \lambda}}\{\cos (\lambda-\theta) \sin \lambda+\sin \theta\right. \\
& \left.\left.-k^{2} \cos \lambda \sin (\lambda+\theta)\right\}-k^{2} \cos \theta \sin (\lambda+\theta)+\cos (\lambda-\theta) \sin \theta+\sin \lambda\right]
\end{aligned}
$$

where X is the denominator of the second expression in $F(k, \lambda, \theta)$.
Since the right hand side of the above expression is a decreasing function of k for each k in $(0,1)$ and since the square bracketed term in this expression for $k=1$ is positive, we have

$$
\begin{equation*}
\frac{\partial F}{\partial \lambda} \geq\left.\frac{\partial F}{\partial \lambda}\right|_{k=1}=0 \tag{6}
\end{equation*}
$$

Similarly we have

$$
\frac{\partial G}{\partial \lambda} \geq\left.\frac{\partial G}{\partial \lambda}\right|_{k=1}=0
$$

Thus to prove (1), by (5), (6) and the above, it is sufficient to prove that

$$
\int_{0}^{\pi / 2}[F(k, \pi / 2, \theta)+G(k, \pi / 2, \theta)] d \theta \leq \pi-2,
$$

or equivalently

$$
\begin{equation*}
\int_{0}^{\pi / 2} \frac{\sqrt{1-k^{2} \cos ^{2} \theta}-\sin \theta}{1-k^{2} \cos ^{2} \theta} d \theta+\sqrt{1-k^{2}} \int_{0}^{\pi / 2} \frac{1-\sin \theta}{\sqrt{1-k^{2} \cos ^{2} \theta}} d \theta \leq \pi-2 . \tag{7}
\end{equation*}
$$

(Note that this corresponds to $\tau=0$ in (4) or (5)). In the first of the above integrals we put $\tan \theta=y \sqrt{1-k^{2}}$ so that it becomes

$$
\int_{0}^{\infty} \frac{\sqrt{1+y^{2}}-y}{\left(1+y^{2}\right) \sqrt{1+\left(1-k^{2}\right) y^{2}}} d y
$$

which, by substituting $y=\tan \theta$, yields

$$
\int_{0}^{\pi / 2} \frac{1-\sin \theta}{\sqrt{1-k^{2} \sin ^{2} \theta}} d \theta
$$

Put

$$
L(k, \theta)=(1-\sin \theta)\left[\frac{1}{\sqrt{1-k^{2} \sin ^{2} \theta}}+\frac{\sqrt{1-k^{2}}}{\sqrt{1-k^{2} \cos ^{2} \theta}}\right] .
$$

Therefore (7) is now equivalent to

$$
\begin{aligned}
\int_{0}^{\pi / 2} L(k, \theta) d \theta & =\int_{0}^{\pi / 4} L(k, \theta) d \theta+\int_{\pi / 4}^{\pi / 2} L(k, \theta) d \theta \\
& =\int_{0}^{\pi / 4}[L(k, \theta)+L(k, \pi / 2-\theta)] d \theta \\
& \leq \pi-2
\end{aligned}
$$

Note that

$$
\int_{0}^{\pi / 2} L(0, \theta) d \theta=\pi-2
$$

It is therefore suffices to prove that

$$
\begin{equation*}
\frac{\partial}{\partial k} L(k, \theta)+\frac{\partial}{\partial k} L(k, \pi / 2-\theta) \leq 0 \tag{8}
\end{equation*}
$$

for all $0 \leq \theta \leq \pi / 4$. For this we easily find that

$$
\begin{aligned}
& \frac{\partial L(k, \theta)}{\partial k}+\frac{\partial \bar{L}(k, \pi / 2-\theta)}{\partial k} \\
&=k(1-\sin \theta)(1-\cos \theta)\left[\left(1-k^{2} \sin ^{2} \theta\right)^{-3 / 2}\left\{\sqrt{1-k^{2}}(1+\cos \theta)-(1+\sin \theta)\right\}\right. \\
&\left.+\left(1-k^{2} \cos ^{2} \theta\right)^{-3 / 2}\left\{\sqrt{1-k^{2}}(1+\sin \theta)-(1+\cos \theta)\right\}\right]\left(1-k^{2}\right)^{-1 / 2}
\end{aligned}
$$

Since the inequalities

$$
\left(1-k^{2} \cos ^{2} \theta\right)^{-3 / 2} \geq\left(1-k^{2} \sin ^{2} \theta\right)^{-3 / 2}
$$

and

$$
1+\cos \theta-\sqrt{1-k^{2}}(1+\sin \theta) \geq-(1+\sin \theta)+\sqrt{1-k^{2}}(1+\cos \theta)
$$

hold for $0 \leq \theta \leq \pi / 4$, (8) follows easily. This finishes the proof of the theorem.

References

[1] R. BALASUBRAMANIAN, V. KARUNAKARAN and S. PONNUSAMY, A proof of Hall's conjecture on starlike mappings, J. London Math. Soc. (2) 48(1993), 278-288.
[2] R.R. HALL, A conformal mapping inequality for starlike functions of order $1 / 2$, Bull. London Math. Soc. 12 (1980) 119-126.
[3] T. SHEIL-SMALL, Some conformal mapping inequalities for starlike and convex functions, J. London Math. Soc. (2) 1 (1969) 577-587.

R. Balasubramanian
Institute of Mathematical Sciences
C.I.T. Campus, Madras -600 113, INDIA.
S. Ponnusamy
Department of Mathematics
PO. BOX 4 (Yliopistonkatu 5)
00014 University of Helsinki, Finland.
e-mail:samy@geom.helsinki.fi

[^0]: *This work has been done with the support of National Board for Higher Mathematics.
 Received by the editors May 1995.
 Communicated by R. Delanghe.
 1991 Mathematics Subject Classification : Primary:30C45; Secondary:30C35.
 Key words and phrases : Starlike and conformal mappings.

