On the fundamental double four-spiral semigroup

Pierre Antoine Grillet

Abstract

We give a new description of the fundamental double four-spiral semigroup.

The fundamental four-spiral semigroup $S p_{4}$ and the fundamental double fourspiral semigroup $D S p_{4}$ were introduced in [1], [3], and [4]. These semigroups are interesting examples of fundamental regular semigroups, and are indispensable building blocks of bisimple, idempotent-generated regular semigroups. Their basic properties are recalled in parts 1 and 2 of this note.

In part 3 we give an alternate construction of $D S p_{4}$ in terms of the free semigroup on two generators, as a set of quadruples with a simple, bicyclic-like multiplication. This permits shorter proofs and easier access to the main properties of $D S p_{4}$: descriptions of $D S p_{4} / \mathcal{L}$ and $D S p_{4} / \mathcal{R}$ (part 4); reduced form of the elements (part 5); and the property of congruences $\mathcal{C} \nsubseteq \mathcal{L}$ that $D S p_{4} / \mathcal{C}$ is completely simple (part 6).

1. Recall that $S p_{4}$ is the semigroup

$$
\begin{aligned}
S p_{4} \cong\langle a, b, c, d ; & a^{2}=a, b^{2}=b, c^{2}=c, d^{2}=d \\
& a=b a, b=a b, b=b c, c=c b, c=d c, d=c d, d=d a\rangle
\end{aligned}
$$

generated by four idempotents a, b, c, d such that $a \mathcal{R} b \mathcal{L} c \mathcal{R} d \leq_{L} a$. (We denote Green's left preorder $x \in S^{1} y$ by $x \leq_{L} y$). It is shown in [3] that every element of $S p_{4}$ can be written uniquely in reduced form

$$
[c](a c)^{m}[a], \quad[d](b d)^{n}[b], \quad[c](a c)^{m} a d(b d)^{n}[b],
$$

Received by the editors March 1995.
Communicated by J. Thas.
1991 Mathematics Subject Classification : 20M17.
Key words and phrases : double four-spiral; fundamental regular semigroups.
where $m, n \geq 0$ and terms in square brackets may be omitted as long as the remaining product is not empty. Hence $S p_{4}$ has a partition $S p_{4}=A \cup B \cup C \cup D \cup E$, where

$$
\begin{aligned}
& A=\left\{(a c)^{m} a,(b d)^{n+1},(a c)^{m} a d(b d)^{n} ; m, n \geq 0\right\}, \\
& B=\left\{(a c)^{m+1},(b d)^{n} b,(a c)^{m} a d(b d)^{n} b ; m, n \geq 0\right\}, \\
& C=\left\{c(a c)^{m}, d(b d)^{n} b, c(a c)^{m} a d(b d)^{n} b ; m, n \geq 0\right\}, \\
& D=\left\{d(b d)^{n}, c(a c)^{m} a d(b d)^{n} ; m, n \geq 0\right\}, \\
& E=\left\{c(a c)^{m} a ; m \geq 0\right\}
\end{aligned}
$$

have a number of interesting properties [3].
By Theorem 1 in [2], $S p_{4}$ is a Rees matrix semigroup over the bicyclic semigroup, and can be described up to isomorphism as the set of all quadruples (r, x, y, s) where $r, s \in\{0,1\}$ and x, y are nonnegative integers, with multiplication

$$
(r, x, y, s)(t, z, w, u)=
$$

$$
\begin{cases}(r, x-y+\max (y, z+1), \max (y-1, z)-z+w, u) & \text { if } s=0, t=1 \\ (r, x-y+\max (y, z), \max (y, z)-z+w, u) & \text { otherwise }\end{cases}
$$

In this form, $a=(0,0,0,0), b=(0,0,0,1), c=(1,0,0,1), d=(1,0,1,0)$, and it is readily verified that

$$
\begin{aligned}
(a c)^{m}=(0, m, 0,1), & c(a c)^{m}=(1, m, 0,1), \\
(a c)^{m} a=(0, m, 0,0), & c(a c)^{m} a=(1, m, 0,0), \\
(b d)^{n}=(0,0, n, 0), & d(b d)^{n}=(1,0, n+1,0), \\
(b d)^{n} b=(0,0, n, 1), & d(b d)^{n} b=(1,0, n+1,1), \\
(a c)^{m} a d(b d)^{n} & =(0, m+1, n+1,0), \\
c(a c)^{m} a d(b d)^{n} & =(1, m+1, n+1,0), \\
(a c)^{m} a d(b d)^{n} b & =(0, m+1, n+1,1), \\
c(a c)^{m} a d(b d)^{n} b & =(1, m+1, n+1,1) .
\end{aligned}
$$

Then

$$
\begin{aligned}
(r, x, y, s) \in A & \Longleftrightarrow r=0, s=0, \\
(r, x, y, s) \in B & \Longleftrightarrow r=0, s=1, \\
(r, x, y, s) \in C & \Longleftrightarrow \quad r=1, s=1, \\
(r, x, y, s) \in D & \Longleftrightarrow \quad r=1, s=0, y>0, \\
(r, x, y, s) \in E & \Longleftrightarrow r=1, s=0, y=0 .
\end{aligned}
$$

If \mathcal{C} is a proper congruence on $S p_{4}$, then $a \mathcal{C} a d$, and $S p_{4} / \mathcal{C}$ is completely simple. Therefore, when a \mathcal{D}-class of a semigroup contains idempotents $e<a$ linked by an E-chain of length 4, then a is contained in a subsemigroup of D which is isomorphic to $S p_{4}$ or to $S p_{4}^{\mathrm{op}}$ [3].
2. The fundamental double four-spiral semigroup $D S p_{4}$ may be defined as the semigroup

$$
\begin{aligned}
D S p_{4} \cong & \left\langle a, b, c, d, e ; a^{2}=a, b^{2}=b, c^{2}=c, d^{2}=d, e^{2}=e\right. \\
& a=b a, b=a b, b=b c, c=c b, c=d c, d=c d, d=d e, e=e d, e=a e=e a\rangle
\end{aligned}
$$

generated by five idempotents a, b, c, d, e such that $a \mathcal{R} b \mathcal{L} c \mathcal{R} d \mathcal{L} e \leq a$. It is shown in [4] that every element of $D S p_{4}$ can be written uniquely in reduced form

$$
[c](x c)^{m}[a], \quad[d](b d)^{n}[b], \quad[c](x c)^{m} y(b d)^{n}[b]
$$

where: $m, n \geq 0$; terms in square brackets may be omitted as long as the remaining product is not empty; $(x c)^{m}$ is short for $x c x c \ldots x c$ where each x stands for either a or e; and y stands for either $a d$ or e. (In [4], x and y are denoted by ∂ and ∂^{\prime}.) Hence $D S p_{4}$ has a partition $D S p_{4}=\bar{A} \cup \bar{B} \cup \bar{C} \cup \bar{D} \cup \bar{E}$, where

$$
\begin{aligned}
\bar{A} & =\left\{(x c)^{m} a,(b d)^{n+1},(x c)^{m} y(b d)^{n} ; m, n \geq 0\right\} \\
\bar{B} & =\left\{(x c)^{m+1},(b d)^{n} b,(x c)^{m} y(b d)^{n} b ; m, n \geq 0\right\} \\
\bar{C} & =\left\{c(x c)^{m}, d(b d)^{n} b, c(x c)^{m} y(b d)^{n} b ; m, n \geq 0\right\}, \\
\bar{D} & =\left\{d(b d)^{n}, c(x c)^{m} y(b d)^{n} ; m, n \geq 0\right\}, \\
\bar{E} & =\left\{c(x c)^{m} a ; m \geq 0\right\} .
\end{aligned}
$$

When a \mathcal{D}-class of a semigroup contains idempotents $e<a$ linked by an E-chain of length 4, then a and e are contained in a subsemigroup of D which is isomorphic to $D S p_{4} / \mathcal{C}$ or to $\left(D S p_{4} / \mathcal{C}\right)^{\text {op }}$ for some congruence $\mathcal{C} \subseteq \mathcal{L}[4]$.
3. In the above the reduced words $[c](x c)^{m}[a]$ and $[c](x c)^{m} y(b d)^{n}[b]$ are obtained from $[c](a c)^{m}[a]$ and $[c](a c)^{m} a d(b d)^{n}[b]$ by replacing $a d$ or some of the a 's by e 's. We use sequences of a 's and e^{\prime} 's as templates to specify which a 's remain unchanged and which are replaced by e 's.

Let $F=F_{\{a, e\}}^{1}$ be the free monoid on $\{a, e\}$. We write the empty word in F as \emptyset to distinguish it from the number 1. If $X=x_{1} x_{2} \ldots x_{m} \in F$ has length $|X|=m \geq 0$, then substituting e 's in $[c](a c)^{m}[a]$ according to X yields

$$
X \cdot[c](a c)^{m}[a]=[c]\left(x_{1} c\right)\left(x_{2} c\right) \ldots\left(x_{m} c\right)[a]
$$

If $X \in F$ has length $m+1$, then substituting e^{\prime} 's in $[c](a c)^{m} a d(b d)^{n}[b]$ according to X yields

$$
\begin{aligned}
& X \cdot[c](a c)^{m} a d(b d)^{n}[b]= \begin{cases}{[c]\left(x_{1} c\right)\left(x_{2} c\right) \ldots\left(x_{m} c\right) a d(b d)^{n}[b]} & \text { if } x_{m+1}=a, \\
{[c]\left(x_{1} c\right)\left(x_{2} c\right) \ldots\left(x_{m} c\right) e(b d)^{n}[b]} & \text { if } x_{m+1}=e .\end{cases}
\end{aligned}
$$

Every reduced word p can then be written uniquely in the form $p=X . q$, where $X \in F$ has the appropriate length, and q is a reduced word without e 's. (If $p=$ $[d](b d)^{n}[b]$, then $X=\emptyset \in F$ and $q=p$.) Now q is a reduced word for the four-spiral semigroup and can be viewed as a quadruple (r, k, ℓ, s) in which $r, s=0,1$ and k, ℓ are nonnegative integers. In all cases k is the number of a 's in q which may be replaced by e 's; thus $X . q$ is defined if and only if X has length k. Therefore p is uniquely determined by the quadruple ($r, X ; \ell, s$).

To describe the multiplication on $D S p_{4}$ in this form, let X_{ℓ} denote X with the first ℓ letters removed (added, if $\ell=-1$):

$$
X_{\ell}= \begin{cases}\emptyset & \text { if } \ell \geq m \\ x_{\ell+1} \ldots x_{m} & \text { if } 0 \leq \ell<m \\ a X & \text { if } \ell=-1\end{cases}
$$

where $X=x_{1} x_{2} \ldots x_{m} \in F$. In each case $\left|X_{\ell}\right|=\max (\ell, m)-\ell$. Inspecting the various products of reduced words $[c](x c)^{m}[a],[d](b d)^{n}[b],[c](x c)^{m} y(b d)^{n}[b]$ now yields our main result. (In part 5 we give a direct proof, which also establishes that the reduced words are all distinct in $D S p_{4}$.)

Main Result. Up to isomorphism, $D S p_{4}$ is the semigroup of all quadruples ($r, X ; y, s$) where $r, s=0,1, y$ is a nonnegative integer, and $X \in F_{\{a, e\}}^{1}$, with multiplication $(r, X ; y, s)(t, Z ; w, u)=$

$$
\begin{cases}\left(r, X Z_{y-1} ; \max (y-1, z)-z+w, u\right) & \text { if } s=0, t=1 \\ \left(r, X Z_{y} ; \max (y, z)-z+w, u\right) & \text { otherwise }\end{cases}
$$

where $z=|Z|$.
4. This main result has a number of easy applications. The projection π : $D S p_{4} \longrightarrow S p_{4}$ may be described by

$$
\pi(r, X ; y, s)=(r,|X|, y, s)
$$

The partition of $D S p_{4}$ into $\bar{A}=\pi^{-1} A, \bar{B}=\pi^{-1} B$, etc. is given by:

$$
\begin{aligned}
& (r, X ; y, s) \in \bar{A} \Longleftrightarrow \quad r=0, s=0, \\
& (r, X ; y, s) \in \bar{B} \Longleftrightarrow r=0, s=1, \\
& (r, X ; y, s) \in \bar{C} \quad \Longleftrightarrow \quad r=1, s=1, \\
& (r, X ; y, s) \in \bar{D} \Longleftrightarrow r=1, s=0, y>0, \\
& (r, X ; y, s) \in \bar{E} \Longleftrightarrow \quad r=1, s=0, y=0 \text {. }
\end{aligned}
$$

Up to isomorphism, \bar{A} consists of all pairs (X, y), with multiplication $(X, y)(Z, w)=$ $\left(X Z_{y} ; \max (y, z)-z+w\right)$. Then

$$
\left(X Z_{y-1} ; \max (y-1, z)-z+w\right)=(X, y)(a, 0)(Z, w)
$$

and the main result describes $D S p_{4}$ as a 2×2 Rees matrix semigroup over \bar{A}, with sandwich matrix $\left(\begin{array}{cc}(\emptyset, 0) & (a, 0) \\ (\emptyset, 0) & (\emptyset, 0)\end{array}\right)$, equivalently, $\left(\begin{array}{cc}a & a c a \\ a & a\end{array}\right)$.

It is readily verified that, if $r=1, s=0$, then (r, X, y, s) is idempotent if and only if $y=|X|+1$; otherwise (r, X, y, s) is idempotent if and only if $y=|X|$.

Green's relations on $D S p_{4}$ may be described by:

$$
\begin{aligned}
(r, X, y, s) \leq_{R}(t, Y, z, u) & \Longleftrightarrow r=t \text { and } X \leq_{R} Y \text { in } F, \\
(r, X, y, s) \leq_{L}(t, Y, z, u) & \Longleftrightarrow s=u \text { and } y \geq z .
\end{aligned}
$$

Thus \mathcal{L} contains the congruence induced by $\pi: D S p_{4} \longrightarrow S p_{4}$, and the partially ordered set $\Lambda=D S p_{4} / \mathcal{L}$ is isomorphic to $S p_{4} / \mathcal{L}$ and consists of two unrelated ω chains. For $D S p_{4} / \mathcal{R}$ we note that $X \leq_{R} Y$ in F if and only if X is a prefix of Y. Thus $R_{\varnothing}>R_{a}, R_{e} ; R_{a}>R_{a a}, R_{a e} ; R_{e}>R_{e a}, R_{e e}$, etc.; and F / \mathcal{R} is a complete (upside down) binary tree in which every element covers two elements and (except for $R(\emptyset)$ is covered by one element. Thus $I=D S p_{4} / \mathcal{R}$ consists of two unrelated complete binary trees. Our main result describes $D S p_{4}$ as $I \times \Lambda$ with a suitable multiplication.
5. We now give a direct proof of the main result. This proof also establishes that the reduced words $[c](x c)^{m}[a],[d](b d)^{n}[b],[c](x c)^{m} y(b d)^{n}[b]$ are all distinct in $D S p_{4}$.

First we verify that the quadruples in the statement constitute a semigroup D. We use the mapping $\pi: D \longrightarrow S p_{4}, \pi(r, X ; y, s)=(r,|X|, y, s)$, which is a homomorphism since $\left|X Z_{y}\right|=|X|-y+\max (y,|Z|)$ and $\left|X Z_{y-1}\right|=|X|-y+1+$ $\max (y-1,|Z|)=|X|-y+\max (y,|Z|+1))$.

Let $(r, A ; b, s),(t, C ; d, u),(v, E ; f, w) \in D$ and

$$
\begin{array}{ll}
(r, A ; b, s)(t, C ; d, u)=(r, G ; h, u), & (r, G ; h, u)(v, E ; f, w)=(r, K ; l, w), \\
(t, C ; d, u)(v, E ; f, w)=(t, I ; j, w), & (r, A ; b, s)(t, I ; j ; w)=(r, M ; n, w)
\end{array}
$$

We want to show that $(r, K ; l, w)=(r, M ; n, w)$. Since $S p_{4}$ is a semigroup, we have $l=n$, and need only show that $K=M$.

There are four cases to consider. If $(s, t),(u, v) \neq(0,1)$, then $G=A C_{b}, h=$ $\max (b, c)-c+d$, where $c=|C|, K=G E_{h}, I=C E_{d}$, and $M=A I_{b}$. Thus $K=A C_{b} E_{h}$ and $M=A\left(C E_{d}\right)_{b}$. If C has length $c \geq b$, then $h=d,\left(C E_{d}\right)_{b}=$ $C_{b} E_{d}=C_{b} E_{h}$, and $K=M$. If C has length $c<b$, then $h=b-c+d,\left(C E_{d}\right)_{b}=$ $\left(E_{d}\right)_{b-c}=E_{d+b-c}=E_{h}$, and $K=A E_{h}=M$.

The other cases are similar. If $(s, t)=(0,1)$ and $(u, v) \neq(0,1)$, then $G=A C_{b-1}$, $h=\max (b-1, c)-c+d, K=G E_{h}, I=C E_{d}$, and $M=A I_{b-1}$. If $b>0$, then replacing b by $b-1$ in the above yields $K=M$. If $b=0$, then $h=d, G=A a C$, and $K=A a C E_{h}=A a I=M$.

If $(s, t) \neq(0,1)$ and $(u, v)=(0,1)$, then $G=A C_{b}, h=\max (b, c)-c+d$, $K=G E_{h-1}, I=C E_{d-1}$, and $M=A I_{b}$. If C has length $c \geq b$, then $h=d$; if $d>0$, then

$$
I_{b}=\left(C E_{d-1}\right)_{b}=C_{b} E_{d-1}=C_{b} E_{h-1}
$$

and $K=M$; if $d=0$, then

$$
I_{b}=\left(C E_{d-1}\right)_{b}=(C a E)_{b}=C_{b} a E=C_{b} E_{h-1}
$$

and $K=M$. If C has length $c<b$, then $h=b-c+d>0$; if $d>0$, then

$$
I_{b}=\left(C E_{d-1}\right)_{b}=\left(E_{d-1}\right)_{b-c}=E_{d-1+b-c}=E_{h-1}
$$

and $K=A E_{h-1}=M$; if $d=0$, then

$$
I_{b}=\left(C E_{d-1}\right)_{b}=(C a E)_{b}=E_{b-c-1}=E_{d-1+b-c}=E_{h-1}
$$

and $K=A E_{h-1}=M$.
If $(s, t)=(u, v)=(0,1)$, then $G=A C_{b-1}, h=\max (b-1, c)-c+d, K=G E_{h-1}$, $I=C E_{d-1}$, and $M=A I_{b-1}$. If $b>0$, then replacing b by $b-1$ in the previous case yields $K=M$. If $b=0$, then $h=d$; if $d>0$, then $K=A a C E_{h-1}=A a I=M$; if $d=0$, then $K=G a E=A a C a E=A a I=M$. Thus $K=M$ in all cases and D is a semigroup.

Let

$$
\begin{array}{lll}
\alpha=(0, \emptyset ; 0,0), & \beta=(0, \emptyset ; 0,1), & \\
\gamma=(1, \emptyset ; 0,1), & \delta=(1, \emptyset ; 1,0), & \epsilon=(0, e ; 1,0) .
\end{array}
$$

It is immediate that $\alpha, \beta, \gamma, \delta$, and ϵ satisfy all the defining relations of $D \operatorname{Sp}_{4}(\alpha, \beta$, γ, δ, and ϵ are idempotent, and $\alpha \mathcal{R} \beta \mathcal{L} \gamma \mathcal{R} \delta \mathcal{L} \epsilon \leq \alpha$): their images a, b, c, d, and ad $\in S p_{4}$ under $\pi: D \longrightarrow S p_{4}$ have these properties, and the second components (most of which are empty words) cooperate. Hence there is a homomorphism φ : $D S p_{4} \longrightarrow D$ such that $\varphi(a)=\alpha, \varphi(b)=\beta, \varphi(c)=\gamma, \varphi(d)=\delta$, and $\varphi(e)=\epsilon$. We show that φ is an isomorphism.

As in [3] it follows from the defining relations that every element of $D S p_{4}$ can be written in reduced form: $X \cdot[c](a c)^{m}[a]=[c](x c)^{m}[a], \quad[d](b d)^{n}[b]$, or $X .[c](a c)^{m} a d(b d)^{n}[b]=[c](x c)^{m} y(b d)^{n}[b]$. To prove that φ is an isomorphism (and that the reduced words are all distinct in $D S p_{4}$) we evaluate φ at all reduced words. First,

$$
\begin{aligned}
\varphi(a c) & =(0, \emptyset ; 0,0)(1, \emptyset ; 0,1)=(0, a ; 0,1), \\
\varphi(e c) & =(0, e ; 1,0)(1, \emptyset ; 0,1)=(0, e ; 0,1),
\end{aligned}
$$

and $(0, X ; 0,1)(0, Y ; 0,1)=(0, X Y ; 0,1)$. By induction, $\varphi\left(X .(a c)^{m}\right)=(0, X ; 0,1)$. Also $\varphi(b d)=(0, \emptyset ; 0,1)(1, \emptyset ; 1,0)=(0, \emptyset ; 1,0)$ and, by induction, $\varphi(b d)^{n}=(0, \emptyset ; n, 0)$. Hence, for all $m, n>0$:

$$
\begin{aligned}
\varphi\left(X .(a c)^{m}\right) & =(0, X ; 0,1), \\
\varphi\left(X \cdot c(a c)^{m}\right) & =(1, \emptyset ; 0,1)(0, X ; 0,1)=(1, X ; 0,1), \\
\varphi\left(X .(a c)^{m} a\right) & =(0, X ; 0,1)(0, \emptyset ; 0,0)=(0, X ; 0,0), \\
\varphi\left(X \cdot c(a c)^{m} a\right) & =(1, X ; 0,1)(0, \emptyset ; 0,0)=(1, X ; 0,0), \\
\varphi\left((b d)^{n}\right) & =(0, \emptyset ; n, 0), \\
\varphi\left(d(b d)^{n}\right) & =(1, \emptyset ; 1,0)(0,1 ; n, 0)=(1, \emptyset ; n+1,0), \\
\varphi\left((b d)^{n} b\right) & =(0, \emptyset ; n, 0)(0, \emptyset ; 0,1)=(0, \emptyset ; n, 1), \\
\varphi\left(d(b d)^{n} b\right) & =(1, \emptyset ; n+1,0)(0, \emptyset ; 0,1)=(1, \emptyset ; n+1,1) .
\end{aligned}
$$

These equalities actually hold for all $m, n \geq 0$ as long as φ is not applied to empty products. If now $X=Y a$ has length $m+1$ and ends with a, then $X \cdot[c](a c)^{m} a d(b d)^{n}[b]=\left(Y \cdot[c](a c)^{m} a\right)\left(d(b d)^{n}[b]\right)$ and

$$
\begin{aligned}
\varphi\left(X \cdot(a c)^{m} a d(b d)^{n}\right) & =(0, Y ; 0,0)(1, \emptyset ; n+1,0)=(0, X ; n+1,0), \\
\varphi\left(X \cdot c(a c)^{m} a d(b d)^{n}\right) & =(1, Y ; 0,0)(1, \emptyset ; n+1,0)=(1, X ; n+1,0), \\
\varphi\left(X \cdot(a c)^{m} a d(b d)^{n} b\right) & =(0, Y ; 0,0)(1, \emptyset ; n+1,1)=(0, X ; n+1,1), \\
\varphi\left(X \cdot c(a c)^{m} a d(b d)^{n} b\right) & =(1, Y ; 0,0)(1, \emptyset ; n+1,1)=(1, X ; n+1,1),
\end{aligned}
$$

for all $m, n \geq 0$. If on the other hand $X=Y e$ has length $m+1$ and ends with e, then $X \cdot[c](a c)^{m} a d(b d)^{n}[b]=\left(Y \cdot[c](a c)^{m}\right) e(b d)^{n}[b]$. If $m>0$:

$$
\begin{aligned}
\varphi\left(\left(Y \cdot(a c)^{m}\right) e\right) & =(0, Y ; 0,1)(0, e ; 1,0)=(0, X ; 1,0), \\
\varphi\left(\left(Y \cdot c(a c)^{m}\right) e\right) & =(1, Y ; 0,1)(0, e ; 1,0)=(1, X ; 1,0),
\end{aligned}
$$

These equalities also hold if $m=0$. Hence we obtain, for all $m \geq 0, n>0$:

$$
\begin{aligned}
\varphi\left(X .(a c)^{m} a d(b d)^{n}\right) & =(0, X ; 1,0)(0, \emptyset ; n, 0)=(0, X ; n+1,0), \\
\varphi\left(X \cdot(a c)^{m} a d(b d)^{n} b\right) & =(0, X ; 1,0)(0, \emptyset ; n, 1)=(0, X ; n+1,1), \\
\varphi\left(X \cdot c(a c)^{m} a d(b d)^{n}\right) & =(1, X ; 1,0)(0, \emptyset ; n, 0)=(1, X ; n+1,0), \\
\varphi\left(X \cdot c(a c)^{m} a d(b d)^{n} b\right) & =(1, X ; 1,0)(0, \emptyset ; n, 1)=(1, X ; n+1,1) .
\end{aligned}
$$

These equalities also hold if $n=0$.
Inspection shows that every element of D is the image under φ of a reduced word, and that distinct reduced words in $D S p_{4}$ have distinct images under φ. This implies
that the reduced words are all distinct in $D S p_{4}$, and that φ is an isomorphism, which completes the proof.
6. Finally we use our main result to prove the following congruence property: that if \mathcal{C} is a congruence on $D S p_{4}$ and $\mathcal{C} \nsubseteq \mathcal{L}$ then $D S p_{4} / \mathcal{C}$ is completely simple. This property implies that a \mathcal{D}-class of a semigroup which contains idempotents $e<a$ linked by an E-chain of length 4 must also contain a subsemigroup which is isomorphic to $D S p_{4} / \mathcal{C}$ or to $\left(D S p_{4} / \mathcal{C}\right)^{\text {op }}$ for some congruence $\mathcal{C} \subseteq \mathcal{L}[4]$.

For the proof we identify our two descriptions of $D S p_{4}$, so that $a=(0, \emptyset ; 0,0)$, $b=(0, \emptyset ; 0,1), c=(1, \emptyset ; 0,1), d=(1, \emptyset ; 1,0), e=(0, e ; 1,0)$, and, from the previous proof, $X .(a c)^{m}=(0, X ; 0,1)$, etc.

Lemma 1. Let \mathcal{C} be a congruence on $D S p_{4}$. If $(b d)^{k} \mathcal{C}(b d)^{m} b$, then $a \mathcal{C}(b d)^{m} b$. If $a \mathcal{C}(b d)^{m} b$, then $a \mathcal{C}$ ad $\mathcal{C} e$.

Proof. If $(0, \emptyset ; k, 0)=(b d)^{k} \mathcal{C}(b d)^{m} b=(0, \emptyset ; m, 1)$, then $k>0$,

$$
\begin{aligned}
(0, \emptyset ; k, 0)(0, \emptyset ; 0,0) & =(0, \emptyset ; k, 0) \\
(0, \emptyset ; m, 1)(0, \emptyset ; 0,0) & =(0, \emptyset ; m, 0) \\
(0, \emptyset ; k, 0)(1, \emptyset ; 0,0) & =(0, \emptyset ; k-1,0) \\
(0, \emptyset ; m, 1)(1, \emptyset ; 0,0) & =(0, \emptyset ; m, 0)
\end{aligned}
$$

so that $(0, \emptyset ; k, 0) \mathcal{C}(0, \emptyset ; m, 0) \mathcal{C}(0, \emptyset ; k-1,0)$ and, by induction, $a=(0, \emptyset ; 0,0) \mathcal{C}$ $(0, \emptyset ; k, 0)=(b d)^{k} \mathcal{C}(b d)^{m} b$.

In turn, $a \mathcal{C}(b d)^{m} b$ implies $b=a b \mathcal{C}(b d)^{m} b \mathcal{C} a, c=d a c \mathcal{C} d b c=d b \mathcal{C} d a=d$, ad \mathcal{C} bd $\mathcal{C} b c=b \mathcal{C} a$, and $a \mathcal{C}$ ad $=a d e=a c e \mathcal{C} b c e=e$.

Lemma 2. Let \mathcal{C} be a congruence on $D S p_{4}$. If $\mathcal{C} \nsubseteq \mathcal{L}$, then a \mathcal{C} ad $\mathcal{C} e$.
Proof. Assume $\mathcal{C} \nsubseteq \mathcal{L}$, so that there exists $p=(r, K ; l, s)$ and $q=(t, M ; n, u) \in$ $D S p_{4}$ such that $p \mathcal{C} q$ but not $p \mathcal{L} q$. Then $(l, s) \neq(n, u)$.

Assume $s \neq u$, say, $s=0$ and $u=1$. If $y \geq|K|,|M|$, then

$$
\begin{aligned}
(0, \emptyset ; y, 1)(r, K ; l, s) & =(0, \emptyset ; k, s) \\
(0, \emptyset ; y, 1)(t, M ; n, u) & =(0, \emptyset ; m, u)
\end{aligned}
$$

and $(0, \emptyset ; k, 0) \mathcal{C}(0, \emptyset ; m, 1)$ for some $k, m \geq 0$. Thus $(b d)^{k} \mathcal{C}(b d)^{m} b$ if $k>0$, $a \mathcal{C}(b d)^{m} b$ if $k=0$. By Lemma $1, a \mathcal{C}$ ad $\mathcal{C} e$.

Now assume $s=u$, so that, say, $l<n$. Then

$$
\begin{aligned}
(r, K ; l, s)\left(s, a^{l} ; 0,0\right) & =(r, K ; 0,0) \\
(t, M ; n, u)\left(s, a^{l} ; 0,0\right) & =(t, M ; n-l, 0)
\end{aligned}
$$

and $(r, K ; 0,0) \mathcal{C}(t, M ; m, 0)$ where $m=n-l>0$. For any $y \leq|K|,|M|$,

$$
\begin{aligned}
(0, \emptyset ; y, 0)(r, K ; 0,0) & =\left(0, K_{y} ; 0,0\right) \\
(0, \emptyset ; y, 0)(t, M ; m, 0) & =\left(0, M_{y} ; m, 0\right)
\end{aligned}
$$

and $\left(0, K_{y} ; 0,0\right) \mathcal{C}\left(0, M_{y} ; m, 0\right)$.
If $|K| \leq|M|$, then $y=|K|$ yields $(0, \emptyset ; 0,0) \mathcal{C}\left(0, M_{y} ; m, 0\right)$. Then $a \mathcal{C} M_{y} \cdot(a c)^{k} a d(b d)^{m-1}$ for some $k \geq 0$. Since $d e=d$ it follows that $a \mathcal{C} a e=e$, and ad \mathcal{C} ed $=e$.

If $|K|>|M|$, then $y=|M|$ yields $\left(0, K_{y} ; 0,0\right) \mathcal{C}(0, \emptyset ; m, 0)$.
Then $K_{y} \cdot(a c)^{k} \mathcal{C}(b d)^{m}$ for some $k=|K|-|M|>0$. Since $c b=c$ it follows that $(b d)^{m} \mathcal{C}(b d)^{m} b$. Again $a \mathcal{C}$ ad $\mathcal{C} e$ by Lemma 1.

We can now show that $D S p_{4} / \mathcal{C}$ is completely simple when $\mathcal{C} \nsubseteq \mathcal{L}$ is a congruence on $D S p_{4}$. We see on the reduced forms of the elements that the subsemigroup $T=\langle a, b, c, d\rangle$ of $D S p_{4}$ is isomorphic to $S p_{4}$. Since a $\mathcal{R} b \mathcal{L} c \mathcal{R} d \mathcal{L} a d \leq a$ holds in T, there is a homomorphism $\tau: D S p_{4} \longrightarrow T$ such that $\tau x=x$ for $x=a, b, c, d$ and $\tau e=a d$. By Lemma $2, a \mathcal{C} a d \mathcal{C} e$. Therefore $\tau p \mathcal{C} p$ for all $p \in D S p_{4}$. Hence every \mathcal{C}-class intersects T, and $D S p_{4} / \mathcal{C}$ is a homomorphic image of T / \mathcal{C}. But T / \mathcal{C} is completely simple, since $T \cong S p_{4}$ and $a \mathcal{C}$ ad shows that \mathcal{C} is not the equality on T. Therefore $D S p_{4} / \mathcal{C}$ is completely simple.

References

[1] Byleen, K., The Structure of Regular and Inverse Semigroups, Doct. Diss., Univ. of Nebraska (1977).
[2] Byleen, K., Regular four-spiral semigroups, idempotent-generated semigroups, and the Rees construction, Semigroup Forum 22 (1991), 97-100.
[3] Byleen, K., J. Meakin, and F. Pastijn, The fundamental four-spiral semigroup, J. Algebra 54 (1978), 6-26.
[4] Byleen, K., J. Meakin, and F. Pastijn, The double four-spiral semigroup, Simon Stevin 54 (1980), 75-105.

