Classical polar spaces (sub-)weakly embedded in projective spaces

Anja Steinbach

1 Introduction and statement of the Main Theorem

In this paper we are concerned with classical polar spaces, i. e. with the set of points and lines of some vector space W on which a non-degenerate (σ, ϵ)-hermitian form or pseudo-quadratic form vanishes.

To state the Main Theorem we introduce some notation. Let L be a division ring and W be a (left-)vector space over L endowed with a (σ, ϵ)-hermitian form or a pseudo-quadratic form q (with associated (σ, ϵ)-hermitian form f) in the sense of [Ti, §8]. We may assume that $\epsilon= \pm 1$ and $\sigma^{2}=i d$. We let

$$
\begin{aligned}
\operatorname{Rad}(W, f) & =\{w \in W \mid f(w, x)=0 \text { for all } x \in W\}, \\
x^{\perp} & =\{w \in W \mid f(w, x)=0\} \text { for } x \in W, \\
\Lambda_{\text {min }} & =\left\{c-\epsilon c^{\sigma} \mid c \in L\right\}, \\
\Lambda_{\text {max }} & =\left\{c \in L \mid \epsilon c^{\sigma}=-c\right\} .
\end{aligned}
$$

If $\operatorname{Rad}(W, f)=0$, then f is said to be non-degenerate. Further f is trace-valued, if $f(w, w) \in\left\{c+\epsilon c^{\sigma} \mid c \in L\right\}$ for all $w \in W$. A subspace U of W is called singular, if $f\left(u, u^{\prime}\right)=0$ resp. $q(u)=0$ for all $u, u^{\prime} \in U$. The $1-, 2-$ and 3 -dimensional subspaces of W are called points, lines, planes respectively. Let S be the set of singular points

[^0]of W. For each subspace U of W, we denote by $U \cap S$ the set of singular points in U. The subspace of a vector space which is spanned by a subset M is denoted by $<M>$.

We prove the following result:
Main Theorem . Let L and K be division rings and let W be a vector space over L (not necessarily finite-dimensional). We assume that there is either a nondegenerate (trace-valued) (σ, ϵ)-hermitian form f on W such that $\Lambda_{\min }=\Lambda_{\max }$ or that there is a pseudo-quadratic form q on W with corresponding (σ, ϵ)-hermitian form f such that $\operatorname{Rad}(W, f)=0$. We suppose that there are singular lines in W and that $\operatorname{dim} W \geq 5$. Further let V be a vector space over K.

We assume that the following hypotheses are satisfied:
(a) There is an injective mapping π from the set of singular points of W into the set of points of V. (We set $\pi(U \cap S):=\{\pi(u) \mid u \in U \cap S\}$ for each subspace U of W.)
(b) If L_{1} is a singular line of W, then the subspace $<\pi\left(L_{1} \cap S\right)>$ of V generated by $\pi\left(L_{1} \cap S\right)$ is a line in V.
(c) For each singular point x of W we have: If y is a singular point of W with $\pi(y) \subseteq<\pi\left(x^{\perp} \cap S\right)>$, then $y \subseteq x^{\perp}$.

Then there exists an embedding $\alpha: L \rightarrow K$ and an injective semi-linear (with respect to α) mapping $\varphi: W \rightarrow V$ such that $\pi(L x)=K \varphi(x)$ for all $x \in W, x$ singular (i. e. π is induced by a semi-linear mapping).

The mapping π defined by $x \mapsto \pi(x), L_{1} \mapsto<\pi\left(L_{1} \cap S\right)>$, where x is a singular point and L_{1} is a singular line in W, yields a sub-weak embedding of the polar space \mathcal{S} associated with W and f resp. q into the projective space $\mathbf{P}\left(V_{0}\right), V_{0}=$ $<\pi(W \cap S)>$ in the sense of [TVM1].

In the paper [TVM1] it is shown that for a non-degenerate polar space the concept of sub-weak embeddings is the same as the one of weak embeddings of polar spaces in projective spaces introduced by Lefevre-Percsy [Lef1], [Lef2]. In [TVM1], [TVM2] Thas and Van Maldeghem classified all polar spaces (degenerate or not) of rank at least 3 of orthogonal, symplectic or unitary type, which are sub-weakly embedded in a finite-dimensional projective space over a commutative field (except one possibility in the symplectic case over non-perfect fields of characteristic 2). In the non-degenerate case with the radical of the bilinear form of dimension at most 1 , their result is that the polar space is fully embedded over a subfield.

The Main Theorem shows that this conclusion remains valid, if f resp. q satisfy the hypotheses of the Main Theorem. The polar space \mathcal{S} associated with W and f resp. q is fully embedded in the projective space $\mathbf{P}(\varphi(W))$, where $\varphi(W)$ is a vector space over the sub-division ring L^{α} of K. For the mapping $x \mapsto \varphi(x), L_{1} \mapsto \varphi\left(L_{1}\right)$, every point in $\varphi\left(L_{1}\right)$ has an inverse image under φ. The Main Theorem does not require rank at least 3 , finite dimension or rank, or commutative fields.

By the classification of non-degenerate polar spaces of rank at least 3, every such polar space is associated to a non-degenerate trace-valued (σ, ϵ)-hermitian form or a non-degenerate pseudo-quadratic form (apart from two classes of exceptions in rank 3). The assumptions $\Lambda_{\text {min }}=\Lambda_{\max } \operatorname{resp} \operatorname{Rad}(W, f)=0$ are always satisfied if char $L \neq 2$. Thus the set of polar spaces handled in the Main Theorem is sufficiently rich.

Sections 2 to 5 are devoted to the proof of the Main Theorem. First, inspired by [$\mathrm{Ti},(8.19)]$ we derive some properties of the mapping π (Section 2), which enables us to extend π to arbitrary points of W (Section 3). For this we use that every point is the intersection of two hyperbolic lines (i. e. lines spanned by two singular points x, y with $x \nsubseteq y^{\perp}$), if $\operatorname{Rad}(W, f)=0$. For the construction of a semi-linear mapping φ which induces π (Section 5), we need the intermediate step where we construct such a semi-linear mapping for the restriction of π to a 4^{+}-space in W (Section 4). By a 4^{+}-space we mean the orthogonal sum of two hyperbolic lines.

2 Properties of the mapping π

In this first part of the proof of the Main Theorem we derive some properties of the mapping π.
2.1. If a, b are singular points in W with $L_{1}=\langle a, b\rangle$ a singular line, then $<\pi\left(L_{1} \cap S\right)>=<\pi(a), \pi(b)>$.

Proof. Since π is injective on singular points, we see that $\langle\pi(a), \pi(b)\rangle$ is a line which is contained in $\left.<\pi\left(L_{1} \cap S\right)\right\rangle$. By (b) the claim follows.
2.2. If L_{1} is a singular line in W and x is a singular point in W with $\pi(x) \subseteq$ $<\pi\left(L_{1} \cap S\right)>$, then $x \subseteq L_{1}$.

Proof. We first consider the case that $L_{1} \nsubseteq x^{\perp}$. Then $a:=L_{1} \cap x^{\perp}$ is a point, without loss $x \neq a$. Let b be a singular point with $L_{1}=\langle a, b\rangle$. Then $b \nsubseteq x^{\perp}$. We have $<\pi(x), \pi(a), \pi(b)>\subseteq<\pi\left(L_{1} \cap S\right)>=<\pi(a), \pi(b)>$ by (2.1). Hence $\pi(b) \subseteq$ $<\pi(x), \pi(a)>\subseteq<\pi\left(x^{\perp} \cap S\right)>$. Now (c) yields $b \subseteq x^{\perp}$, a contradiction.

Thus we are left with the case $L_{1} \subseteq x^{\perp}$. Without loss $E:=\left\langle L_{1}, x\right\rangle$ is a singular plane. Let y be a singular point in W with $y \subseteq L_{1}{ }^{\perp}, y \nsubseteq x^{\perp}$. Then $\pi(x) \subseteq<\pi\left(L_{1} \cap S\right)>\subseteq<\pi\left(y^{\perp} \cap S\right)>$. Using (c) this yields $x \subseteq y^{\perp}$, a contradiction.
2.3. If L_{1}, L_{2} are singular lines in W with $\left.\left\langle\pi\left(L_{1} \cap S\right)\right\rangle=<\pi\left(L_{2} \cap S\right)\right\rangle$, then $L_{1}=L_{2}$.

Proof. Using (2.2) we obtain $L_{1} \cap S=L_{2} \cap S$, hence $L_{1}=L_{2}$.
2.4. Let $Q=<L_{1}, L_{2}>$ be a 4^{+}-space in W, where $L_{1}=<x_{1}, x_{2}>, L_{2}=<y_{1}, y_{2}>$ are singular lines with $x_{1} \nsubseteq y_{1}{ }^{\perp}, x_{1} \subseteq y_{2}{ }^{\perp}, x_{2} \subseteq y_{1}{ }^{\perp}, x_{2} \nsubseteq y_{2}{ }^{\perp}$. Then $<\pi(Q \cap S)>=$ $<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right), \pi\left(y_{2}\right)>$ is $4-$ dimensional.

Proof. By (c) $\pi\left(y_{1}\right) \nsubseteq<\pi\left(x_{1}\right), \pi\left(x_{2}\right)>$ and similarly $\pi\left(y_{2}\right) \nsubseteq<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right)>$. Hence $<\pi\left(L_{1} \cap S\right), \pi\left(L_{2} \cap S\right)>=<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right), \pi\left(y_{2}\right)>$ is 4-dimensional.

By [Ti, (8.10)] $Q \cap S$ is the smallest subset X of S containing $L_{1} \cap S$ and $L_{2} \cap S$ such that for every singular line L^{\prime} of W which has two points in X necessarily $L^{\prime} \cap S$ is contained in X. Let $Y:=\left\{y \in S \mid \pi(y) \subseteq<\pi\left(L_{1} \cap S\right), \pi\left(L_{2} \cap S\right)>\right\}$. Then Y is a subset of S having the properties mentioned above. Hence $Q \cap S \subseteq Y$ and $<\pi(Q \cap S)>\subseteq<\pi\left(L_{1} \cap S\right), \pi\left(L_{2} \cap S\right)>$. This yields (2.4).
2.5. If H is a hyperbolic line of W and x is a singular point of W with $\pi(x) \subseteq$ $<\pi(H \cap S)>$, then $x \subseteq H$.
Proof. Since W contains singular lines, H^{\perp} is generated by its singular points. If a is a singular point in H^{\perp}, then $\pi(x) \subseteq<\pi(H \cap S)>\subseteq<\pi\left(a^{\perp} \cap S\right)>$. Using (c) we obtain $x \subseteq a^{\perp}$, hence $H^{\perp} \subseteq x^{\perp}$. This yields $x \subseteq H^{\perp \perp}=H$, since $\operatorname{Rad}(W, f)=0$.
2.6. If H_{1}, H_{2} are hyperbolic lines in W with $\left.\left\langle\pi\left(H_{1} \cap S\right)\right\rangle=<\pi\left(H_{2} \cap S\right)\right\rangle$, then $H_{1}=H_{2}$.
Proof. Using (2.5) we obtain $H_{1} \cap S=H_{2} \cap S$, hence $H_{1}=H_{2}$.
2.7. Let U be a subspace of W with $U=\langle U \cap S>\neq 0$. If $u \in U, u \notin \operatorname{Rad}(U, f)$, then $u=c x_{1}+y_{1}$ for some $c \in L$ and a hyperbolic pair $\left(x_{1}, y_{1}\right)$ of U.
Proof. Since $u \notin \operatorname{Rad}(U, f)$, there exists a singular point a in U with $a \nsubseteq u^{\perp}$. Let $a=\left\langle x_{1}\right\rangle$ with $f\left(x_{1}, u\right)=1$. If there is a pseudo-quadratic form on W, let $q(u)=c+\Lambda_{\min }$ and set $y_{1}=-c x_{1}+u$. If there is a trace-valued (σ, ϵ)-hermitian form on W, let $f(u, u)=c+\epsilon c^{\sigma}$ and set $y_{1}=c x_{1}+u$.
2.8. If Q is a 4^{+}-space in W and x is a singular point of W with $\pi(x) \subseteq<\pi(Q \cap S)>$, then $x \subseteq Q$.
Proof. Since Q is finite-dimensional with $\operatorname{Rad}(Q, f)=0$, we have $W=Q \perp Q^{\perp}$. Let $x=L(w+s)$ where w and s are vectors in Q, Q^{\perp} respectively. Without loss $s \neq 0$.

We first consider the case that s is singular. Then W contains singular planes and Q^{\perp} contains hyperbolic lines. Let a be a singular point in Q^{\perp} with $a \nsubseteq s^{\perp}$, hence $a \nsubseteq x^{\perp}$. Then $\pi(x) \subseteq<\pi(Q \cap S)>\subseteq<\pi\left(a^{\perp} \cap S\right)>$. Using (c) this yields $x \subseteq a^{\perp}$, a contradiction.

Thus we are left with the case that s is non-singular. Then w is non-singular. Let $w=c x_{1}+y_{1}$ as in (2.7) and let $\left.Q=<x_{1}, y_{1}\right\rangle \perp<x_{2}, y_{2}>$ with $\left(x_{2}, y_{2}\right)$ a hyperbolic pair.

By (c) $<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right)>$ is 3 -dimensional. Hence

$$
<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right)>=<\pi(Q \cap S)>\cap<\pi\left(x_{2}{ }^{\perp} \cap S\right)>
$$

since otherwise $<\pi(Q \cap S)>\subseteq<\pi\left(x_{2}{ }^{\perp} \cap S\right)>$ and $y_{2} \in x_{2}{ }^{\perp}$ by (c), a contradiction. Similarly $<\pi(Q \cap S)>\cap<\pi\left(y_{2}{ }^{\perp} \cap S\right)>=<\pi\left(x_{1}\right), \pi\left(y_{1}\right), \pi\left(y_{2}\right)>$. Since $x \subseteq x_{2}{ }^{\perp} \cap y_{2}{ }^{\perp}$, this yields

$$
\pi(x) \subseteq<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(y_{1}\right)>\cap<\pi\left(x_{1}\right), \pi\left(y_{1}\right), \pi\left(y_{2}\right)>=<\pi\left(x_{1}\right), \pi\left(y_{1}\right)>
$$

The last equality is obtained using (c). By (2.5) we see that $\left.x \subseteq<x_{1}, y_{1}\right\rangle \subseteq Q$.
2.9. If Q_{1}, Q_{2} are 4^{+}-spaces in W with $\left.<\pi\left(Q_{1} \cap S\right)\right\rangle=<\pi\left(Q_{2} \cap S\right)>$, then $Q_{1}=$ Q_{2}.

Proof. Using (2.8) we obtain $Q_{1} \cap S=Q_{2} \cap S$, hence $Q_{1}=Q_{2}$.
2.10. Let H_{1} be a hyperbolic line in W and let z be an arbitrary point in $H_{1}{ }^{\perp}$. Then z is the intersection of two hyperbolic lines in $H_{1}{ }^{\perp}$ or we have the following exceptional situation:
$|L| \leq 4$, dim $W \leq 6, W$ is associated to a quadratic form. If H_{2} is a hyperbolic line in $H_{1}{ }^{\perp}$ which contains z, then there exists a singular point b in $H_{1}{ }^{\perp}$ with $b \nsubseteq H_{2}$, $b \subseteq z^{\perp}$.

Proof. Let H_{2} be a hyperbolic line which contains z. We write $\left.z=<c x_{2}+y_{2}\right\rangle$ where $\left(x_{2}, y_{2}\right)$ is a hyperbolic pair in H_{2}, using (2.7). Since H_{2} and z^{\perp} are proper subspaces of $H_{1}{ }^{\perp}$, there exists a singular point a in $H_{1}{ }^{\perp}$ with $a \nsubseteq H_{2}, a \nsubseteq z^{\perp}$ by [$\mathrm{Ti},(8.17)]$, provided that $|L| \geq 4$. Then $\langle z, a>$ is a second hyperbolic line, which contains z.

Further, if there are singular lines in $H_{1}{ }^{\perp}$, then we let $\left\langle x_{2}, y_{2}\right\rangle \perp\left\langle x_{3}, y_{3}\right\rangle \subseteq H_{1}{ }^{\perp}$ with $\left(x_{3}, y_{3}\right)$ a hyperbolic pair and choose $<z, x_{2}+x_{3}>$ as second hyperbolic line containing z.

So we are left with the case $|L| \leq 3$ and $\operatorname{dim} H_{1}{ }^{\perp} \leq 4$. Under the assumptions of the Main Theorem we may assume that W is equipped with a quadratic form, since in the case $|L|=3, f$ a symplectic form $(\sigma=i d, \epsilon=-1)$ we can proceed as in the previous paragraph. Let $H_{2} \perp\langle a\rangle \subseteq H_{1}{ }^{\perp}$ with $q(a) \neq 0$. Then $b=-q(a) x_{2}+y_{2}+a$ is singular. If $c \neq q(a)$, then $\langle z, b\rangle$ is a second hyperbolic line containing z. If $c=q(a)$, then $\langle b\rangle$ is a singular point in $H_{1}{ }^{\perp}, b \notin H_{2}, b \in z^{\perp}$. This yields the claim.
2.11. If E is a plane of W with $E=\langle E \cap S>$, then $\langle\pi(E \cap S)>$ is a plane of V.

Proof. We first consider the case that E is a singular plane. Then

$$
E=<x_{1}, x_{2}, x_{3}>\subseteq<x_{1}, y_{1}>\perp<x_{2}, y_{2}>\perp<x_{3}, y_{3}>
$$

where $\left(x_{i}, y_{i}\right)$ is a hyperbolic pair $(i=1,2,3)$. If a is a singular point in E then $a=<\alpha x_{1}+\beta x_{2}+\gamma x_{3}>$ with $\alpha, \beta, \gamma \in L$. Hence by (2.1)

$$
\pi(a) \subseteq<\pi\left(x_{1}\right), \pi\left(\beta x_{2}+\gamma x_{3}\right)>\subseteq<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(x_{3}\right)>
$$

This shows that $<\pi(E \cap S)>=<\pi\left(x_{1}\right), \pi\left(x_{2}\right), \pi\left(x_{3}\right)>$, which is a plane by (c).
Thus we are left with the case that E is not singular. Then $E=\left\langle x_{1}, y_{1}\right\rangle \perp z$, where x_{1}, y_{1} are singular points in E with $x_{1} \nsubseteq y_{1}{ }^{\perp}$. Since $<\pi(E \cap S)>$ cannot equal $<\pi\left(x_{1}\right), \pi\left(y_{1}\right)>$ by (c), we see that $\operatorname{dim}<\pi(E \cap S)>\geq 3$. Let $H_{1}:=<x_{1}, y_{1}>$ and choose a singular point z^{\prime} in $H_{1}{ }^{\perp}$ with $z^{\prime} \nsubseteq z^{\perp}$. Let $H_{2}:=\left\langle z, z^{\prime}\right\rangle$. Then $Q:=H_{1} \perp H_{2}$ is a 4^{+}-space which contains E.

We first neglect the special situation occurring in (2.10) and choose a hyperbolic line H_{3} in $H_{1}{ }^{\perp}$ which contains z and is different from H_{2}. Then $Q_{1}:=H_{1} \perp H_{3}$ is a
second 4^{+}-space containing E. Since $<\pi(E \cap S)>\subseteq<\pi(Q \cap S)>\cap<\pi\left(Q_{1} \cap S\right)>$, we obtain $\operatorname{dim}<\pi(E \cap S)>\leq 3$ by (2.9).

In the special situation we choose a singular point $b \subseteq E^{\perp}$ as constructed in the proof of (2.10). We show directly that $\operatorname{dim}<\pi(E \cap S)>\leq 3$. For this we assume that $<\pi(E \cap S)>=<\pi(Q \cap S)>$. Then $\pi(x) \subseteq<\pi(E \cap S)>\subseteq<\pi\left(b^{\perp} \cap S\right)>$ for all $x \in Q \cap S$. Hence $Q \subseteq b^{\perp}$ by (c), a contradiction.
2.12. Let E be a plane of W with $E=<E \cap S>$ and E not singular. If x is a singular point in W with $\pi(x) \subseteq<\pi(E \cap S)>$, then $x \subseteq E$.

Proof. If we do not have the special situation occurring in (2.10), then we write $E=Q \cap Q_{1}$, where Q and Q_{1} are 4^{+}-spaces in W, as in the proof of (2.11). Then (2.8) yields $x \subseteq Q \cap Q_{1}=E$.

In the special situation we let b be a singular point in E^{\perp} as constructed in the proof of (2.10). Then $\pi(x) \subseteq\langle\pi(E \cap S)\rangle \subseteq<\pi\left(b^{\perp} \cap S\right)>$. Now (c) yields that $x \subseteq b^{\perp}$. Further, $x \subseteq Q$ by (2.8) as above. Thus $x \subseteq b^{\perp} \cap Q=E$.
2.13. If a, b are singular points in W with $H:=<a, b\rangle$ a hyperbolic line, then $<\pi(H \cap S)>=<\pi(a), \pi(b)>$.

Proof. Since the line $<\pi(a), \pi(b)>$ is contained in $<\pi(H \cap S)>$, we have to show that $<\pi(H \cap S)>$ is a line. Let $H=<x_{1}, y_{1}>\subseteq<x_{1}, y_{1}>\perp<x_{2}, y_{2}>=: Q$ with $\left(x_{i}, y_{i}\right)$ a hyperbolic pair $(i=1,2)$. With $E:=<x_{1}, y_{1}, x_{2}>$ and $E_{1}:=<x_{1}, y_{1}, y_{2}>$ we obtain that $<\pi(H \cap S)\rangle \subseteq<\pi(E \cap S)>\cap<\pi\left(E_{1} \cap S\right)>$. By (2.11) and (c) $<\pi(E \cap S)>$ and $\left\langle\pi\left(E_{1} \cap S\right)\right\rangle$ are different planes of V, hence (2.13).
2.14. Let x, y, z be singular points in W with $E:=\langle x, y, z\rangle$ a plane. Then $<\pi(x), \pi(y), \pi(z)>$ is 3 -dimensional.

Proof. If E is singular compare the proof of (2.11). If without loss $H:=\langle x, y\rangle$ is a hyperbolic line, then the assumption $\pi(z) \subseteq<\pi(x), \pi(y)>$ leads to $\pi(z) \subseteq$ $<\pi(H \cap S)>$. Hence $z \subseteq H$ by (2.5), a contradiction.

3 The extension of π to arbitrary points of W

In this section we extend the mapping π to arbitrary points, using that every point is the intersection of two hyperbolic lines (compare the approach in the proof of [HO, (8.1.5)]).
3.1. Let a be a non-singular point in W. Then $\cap<\pi(H \cap S)>$, where H is a hyperbolic line which contains a, is a point in V.

Proof. For every hyperbolic line H which contains a we set $H^{\prime}:=<\pi(H \cap S)>$. By (2.10) $a=H_{0} \cap H_{1}$ with hyperbolic lines H_{0}, H_{1}. By (2.6), (2.13) $H_{0}{ }^{\prime}$ and $H_{1}{ }^{\prime}$ are different lines in V. Since $E:=H_{0}+H_{1}$ is a plane with $E=\langle E \cap S\rangle$, we obtain $\operatorname{dim} H_{0}{ }^{\prime}+H_{1}{ }^{\prime}=3$ by (2.11). Hence $P^{\prime}:=H_{0}{ }^{\prime} \cap H_{1}{ }^{\prime}$ is a point.

If H_{2} is an arbitrary hyperbolic line containing a, then $P^{\prime} \subseteq H_{2}{ }^{\prime}$. Otherwise $H_{0}{ }^{\prime} \cap H_{1}{ }^{\prime} \cap H_{2}{ }^{\prime}=0$. Let $H_{0}{ }^{\prime} \cap H_{1}{ }^{\prime}=: K_{1}, H_{0}{ }^{\prime} \cap H_{2}{ }^{\prime}=: K_{2}, H_{1}{ }^{\prime} \cap H_{2}{ }^{\prime}=: K_{3}$. As above K_{1}, K_{2}, K_{3} are points in V. Since $H_{0}{ }^{\prime} \cap H_{1}{ }^{\prime} \cap H_{2}{ }^{\prime}=0$, we see that K_{1}, K_{2}, K_{3} are pairwise distinct and $K_{1}+K_{2}+K_{3}$ is 3-dimensional. Hence $H_{0}{ }^{\prime}=K_{1}+K_{2}$, $H_{1}{ }^{\prime}=K_{1}+K_{3}, H_{2}{ }^{\prime}=K_{2}+K_{3}$.

Let H be a hyperbolic line with $a \subseteq H$. As above $H^{\prime} \cap H_{i}{ }^{\prime} \neq 0$ for $i=0,1,2$. Without loss $H^{\prime} \cap H_{0}{ }^{\prime} \neq H^{\prime} \cap H_{1}{ }^{\prime}$, since $H_{0}{ }^{\prime} \cap H_{1}{ }^{\prime} \cap H_{2}{ }^{\prime}=0$. Hence

$$
H^{\prime}=\left(H^{\prime} \cap H_{0}{ }^{\prime}\right)+\left(H^{\prime} \cap H_{1}{ }^{\prime}\right) \subseteq H_{0}{ }^{\prime}+H_{1}{ }^{\prime} \subseteq K_{1}+K_{2}+K_{3} .
$$

This yields that $\pi(x) \subseteq H^{\prime} \subseteq K_{1}+K_{2}+K_{3}$ for all singular points x in W with $H:=\langle a, x\rangle$ a hyperbolic line.

Let next x be a singular point with $x \subseteq a^{\perp}$. We choose a singular point y with $y \subseteq x^{\perp}, y \nsubseteq a^{\perp}$. Then $L_{1}=\langle x, y\rangle$ is a singular line. Let z be a point in L_{1} with $z \neq x, y$, then $z \nsubseteq a^{\perp}$. Hence $\pi(x) \subseteq<\pi\left(L_{1} \cap S\right)>=<\pi(z), \pi(y)>\subseteq K_{1}+K_{2}+K_{3}$ by the preceding paragraph.

Hence $\pi(x) \subseteq K_{1}+K_{2}+K_{3}$ for all singular points in W, a contradiction by (2.4). Thus $P^{\prime} \subseteq H_{2}{ }^{\prime}$ and $P^{\prime}=\bigcap<\pi(H \cap S)>$, where H is a hyperbolic line which contains a, is a point in V.

3.2. Definition:

For each non-singular point a of W we set

$$
\pi(a):=\bigcap<\pi(H \cap S)>, \text { where } H \text { is a hyperbolic line which contains } a .
$$

By (3.1) $\pi(a)$ is a point in V.
Using (2.6), (2.13) we see that the definition given above is also valid for singular points a of W. Thus we have extended π to arbitrary points of W.
3.3. If x is a singular point and a is a non-singular point of W with $a \subseteq x^{\perp}$, then $\pi(a) \subseteq<\pi\left(x^{\perp} \cap S\right)>$.

Proof. Let $x=L x_{1}$ and $H_{1}=\left\langle x_{1}, y_{1}\right\rangle$ with $\left(x_{1}, y_{1}\right)$ a hyperbolic pair. Since $W=H_{1} \perp H_{1}{ }^{\perp}$, there are $\alpha \in L$ and $s \in H_{1}{ }^{\perp}$ with $a=L\left(\alpha x_{1}+s\right)$. As in (2.7) we write $s=\beta x_{2}+y_{2}$, where $0 \neq \beta \in L$ and $\left(x_{2}, y_{2}\right)$ is a hyperbolic pair in $H_{1}{ }^{\perp}$. With $H=<\alpha x_{1}+\beta x_{2}, y_{2}>$ we obtain

$$
\begin{aligned}
\pi(a) & \subseteq<\pi(H \cap S)> & & \text { by }(3.2) \\
& =<\pi\left(L\left(\alpha x_{1}+\beta x_{2}\right)\right), \pi\left(L y_{2}\right)> & & \text { by }(2.13) .
\end{aligned}
$$

Since $L\left(\alpha x_{1}+\beta x_{2}\right)$ and $L y_{2}$ are singular points in x^{\perp}, this yields the claim.
3.4. π is injective on the set of all points of W.

Proof. Let a, b be points in W with $\pi(a)=\pi(b)$. If a and b are singular, then $a=b$, since π is injective on singular points.

We next assume that a is singular and b is not singular and lead this to a contradiction. Let H be a hyperbolic line which contains b. Then $\pi(a)=\pi(b) \subseteq$
$<\pi(H \cap S)>$ by (3.2). Using (2.5) we obtain $a \subseteq H$ for every hyperbolic line H containing b. Hence $a=b$, a contradiction.

Thus we are left with the case that a and b are non-singular. We assume that $a \neq b$. Then there exists a singular point x with $x \subseteq a^{\perp}$ and $x \nsubseteq b^{\perp}$. With $H:=$ $<x, b>$ we obtain $\pi(x), \pi(b) \subseteq<\pi(H \cap S)>$ using (3.2). Since $\pi(x) \neq \pi(b)$ by the paragraph above, (2.13) yields that $\langle\pi(H \cap S)>=<\pi(x), \pi(b)>=<\pi(x), \pi(a)>\subseteq$ $<\pi\left(x^{\perp} \cap S\right)>$. By (c) this shows $H \subseteq x^{\perp}$, a contradiction.
3.5. Let a be a singular point in W and z be an arbitrary point in W with $L_{1}:=$ $<a, z>$ a line. Then $\pi(y) \subseteq<\pi(a), \pi(z)>$ for every point y in L_{1}.

Proof. If $z \nsubseteq a^{\perp}$, then (3.2), (2.13) and (3.4) yield

$$
\pi(y) \subseteq<\pi\left(L_{1} \cap S\right)>=<\pi(a), \pi(z)>
$$

If $z \subseteq a^{\perp}$ and z singular, then the claim follows by (2.1).
So let $z \subseteq a^{\perp}$ and z not singular. Let $a=L x_{1}, H_{1}=\left\langle x_{1}, y_{1}\right\rangle$ with $\left(x_{1}, y_{1}\right)$ a hyperbolic pair and $z=L\left(c x_{1}+s\right)$, where $c \in L, s \in H_{1}{ }^{\perp}$. We choose different hyperbolic lines H and H_{0} in $H_{1}{ }^{\perp}$ containing s, using (2.10) and excluding the special case mentioned there. Then $E:=H \perp a$ and $E_{0}:=H_{0} \perp a$ are different planes of W which are generated by their singular points. We write $H=<s, t\rangle$, $H_{0}=<s, t_{0}>$ where t and t_{0} are singular points in $H_{1}{ }^{\perp}$.

For $a \neq y \subseteq\langle a, z\rangle, y$ is contained in the two different hyperbolic lines $M:=$ $<y, t>$ and $M_{0}:=<y, t_{0}>$. Because of $\pi(y)=<\pi(M \cap S)>\cap<\pi\left(M_{0} \cap S\right)>$ by (3.2), $\pi(y)$ is contained in $E^{\prime}:=<\pi(E \cap S)>$ and in $E_{0}{ }^{\prime}:=<\pi\left(E_{0} \cap S\right)>$. By (2.11) and (2.12) E^{\prime} and $E_{0}{ }^{\prime}$ are different planes in V. Since $X:=<z, t>\subseteq E$ is a hyperbolic line, (3.2) yields that $\pi(z) \subseteq<\pi(X \cap S)>\subseteq<\pi(E \cap S)>=E^{\prime}$. Similarly we have $\pi(z) \subseteq E_{0}{ }^{\prime}$. Hence $E^{\prime} \cap E_{0}{ }^{\prime}$ contains $\langle\pi(a), \pi(z)\rangle$. We obtain $\pi(y) \subseteq E^{\prime} \cap E_{0}{ }^{\prime}=<\pi(a), \pi(z)>$ by (3.4).

In the remaining special situation we let b be a singular point in $\left\langle x_{1}, y_{1}, z\right\rangle^{\perp}$, as constructed in the proof of (2.10). As above $<\pi(y), \pi(a), \pi(z)>\subseteq E^{\prime}$. We assume that $\pi(y) \nsubseteq<\pi(a), \pi(z)>$. Then $E^{\prime}=<\pi(y), \pi(a), \pi(z)>\subseteq<\pi\left(b^{\perp} \cap S\right)>$ by (3.3). Now (c) yields $E \subseteq b^{\perp}$, a contradiction.

4 Construction of a semi-linear mapping on 4^{+}-spaces

In this section we show that the mapping π restricted to the set of points of a $4^{+}-$ space in W is induced by a semi-linear mapping. We use the idea of the proof of [JW, (1.2.4)]. The main ingredient in Section 4 is (3.5). For $w \in W$, we often write $\pi(w)$ instead of $\pi(L w)$.
4.1. Let Q be a 4^{+}-space in W. Then there is an embedding $\alpha: L \rightarrow K$ and an injective semi-linear (with respect to α) mapping $\varphi: Q \rightarrow V$ with $\pi(L x)=K \varphi(x)$ for $x \in Q$.

Proof. Let $\left.Q=\left\langle x_{1}, y_{1}\right\rangle \perp<x_{2}, y_{2}\right\rangle$ be a 4^{+}-space in W. Let $x_{1}, x_{2}, y_{1}, y_{2}$ be generated by $e_{1}, e_{2}, e_{3}, e_{4}$ respectively and let $\pi\left(e_{i}\right)$ be generated by $f_{i}(i=1, \ldots, 4)$. By (2.4) $f_{1}, f_{2}, f_{3}, f_{4}$ are linearly independent. For $j \geq 2$ we have $L\left(e_{1}+e_{j}\right) \subseteq$ $<e_{1}, e_{j}>$, hence $\pi\left(e_{1}+e_{j}\right) \subseteq<\pi\left(e_{1}\right), \pi\left(e_{j}\right)>$ by (3.5). Thus there is a $b \in K$ with $\pi\left(e_{1}+e_{j}\right)=K\left(f_{1}+b f_{j}\right)$. Further, $b \neq 0$, since π is injective. Replacing f_{j} by $b f_{j}$ we may assume

$$
\pi\left(e_{i}\right)=K f_{i}, \quad \pi\left(e_{1}+e_{j}\right)=K\left(f_{1}+f_{j}\right)
$$

for $i, j=1, \ldots, 4, j \geq 2$.
For $j \geq 2$ and $c \in L$ we have $\pi\left(e_{1}+c e_{j}\right) \neq \pi\left(e_{j}\right)$. Hence there is a scalar denoted by $\alpha_{j}(c)$ in K with $\pi\left(e_{1}+c e_{j}\right)=K\left(f_{1}+\alpha_{j}(c) f_{j}\right)$ as in the preceding paragraph. This defines a mapping $\alpha_{j}: L \rightarrow K$ with $\alpha_{j}(0)=0$ and $\alpha_{j}(1)=1$.

We show:
$(*) \alpha_{j}=\alpha_{2}=: \alpha$ is an embedding from L in K for $j \geq 2$.
Let $i, j \geq 2, i \neq j$, and $c_{i}, c_{j} \in L$. Then $L\left(e_{1}+c_{j} e_{j}+c_{i} e_{i}\right)$ is contained in $\left.<e_{1}+c_{j} e_{j}, e_{i}\right\rangle$ and in $\left.<e_{1}+c_{i} e_{i}, e_{j}\right\rangle$. Hence (3.5) and the fact that f_{1}, f_{i}, f_{j} are linearly independent yield

$$
\pi\left(e_{1}+c_{j} e_{j}+c_{i} e_{i}\right)=K\left(f_{1}+\alpha_{j}\left(c_{j}\right) f_{j}+\alpha_{i}\left(c_{i}\right) f_{i}\right)
$$

for $i, j \geq 2, i \neq j$.
Similarly, $L\left(c_{j} e_{j}+e_{i}\right)$ is contained in $<e_{j}, e_{i}>$ and in $<e_{1}, e_{1}+c_{j} e_{j}+e_{i}>$. Using the above paragraph and $\alpha_{i}(1)=1$, we obtain

$$
\pi\left(c_{j} e_{j}+e_{i}\right)=K\left(\alpha_{j}\left(c_{j}\right) f_{j}+f_{i}\right)
$$

for $i, j \geq 2, i \neq j$.
Let $i \geq 3$ and $c, d \in L$. Then $L\left(e_{1}+(c+d) e_{2}+e_{i}\right) \subseteq<e_{1}+c e_{2}, d e_{2}+e_{i}>$. Since $e_{1}+c e_{2}$ is singular, applying π and (3.5) yield $K\left(f_{1}+\alpha(c+d) f_{2}+f_{i}\right) \subseteq$ $<f_{1}+\alpha(c) f_{2}, \alpha(d) f_{2}+f_{i}>$. Hence

$$
\alpha(c+d)=\alpha(c)+\alpha(d)
$$

for $c, d \in L$ by comparing coefficients.
Similarly, for $c, d \in L$ we have $\left.L\left(e_{1}+c d e_{2}+c e_{i}\right) \subseteq<e_{1}, d e_{2}+e_{i}\right\rangle$. Thus $K\left(f_{1}+\right.$ $\left.\alpha(c d) f_{2}+\alpha_{i}(c) f_{i}\right) \subseteq<f_{1}, \alpha(d) f_{2}+f_{i}>$ as above. This leads to

$$
\alpha(c d)=\alpha_{i}(c) \alpha(d)
$$

for $i \geq 3, c, d \in L$ by comparing coefficients.
The special case $d=1$ yields $\alpha_{i}=\alpha$ for $i \geq 3$ and α is a homomorphism.
Further, if $c \in L$ with $\alpha(c)=0$ then $\pi\left(e_{1}+c e_{2}\right)=K f_{1}=\pi\left(e_{1}\right)$. Since π is injective on singular points we obtain $c=0$, and α is injective. Thus $\alpha: L \rightarrow K$ is an embedding and (*) holds.

Next we show:
$(* *)$ If $x=\sum_{i=1}^{4} c_{i} e_{i} \in W$, then $\pi(L x)=K\left(\sum_{i=1}^{4} \alpha\left(c_{i}\right) f_{i}\right)$.

If only one of the coefficients c_{i} is different from 0 the claim holds.
We first assume that exactly two of the coefficients c_{i} are different from 0 . If $c_{1} \neq 0$, we use the fact that $\pi\left(e_{1}+c e_{i}\right)=K\left(f_{1}+\alpha(c) f_{i}\right)$ for $c \in L$. If $c_{1}=0$, then there are $i, j \geq 2, i \neq j$ with $\left.L x=L\left(c_{i} e_{i}+c_{j} e_{j}\right) \subseteq<e_{1}, e_{1}+c_{i} e_{i}+c_{j} e_{j}\right\rangle$. Further, $L x \subseteq\left\langle e_{i}, e_{j}\right\rangle$. We apply π and use the intermediate step of the proof that α is an embedding. This yields the claim.

We now assume that exactly three of the coefficients c_{i} are different from 0 . If $c_{1} \neq 0$, we use the intermediate step as in the preceding paragraph. If $c_{1}=0$, then $L x \subseteq<e_{1}-c_{2} e_{2}-c_{3} e_{3}, e_{1}+c_{4} e_{4}>$ and $L x \subseteq<e_{1}-c_{3} e_{3}-c_{4} e_{4}, e_{1}+c_{2} e_{2}>$. Since $e_{1}+c_{4} e_{4}$ and $e_{1}+c_{2} e_{2}$ are singular, we can use (3.5) and the claim follows.

Finally, assume that all coefficients c_{i} are different from 0 . Then we have $L x \subseteq$ $<c_{1} e_{1}+c_{3} e_{3}+c_{4} e_{4}, e_{2}>$ and $L x \subseteq<c_{1} e_{1}+c_{2} e_{2}, c_{3} e_{3}+c_{4} e_{4}>$ with e_{2} and $c_{1} e_{1}+c_{2} e_{2}$ singular. Hence we can finish the proof of $(* *)$ as above.

The mapping $\varphi: Q \rightarrow V$ defined by $\varphi\left(\sum_{i=1}^{4} c_{i} e_{i}\right):=\sum_{i=1}^{4} \alpha\left(c_{i}\right) f_{i}$ is semi-linear (with respect to the embedding $\alpha: L \rightarrow K$) and satisfies $\pi(L x)=K \varphi(x)$ for $x \in Q$. Further φ is injective, since α is.

5 The construction of a semi-linear mapping inducing π

In this last section of the proof of the Main Theorem we show that the mapping π from the set of all points of W into the set of points of V constructed in (3.2) is induced by a semi-linear mapping. We proceed similarly as in the proof of the Fundamental Theorem of Projective Geometry in [Ba, p. 44].
5.1. Let $L x$ and Ly be different points of W. At least one of $L x$ and $L y$ is assumed to be singular. Let $\pi(L x)=K x^{\prime}$. Then there exists a unique $y^{\prime} \in V$ such that $\pi(L y)=K y^{\prime}$ and $\pi(L(x-y))=K\left(x^{\prime}-y^{\prime}\right)$. We write $h\left(x, x^{\prime}, y\right):=y^{\prime}$ and set $h\left(x, x^{\prime}, 0\right):=0$.

Proof. Since $L(x-y) \subseteq L x+L y$, (3.5) yields that $\pi(L(x-y)) \subseteq \pi(L x)+\pi(L y)$. Hence $\pi(L(x-y))=K t$, where $t=c x^{\prime}-z$ with $c \in K$ and $z \in \pi(L y)$. Necessarily $c \neq 0$ and $z \neq 0$, since π is injective by (3.4). Hence $y^{\prime}:=c^{-1} z$ satisfies the above conditions. The uniqueness of y^{\prime} is straight forward.
5.2. If $L x$ and $L y$ are different points with at least one singular, then we have $h\left(x, x^{\prime}, y\right)=y^{\prime}$ if and only if $h\left(y, y^{\prime}, x\right)=x^{\prime}$.

Proof. This is obvious from the definition of h in (5.1).
5.3. Let $u, v, t \in W$ be linearly independent with u, v singular and $u \notin v^{\perp}$. Let $\pi(L u)=K u^{\prime}, \pi(L v)=K v^{\prime}, \pi(L t)=K t^{\prime}$. If $h\left(u, u^{\prime}, v\right)=v^{\prime}$ and $h\left(u, u^{\prime}, t\right)=t^{\prime}$, then $h\left(v, v^{\prime}, t\right)=t^{\prime}$.

Proof. We have to show that $\pi(L(v-t))=K\left(v^{\prime}-t^{\prime}\right)$. Since $\langle u, v\rangle$ is a hyperbolic line, the plane $E:=\langle u, v, t\rangle$ is contained in some 4^{+}-space Q. Let $a \in E$ be
singular with $E=\langle u, v, a\rangle$. Then $\pi(L u)+\pi(L v)+\pi(L a)$ is 3 -dimensional by (2.14). Using (3.5) we obtain that $\pi(L a) \subseteq \pi(L u)+\pi(L v)+\pi(L t)$. Hence $u^{\prime}, v^{\prime}, t^{\prime}$ are linearly independent. By (4.1) there is an embedding $\alpha: L \rightarrow K$ and an injective semi-linear mapping $\varphi: Q \rightarrow V$ with $\pi(L x)=K \varphi(x)$ for $x \in Q$. Hence $K u^{\prime}=K \varphi(u), K z^{\prime}=K \varphi(z), K\left(u^{\prime}-z^{\prime}\right)=K \varphi(u-z)$ for $z \in\{v, t\}$. Comparing coefficients yields $\varphi(v-t)=\varphi(v)-\varphi(t)=\lambda\left(v^{\prime}-t^{\prime}\right)$ for some $\lambda \in K^{*}$. Hence $\pi(L(v-t))=K\left(v^{\prime}-t^{\prime}\right)$.
5.4. Let $x, a, b \in W$ be linearly independent and singular and let $\pi(L x)=K x^{\prime}$. Then $h\left(x, x^{\prime}, a+b\right)=h\left(x, x^{\prime}, a\right)+h\left(x, x^{\prime}, b\right)$.

Proof. We set $a^{\prime}:=h\left(x, x^{\prime}, a\right), b^{\prime}:=h\left(x, x^{\prime}, b\right)$. By (2.14) $x^{\prime}, a^{\prime}, b^{\prime}$ are linearly independent. We have to prove that $h\left(x, x^{\prime}, a+b\right)=a^{\prime}+b^{\prime}$. By definition of h we have to show that $\pi(L(a+b))=K\left(a^{\prime}+b^{\prime}\right)$ and that $\pi(L(x-a-b))=K\left(x^{\prime}-a^{\prime}-b^{\prime}\right)$.

We first consider the second equation. Since $L(x-a-b) \subseteq L(x-a)+L b$ and $L(x-a-b) \subseteq L(x-b)+L a$ with b and a singular, we can apply (3.5). Thus $\pi(L(x-a-b))$ is contained in $K\left(x^{\prime}-a^{\prime}\right)+K b^{\prime}$ and in $K\left(x^{\prime}-b^{\prime}\right)+K a^{\prime}$. Comparing coefficients yields $\pi(L(x-a-b))=K\left(x^{\prime}-a^{\prime}-b^{\prime}\right)$.

Further, $L(a+b) \subseteq L a+L b$ and $L(a+b) \subseteq L x+L(x-a-b)$. Since a and x are singular, (3.5) and the preceding paragraph show that $\pi(L(a+b))$ is contained in $K a^{\prime}+K b^{\prime}$ and in $K x^{\prime}+K\left(x^{\prime}-a^{\prime}-b^{\prime}\right)$. Hence $\pi(L(a+b))=K\left(a^{\prime}+b^{\prime}\right)$.
5.5. Let $x, a, b \in W$ be singular with $L x \nsubseteq L a+L b$ and let $\pi(L x)=K x^{\prime}$. Then $h\left(x, x^{\prime}, a+b\right)=h\left(x, x^{\prime}, a\right)+h\left(x, x^{\prime}, b\right)$.

Proof. If x, a, b are linearly independent this is (5.4). Thus, we may assume that x, a, b are linearly dependent and hence $L a=L b \neq L x$. Since W contains singular lines, there exists a $w \in W$ with $w, w+a$ singular and x, a, w linearly independent. We obtain

$$
\begin{align*}
& h\left(x, x^{\prime}, w\right)+h\left(x, x^{\prime}, a+b\right) \\
& =h\left(x, x^{\prime}, w+a+b\right) \tag{5.4}\\
& =h\left(x, x^{\prime}, w+a\right)+h\left(x, x^{\prime}, b\right) \tag{5.4}\\
& =h\left(x, x^{\prime}, w\right)+h\left(x, x^{\prime}, a\right)+h\left(x, x^{\prime}, b\right) \tag{5.4}
\end{align*}
$$

In the first application of (5.4) $x, w, a+b$ are singular and linearly independent (or $a+b=0)$. Subtraction of $h\left(x, x^{\prime}, w\right)$ yields the claim.
5.6. Since W contains singular lines, there are $u, v, w \in W$ singular and linearly independent with $u \notin v^{\perp}, u \notin w^{\perp}, v \notin w^{\perp}$. We let $\pi(L u)=K u^{\prime}$ and set $v^{\prime}:=$ $h\left(u, u^{\prime}, v\right), w^{\prime}:=h\left(u, u^{\prime}, w\right)$.
5.7. If $x, y \in\{u, v, w\}$ with $x \neq y$, then $h\left(x, x^{\prime}, y\right)=y^{\prime}$.

Proof. By (5.2) we have to consider the cases $(x, y)=(u, v),(u, w),(v, w)$. In the first two cases the claim holds by definition and in the third case we use (5.3).
5.8. Let $0 \neq t \in W$. Then two of the three expressions $h\left(u, u^{\prime}, t\right), h\left(v, v^{\prime}, t\right)$ and $h\left(w, w^{\prime}, t\right)$ are defined and equal. We denote this value by $\varphi(t)$.
Proof. We have $L t \nsubseteq(L u+L v) \cap(L u+L w) \cap(L v+L w)=0$. Hence without loss $L t \nsubseteq L u+L v$ and u, v, t are linearly independent. Now $h\left(u, u^{\prime}, v\right)=v^{\prime}$ and $h\left(u, u^{\prime}, t\right):=t^{\prime}$ yields $h\left(v, v^{\prime}, t\right):=t^{\prime}$ by (5.3).
5.9. The mapping $\varphi: W \rightarrow V$ defined in (5.8) (we set $\varphi(0)=0$) satisfies $\pi(L t)=$ $K \varphi(t)$ for $0 \neq t \in W$.

Proof. We have $\varphi(t)=h\left(x, x^{\prime}, t\right)$ for a suitable $x \in\{u, v, t\}$, hence $\pi(L t)=K \varphi(t)$.
5.10. We have $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in W$ with a, b singular.

Proof. Without loss $a, b \neq 0$. We first consider the case that $a+b \neq 0$. Then by (5.8) $\varphi(a+b)=h\left(x, x^{\prime}, a+b\right)=h\left(y, y^{\prime}, a+b\right)$ for suitable x, y with $\{u, v, w\}=\{x, y, z\}$ and $L(a+b) \nsubseteq L x+L y$. Hence $L x \nsubseteq L a+L b$ or $L y \nsubseteq L a+L b$. Without loss $L x \nsubseteq$ $L a+L b$. Since x, a, b are singular, (5.5) yields $h\left(x, x^{\prime}, a+b\right)=h\left(x, x^{\prime}, a\right)+h\left(x, x^{\prime}, b\right)$. Since $L a \nsubseteq L x+L y$ or $L a \nsubseteq L x+L z$, we have $h\left(x, x^{\prime}, a\right)=\varphi(a)$ by (5.8). Similarly $h\left(x, x^{\prime}, b\right)=\varphi(b)$, and the claim follows.

If $a+b=0$, we choose $c \neq 0$ singular with $c \neq a$ and $b+c$ singular. Then the first case yields $\varphi(c)=\varphi(a+b+c)=\varphi(a)+\varphi(b+c)=\varphi(a)+\varphi(b)+\varphi(c)$, i. e. (5.10).
5.11. We have $\varphi(a+b)=\varphi(a)+\varphi(b)$ for $a, b \in W$ with a singular.

Proof. Let $a=x_{1}, H_{1}=<x_{1}, y_{1}>$ with $\left(x_{1}, y_{1}\right)$ a hyperbolic pair and $b=\alpha x_{1}+$ $\beta y_{1}+s$ with $s \in H_{1}{ }^{\perp}$. We write $s=\gamma x_{2}+\delta y_{2}$, where (x_{2}, y_{2}) is a hyperbolic pair in $H_{1}{ }^{\perp}$. Hence

$$
\begin{align*}
\varphi(a+b) & =\varphi\left(\left(x_{1}+\alpha x_{1}+\gamma x_{2}\right)+\left(\beta y_{1}+\delta y_{2}\right)\right) \\
& =\varphi\left(x_{1}+\left(\alpha x_{1}+\gamma x_{2}\right)\right)+\varphi\left(\beta y_{1}+\delta y_{2}\right) \tag{5.10}\\
& =\varphi\left(x_{1}\right)+\varphi\left(\alpha x_{1}+\gamma x_{2}\right)+\varphi\left(\beta y_{1}+\delta y_{2}\right) \tag{5.10}\\
& =\varphi\left(x_{1}\right)+\varphi\left(\alpha x_{1}+\gamma x_{2}+\beta y_{1}+\delta y_{2}\right) \tag{5.10}\\
& =\varphi(a)+\varphi(b) .
\end{align*}
$$

5.12. If $n \in \mathbf{N}$ and a_{1}, \ldots, a_{n} are singular, then $\varphi\left(\sum_{i=1}^{n} a_{i}\right)=\sum_{i=1}^{n} \varphi\left(a_{i}\right)$.

Proof. We may assume $a_{i} \neq 0$ for $i=1, \ldots, n$. With (5.11) the claim follows by induction on n.
5.13. The mapping φ is additive, i.e. $\varphi(a+b)=\varphi(a)+\varphi(b)$ for $a, b \in W$.

Proof. Since W is generated by its singular points, we can choose a basis $\left\{e_{i} \mid i \in I\right\}$ where e_{i} is singular $(i \in I)$. We write a and b as linear combination of the basis vectors and apply (5.12).
5.14. The mapping φ is injective.

Proof. Since $\varphi:(W,+) \rightarrow(V,+)$ is a homomorphism, we have to show that $\operatorname{ker} \varphi=$ 0 . If $0 \neq t \in W$ with $\varphi(t)=0$, then $\pi(L t)=K \varphi(t)=0$, a contradiction.
5.15. For $0 \neq t \in W$ and $0 \neq \lambda \in L$ we have $K \varphi(t)=\pi(L t)=\pi(L(\lambda t))=K \varphi(\lambda t)$. Hence $\varphi(\lambda t)=\alpha(\lambda, t) \varphi(t)$, where $\alpha(\lambda, t) \in K$. We set $\alpha(0, t):=0$.
5.16. If $0 \neq t_{1}, t_{2} \in W$, then $\alpha\left(\lambda, t_{1}\right)=\alpha\left(\lambda, t_{2}\right)$ for $\lambda \in L$.

Proof. If t_{1} and t_{2} are linearly independent, then the claim follows by a straight forward calculation using the definition of α. If t_{1} and t_{2} are linearly dependent, we choose $0 \neq t \in W$ with $L t \neq L t_{1}=L t_{2}$ and restrict to the first case.
5.17. For $\lambda \in L$ we set $\alpha(\lambda):=\alpha\left(\lambda, t_{0}\right)$ where $0 \neq t_{0} \in W$. By (5.16) this definition is independent of the choice of t_{0} and we have $\varphi(\lambda t)=\alpha(\lambda) \varphi(t)$ for $\lambda \in L, t \in W$.
5.18. The mapping $\alpha: L \rightarrow K$ is an embedding.

Proof. This is straight forward.
5.19. The steps (5.1) to (5.18) show that there is an embedding $\alpha: L \rightarrow K$ and an injective semi-linear (with respect to α) mapping such that $\pi(L x)=K \varphi(x)$ for $0 \neq x \in W$. This completes the proof of the Main Theorem.

References

[Ba] Baer, R.: Linear algebra and projective geometry. Academic Press, 1952.
[HO] Hahn, A. J., O'Meara, O. T.: The classical groups and K-theory. Grundlehren Math. Wiss., 291. Springer, New York, 1989.
[JW] James, D. G., Weisfeiler, B.: On the geometry of unitary groups. J. of Algebra 63 (1980), 514-540.
[Lef1] Lefèvre-Percsy, C.: Projectivités conservant un espace polaire faiblement plongé. Acad. Roy. Belg. Bull. Cl. Sci. (5) 67 (1981), 45-50.
[Lef2] Lefèvre-Percsy, C.: Espaces polaires faiblement plongés dans un espace projectif. J. Geom. 16 (1982), 126-137.
[TVM1] Thas, J., Van Maldeghem, H.: Orthogonal, symplectic and unitary polar spaces sub-weakly embedded in polar space. To appear in Comp. Math.
[TVM2] Thas, J., Van Maldeghem, H.: Sub-weakly embedded singular and degenerate polar spaces. To appear in Geom. Dedicata.
[Ti] Tits, J.: Buildings of spherical type and finite BN-pairs. Lecture Notes in Math., 386. Springer-Verlag, Berlin Heidelberg New York, 1974.

Mathematisches Institut
Justus-Liebig-Universitaet Giessen
Arndtstrasse 2
35392 Giessen
Germany
email : Anja.Steinbach@math.uni-giessen.de

[^0]: Received by the editors November 1995.
 Communicated by J. Thas.
 1991 Mathematics Subject Classification : Primary: 51A50; Secondary: 51A45.
 Key words and phrases : classical polar space, (sub-)weak embedding, Fundamental Theorem of Projective Geometry.

