Classical polar spaces (sub–)weakly embedded in projective spaces

Anja Steinbach

1 Introduction and statement of the Main Theorem

In this paper we are concerned with classical polar spaces, i. e. with the set of points and lines of some vector space W on which a non–degenerate (σ, ϵ) -hermitian form or pseudo-quadratic form vanishes.

To state the Main Theorem we introduce some notation. Let L be a division ring and W be a (left-)vector space over L endowed with a (σ, ϵ) -hermitian form or a pseudo-quadratic form q (with associated (σ, ϵ) -hermitian form f) in the sense of [Ti, §8]. We may assume that $\epsilon = \pm 1$ and $\sigma^2 = id$. We let

$$\operatorname{Rad}(W, f) = \{ w \in W \mid f(w, x) = 0 \text{ for all } x \in W \},\$$
$$x^{\perp} = \{ w \in W \mid f(w, x) = 0 \} \text{ for } x \in W,\$$
$$\Lambda_{min} = \{ c - \epsilon c^{\sigma} \mid c \in L \},\$$
$$\Lambda_{max} = \{ c \in L \mid \epsilon c^{\sigma} = -c \}.$$

If $\operatorname{Rad}(W, f) = 0$, then f is said to be non-degenerate. Further f is trace-valued, if $f(w, w) \in \{c + \epsilon c^{\sigma} \mid c \in L\}$ for all $w \in W$. A subspace U of W is called singular, if f(u, u') = 0 resp. q(u) = 0 for all $u, u' \in U$. The 1-, 2- and 3-dimensional subspaces of W are called points, lines, planes respectively. Let S be the set of singular points

Bull. Belg. Math. Soc. 3 (1996), 477-490

Received by the editors November 1995.

Communicated by J. Thas.

¹⁹⁹¹ Mathematics Subject Classification : Primary: 51A50; Secondary: 51A45.

Key words and phrases : classical polar space, (sub–)weak embedding, Fundamental Theorem of Projective Geometry.

of W. For each subspace U of W, we denote by $U \cap S$ the set of singular points in U. The subspace of a vector space which is spanned by a subset M is denoted by $\langle M \rangle$.

We prove the following result:

Main Theorem. Let L and K be division rings and let W be a vector space over L (not necessarily finite-dimensional). We assume that there is either a nondegenerate (trace-valued) (σ, ϵ) -hermitian form f on W such that $\Lambda_{\min} = \Lambda_{\max}$ or that there is a pseudo-quadratic form q on W with corresponding (σ, ϵ) -hermitian form f such that Rad(W, f) = 0. We suppose that there are singular lines in W and that dimW ≥ 5 . Further let V be a vector space over K.

We assume that the following hypotheses are satisfied:

- (a) There is an injective mapping π from the set of singular points of W into the set of points of V. (We set $\pi(U \cap S) := \{\pi(u) \mid u \in U \cap S\}$ for each subspace U of W.)
- (b) If L_1 is a singular line of W, then the subspace $\langle \pi(L_1 \cap S) \rangle$ of V generated by $\pi(L_1 \cap S)$ is a line in V.
- (c) For each singular point x of W we have: If y is a singular point of W with $\pi(y) \subseteq \langle \pi(x^{\perp} \cap S) \rangle$, then $y \subseteq x^{\perp}$.

Then there exists an embedding $\alpha : L \to K$ and an injective semi-linear (with respect to α) mapping $\varphi : W \to V$ such that $\pi(Lx) = K\varphi(x)$ for all $x \in W$, x singular (i. e. π is induced by a semi-linear mapping).

The mapping π defined by $x \mapsto \pi(x)$, $L_1 \mapsto \langle \pi(L_1 \cap S) \rangle$, where x is a singular point and L_1 is a singular line in W, yields a sub-weak embedding of the polar space S associated with W and f resp. q into the projective space $\mathbf{P}(V_0)$, $V_0 = \langle \pi(W \cap S) \rangle$ in the sense of [TVM1].

In the paper [TVM1] it is shown that for a non-degenerate polar space the concept of sub-weak embeddings is the same as the one of weak embeddings of polar spaces in projective spaces introduced by LEFEVRE-PERCSY [Lef1], [Lef2]. In [TVM1], [TVM2] THAS and VAN MALDEGHEM classified all polar spaces (degenerate or not) of rank at least 3 of orthogonal, symplectic or unitary type, which are sub-weakly embedded in a finite-dimensional projective space over a commutative field (except one possibility in the symplectic case over non-perfect fields of characteristic 2). In the non-degenerate case with the radical of the bilinear form of dimension at most 1, their result is that the polar space is fully embedded over a subfield.

The Main Theorem shows that this conclusion remains valid, if f resp. q satisfy the hypotheses of the Main Theorem. The polar space S associated with W and fresp. q is fully embedded in the projective space $\mathbf{P}(\varphi(W))$, where $\varphi(W)$ is a vector space over the sub-division ring L^{α} of K. For the mapping $x \mapsto \varphi(x), L_1 \mapsto \varphi(L_1)$, every point in $\varphi(L_1)$ has an inverse image under φ . The Main Theorem does not require rank at least 3, finite dimension or rank, or commutative fields. By the classification of non-degenerate polar spaces of rank at least 3, every such polar space is associated to a non-degenerate trace-valued (σ, ϵ) -hermitian form or a non-degenerate pseudo-quadratic form (apart from two classes of exceptions in rank 3). The assumptions $\Lambda_{min} = \Lambda_{max}$ resp. $\operatorname{Rad}(W, f) = 0$ are always satisfied if char $L \neq 2$. Thus the set of polar spaces handled in the Main Theorem is sufficiently rich.

Sections 2 to 5 are devoted to the proof of the Main Theorem. First, inspired by [Ti, (8.19)] we derive some properties of the mapping π (Section 2), which enables us to extend π to arbitrary points of W (Section 3). For this we use that every point is the intersection of two hyperbolic lines (i. e. lines spanned by two singular points x, y with $x \not\subseteq y^{\perp}$), if $\operatorname{Rad}(W, f) = 0$. For the construction of a semi-linear mapping φ which induces π (Section 5), we need the intermediate step where we construct such a semi-linear mapping for the restriction of π to a 4⁺-space in W (Section 4). By a 4⁺-space we mean the orthogonal sum of two hyperbolic lines.

2 Properties of the mapping π

In this first part of the proof of the Main Theorem we derive some properties of the mapping π .

2.1. If a, b are singular points in W with $L_1 = \langle a, b \rangle$ a singular line, then $\langle \pi(L_1 \cap S) \rangle = \langle \pi(a), \pi(b) \rangle$.

Proof. Since π is injective on singular points, we see that $\langle \pi(a), \pi(b) \rangle$ is a line which is contained in $\langle \pi(L_1 \cap S) \rangle$. By (b) the claim follows.

2.2. If L_1 is a singular line in W and x is a singular point in W with $\pi(x) \subseteq \langle \pi(L_1 \cap S) \rangle$, then $x \subseteq L_1$.

Proof. We first consider the case that $L_1 \not\subseteq x^{\perp}$. Then $a := L_1 \cap x^{\perp}$ is a point, without loss $x \neq a$. Let b be a singular point with $L_1 = \langle a, b \rangle$. Then $b \not\subseteq x^{\perp}$. We have $\langle \pi(x), \pi(a), \pi(b) \rangle \subseteq \langle \pi(L_1 \cap S) \rangle = \langle \pi(a), \pi(b) \rangle$ by (2.1). Hence $\pi(b) \subseteq \langle \pi(x), \pi(a) \rangle \subseteq \langle \pi(x^{\perp} \cap S) \rangle$. Now (c) yields $b \subseteq x^{\perp}$, a contradiction.

Thus we are left with the case $L_1 \subseteq x^{\perp}$. Without loss $E := \langle L_1, x \rangle$ is a singular plane. Let y be a singular point in W with $y \subseteq L_1^{\perp}$, $y \not\subseteq x^{\perp}$. Then $\pi(x) \subseteq \langle \pi(L_1 \cap S) \rangle \subseteq \langle \pi(y^{\perp} \cap S) \rangle$. Using (c) this yields $x \subseteq y^{\perp}$, a contradiction.

2.3. If L_1 , L_2 are singular lines in W with $\langle \pi(L_1 \cap S) \rangle = \langle \pi(L_2 \cap S) \rangle$, then $L_1 = L_2$.

Proof. Using (2.2) we obtain $L_1 \cap S = L_2 \cap S$, hence $L_1 = L_2$.

2.4. Let $Q = \langle L_1, L_2 \rangle$ be a 4⁺-space in W, where $L_1 = \langle x_1, x_2 \rangle$, $L_2 = \langle y_1, y_2 \rangle$ are singular lines with $x_1 \not\subseteq y_1^{\perp}$, $x_1 \subseteq y_2^{\perp}$, $x_2 \subseteq y_1^{\perp}$, $x_2 \not\subseteq y_2^{\perp}$. Then $\langle \pi(Q \cap S) \rangle = \langle \pi(x_1), \pi(x_2), \pi(y_1), \pi(y_2) \rangle$ is 4-dimensional.

Proof. By (c) $\pi(y_1) \not\subseteq \langle \pi(x_1), \pi(x_2) \rangle$ and similarly $\pi(y_2) \not\subseteq \langle \pi(x_1), \pi(x_2), \pi(y_1) \rangle$. Hence $\langle \pi(L_1 \cap S), \pi(L_2 \cap S) \rangle = \langle \pi(x_1), \pi(x_2), \pi(y_1), \pi(y_2) \rangle$ is 4-dimensional.

By [Ti, (8.10)] $Q \cap S$ is the smallest subset X of S containing $L_1 \cap S$ and $L_2 \cap S$ such that for every singular line L' of W which has two points in X necessarily $L' \cap S$ is contained in X. Let $Y := \{y \in S \mid \pi(y) \subseteq \langle \pi(L_1 \cap S), \pi(L_2 \cap S) \rangle \}$. Then Y is a subset of S having the properties mentioned above. Hence $Q \cap S \subseteq Y$ and $\langle \pi(Q \cap S) \rangle \subseteq \langle \pi(L_1 \cap S), \pi(L_2 \cap S) \rangle$. This yields (2.4).

2.5. If H is a hyperbolic line of W and x is a singular point of W with $\pi(x) \subseteq \langle \pi(H \cap S) \rangle$, then $x \subseteq H$.

Proof. Since W contains singular lines, H^{\perp} is generated by its singular points. If a is a singular point in H^{\perp} , then $\pi(x) \subseteq \langle \pi(H \cap S) \rangle \subseteq \langle \pi(a^{\perp} \cap S) \rangle$. Using (c) we obtain $x \subseteq a^{\perp}$, hence $H^{\perp} \subseteq x^{\perp}$. This yields $x \subseteq H^{\perp \perp} = H$, since $\operatorname{Rad}(W, f) = 0$.

2.6. If H_1 , H_2 are hyperbolic lines in W with $\langle \pi(H_1 \cap S) \rangle = \langle \pi(H_2 \cap S) \rangle$, then $H_1 = H_2$.

Proof. Using (2.5) we obtain $H_1 \cap S = H_2 \cap S$, hence $H_1 = H_2$.

2.7. Let U be a subspace of W with $U = \langle U \cap S \rangle \neq 0$. If $u \in U$, $u \notin Rad(U, f)$, then $u = cx_1 + y_1$ for some $c \in L$ and a hyperbolic pair (x_1, y_1) of U.

Proof. Since $u \notin \operatorname{Rad}(U, f)$, there exists a singular point a in U with $a \notin u^{\perp}$. Let $a = \langle x_1 \rangle$ with $f(x_1, u) = 1$. If there is a pseudo-quadratic form on W, let $q(u) = c + \Lambda_{min}$ and set $y_1 = -cx_1 + u$. If there is a trace-valued (σ, ϵ) -hermitian form on W, let $f(u, u) = c + \epsilon c^{\sigma}$ and set $y_1 = cx_1 + u$.

2.8. If Q is a 4⁺-space in W and x is a singular point of W with $\pi(x) \subseteq \langle \pi(Q \cap S) \rangle$, then $x \subseteq Q$.

Proof. Since Q is finite-dimensional with $\operatorname{Rad}(Q, f) = 0$, we have $W = Q \perp Q^{\perp}$. Let x = L(w + s) where w and s are vectors in Q, Q^{\perp} respectively. Without loss $s \neq 0$.

We first consider the case that s is singular. Then W contains singular planes and Q^{\perp} contains hyperbolic lines. Let a be a singular point in Q^{\perp} with $a \not\subseteq s^{\perp}$, hence $a \not\subseteq x^{\perp}$. Then $\pi(x) \subseteq \langle \pi(Q \cap S) \rangle \subseteq \langle \pi(a^{\perp} \cap S) \rangle$. Using (c) this yields $x \subseteq a^{\perp}$, a contradiction.

Thus we are left with the case that s is non-singular. Then w is non-singular. Let $w = cx_1 + y_1$ as in (2.7) and let $Q = \langle x_1, y_1 \rangle \perp \langle x_2, y_2 \rangle$ with (x_2, y_2) a hyperbolic pair.

By (c) $\langle \pi(x_1), \pi(x_2), \pi(y_1) \rangle$ is 3-dimensional. Hence

$$<\pi(x_1), \pi(x_2), \pi(y_1)> = <\pi(Q \cap S)> \cap <\pi(x_2^{\perp} \cap S)>,$$

since otherwise $\langle \pi(Q \cap S) \rangle \subseteq \langle \pi(x_2^{\perp} \cap S) \rangle$ and $y_2 \in x_2^{\perp}$ by (c), a contradiction. Similarly $\langle \pi(Q \cap S) \rangle \cap \langle \pi(y_2^{\perp} \cap S) \rangle = \langle \pi(x_1), \pi(y_1), \pi(y_2) \rangle$. Since $x \subseteq x_2^{\perp} \cap y_2^{\perp}$, this yields

 $\pi(x) \subseteq \langle \pi(x_1), \pi(x_2), \pi(y_1) \rangle \cap \langle \pi(x_1), \pi(y_1), \pi(y_2) \rangle = \langle \pi(x_1), \pi(y_1) \rangle.$

The last equality is obtained using (c). By (2.5) we see that $x \subseteq \langle x_1, y_1 \rangle \subseteq Q$.

2.9. If Q_1 , Q_2 are 4^+ -spaces in W with $\langle \pi(Q_1 \cap S) \rangle = \langle \pi(Q_2 \cap S) \rangle$, then $Q_1 = Q_2$.

Proof. Using (2.8) we obtain $Q_1 \cap S = Q_2 \cap S$, hence $Q_1 = Q_2$.

2.10. Let H_1 be a hyperbolic line in W and let z be an arbitrary point in H_1^{\perp} . Then z is the intersection of two hyperbolic lines in H_1^{\perp} or we have the following exceptional situation:

 $|L| \leq 4$, $\dim W \leq 6$, W is associated to a quadratic form. If H_2 is a hyperbolic line in H_1^{\perp} which contains z, then there exists a singular point b in H_1^{\perp} with $b \not\subseteq H_2$, $b \subseteq z^{\perp}$.

Proof. Let H_2 be a hyperbolic line which contains z. We write $z = \langle cx_2 + y_2 \rangle$ where (x_2, y_2) is a hyperbolic pair in H_2 , using (2.7). Since H_2 and z^{\perp} are proper subspaces of H_1^{\perp} , there exists a singular point a in H_1^{\perp} with $a \not\subseteq H_2$, $a \not\subseteq z^{\perp}$ by [Ti, (8.17)], provided that $|L| \geq 4$. Then $\langle z, a \rangle$ is a second hyperbolic line, which contains z.

Further, if there are singular lines in H_1^{\perp} , then we let $\langle x_2, y_2 \rangle \perp \langle x_3, y_3 \rangle \subseteq H_1^{\perp}$ with (x_3, y_3) a hyperbolic pair and choose $\langle z, x_2 + x_3 \rangle$ as second hyperbolic line containing z.

So we are left with the case $|L| \leq 3$ and $\dim H_1^{\perp} \leq 4$. Under the assumptions of the Main Theorem we may assume that W is equipped with a quadratic form, since in the case |L| = 3, f a symplectic form ($\sigma = id, \epsilon = -1$) we can proceed as in the previous paragraph. Let $H_2 \perp \langle a \rangle \subseteq H_1^{\perp}$ with $q(a) \neq 0$. Then $b = -q(a)x_2 + y_2 + a$ is singular. If $c \neq q(a)$, then $\langle z, b \rangle$ is a second hyperbolic line containing z. If c = q(a), then $\langle b \rangle$ is a singular point in H_1^{\perp} , $b \notin H_2$, $b \in z^{\perp}$. This yields the claim.

2.11. If E is a plane of W with $E = \langle E \cap S \rangle$, then $\langle \pi(E \cap S) \rangle$ is a plane of V.

Proof. We first consider the case that E is a singular plane. Then

$$E = \langle x_1, x_2, x_3 \rangle \subseteq \langle x_1, y_1 \rangle \perp \langle x_2, y_2 \rangle \perp \langle x_3, y_3 \rangle$$

where (x_i, y_i) is a hyperbolic pair (i = 1, 2, 3). If a is a singular point in E then $a = \langle \alpha x_1 + \beta x_2 + \gamma x_3 \rangle$ with $\alpha, \beta, \gamma \in L$. Hence by (2.1)

$$\pi(a) \subseteq \langle \pi(x_1), \pi(\beta x_2 + \gamma x_3) \rangle \subseteq \langle \pi(x_1), \pi(x_2), \pi(x_3) \rangle.$$

This shows that $\langle \pi(E \cap S) \rangle = \langle \pi(x_1), \pi(x_2), \pi(x_3) \rangle$, which is a plane by (c).

Thus we are left with the case that E is not singular. Then $E = \langle x_1, y_1 \rangle \perp z$, where x_1, y_1 are singular points in E with $x_1 \not\subseteq y_1^{\perp}$. Since $\langle \pi(E \cap S) \rangle$ cannot equal $\langle \pi(x_1), \pi(y_1) \rangle$ by (c), we see that dim $\langle \pi(E \cap S) \rangle \geq 3$. Let $H_1 := \langle x_1, y_1 \rangle$ and choose a singular point z' in H_1^{\perp} with $z' \not\subseteq z^{\perp}$. Let $H_2 := \langle z, z' \rangle$. Then $Q := H_1 \perp H_2$ is a 4⁺-space which contains E.

We first neglect the special situation occurring in (2.10) and choose a hyperbolic line H_3 in H_1^{\perp} which contains z and is different from H_2 . Then $Q_1 := H_1 \perp H_3$ is a

second 4⁺-space containing E. Since $\langle \pi(E \cap S) \rangle \subseteq \langle \pi(Q \cap S) \rangle \cap \langle \pi(Q_1 \cap S) \rangle$, we obtain dim $\langle \pi(E \cap S) \rangle \leq 3$ by (2.9).

In the special situation we choose a singular point $b \subseteq E^{\perp}$ as constructed in the proof of (2.10). We show directly that $\dim \langle \pi(E \cap S) \rangle \leq 3$. For this we assume that $\langle \pi(E \cap S) \rangle = \langle \pi(Q \cap S) \rangle$. Then $\pi(x) \subseteq \langle \pi(E \cap S) \rangle \subseteq \langle \pi(b^{\perp} \cap S) \rangle$ for all $x \in Q \cap S$. Hence $Q \subseteq b^{\perp}$ by (c), a contradiction.

2.12. Let E be a plane of W with $E = \langle E \cap S \rangle$ and E not singular. If x is a singular point in W with $\pi(x) \subseteq \langle \pi(E \cap S) \rangle$, then $x \subseteq E$.

Proof. If we do not have the special situation occurring in (2.10), then we write $E = Q \cap Q_1$, where Q and Q_1 are 4⁺-spaces in W, as in the proof of (2.11). Then (2.8) yields $x \subseteq Q \cap Q_1 = E$.

In the special situation we let b be a singular point in E^{\perp} as constructed in the proof of (2.10). Then $\pi(x) \subseteq \langle \pi(E \cap S) \rangle \subseteq \langle \pi(b^{\perp} \cap S) \rangle$. Now (c) yields that $x \subseteq b^{\perp}$. Further, $x \subseteq Q$ by (2.8) as above. Thus $x \subseteq b^{\perp} \cap Q = E$.

2.13. If a, b are singular points in W with $H := \langle a, b \rangle$ a hyperbolic line, then $\langle \pi(H \cap S) \rangle = \langle \pi(a), \pi(b) \rangle$.

Proof. Since the line $\langle \pi(a), \pi(b) \rangle$ is contained in $\langle \pi(H \cap S) \rangle$, we have to show that $\langle \pi(H \cap S) \rangle$ is a line. Let $H = \langle x_1, y_1 \rangle \subseteq \langle x_1, y_1 \rangle \perp \langle x_2, y_2 \rangle =: Q$ with (x_i, y_i) a hyperbolic pair (i = 1, 2). With $E := \langle x_1, y_1, x_2 \rangle$ and $E_1 := \langle x_1, y_1, y_2 \rangle$ we obtain that $\langle \pi(H \cap S) \rangle \subseteq \langle \pi(E \cap S) \rangle \cap \langle \pi(E_1 \cap S) \rangle$. By (2.11) and (c) $\langle \pi(E \cap S) \rangle$ and $\langle \pi(E_1 \cap S) \rangle$ are different planes of V, hence (2.13).

2.14. Let x, y, z be singular points in W with $E := \langle x, y, z \rangle$ a plane. Then $\langle \pi(x), \pi(y), \pi(z) \rangle$ is 3-dimensional.

Proof. If E is singular compare the proof of (2.11). If without loss $H := \langle x, y \rangle$ is a hyperbolic line, then the assumption $\pi(z) \subseteq \langle \pi(x), \pi(y) \rangle$ leads to $\pi(z) \subseteq \langle \pi(H \cap S) \rangle$. Hence $z \subseteq H$ by (2.5), a contradiction.

3 The extension of π to arbitrary points of W

In this section we extend the mapping π to arbitrary points, using that every point is the intersection of two hyperbolic lines (compare the approach in the proof of [HO, (8.1.5)]).

3.1. Let a be a non-singular point in W. Then $\bigcap \langle \pi(H \cap S) \rangle$, where H is a hyperbolic line which contains a, is a point in V.

Proof. For every hyperbolic line H which contains a we set $H' := \langle \pi(H \cap S) \rangle$. By (2.10) $a = H_0 \cap H_1$ with hyperbolic lines H_0 , H_1 . By (2.6), (2.13) H_0' and H_1' are different lines in V. Since $E := H_0 + H_1$ is a plane with $E = \langle E \cap S \rangle$, we obtain $\dim H_0' + H_1' = 3$ by (2.11). Hence $P' := H_0' \cap H_1'$ is a point.

If H_2 is an arbitrary hyperbolic line containing a, then $P' \subseteq H_2'$. Otherwise $H_0' \cap H_1' \cap H_2' = 0$. Let $H_0' \cap H_1' =: K_1, H_0' \cap H_2' =: K_2, H_1' \cap H_2' =: K_3$. As above K_1, K_2, K_3 are points in V. Since $H_0' \cap H_1' \cap H_2' = 0$, we see that K_1, K_2, K_3 are pairwise distinct and $K_1 + K_2 + K_3$ is 3-dimensional. Hence $H_0' = K_1 + K_2, H_1' = K_1 + K_3, H_2' = K_2 + K_3$.

Let H be a hyperbolic line with $a \subseteq H$. As above $H' \cap H_i' \neq 0$ for i = 0, 1, 2. Without loss $H' \cap H_0' \neq H' \cap H_1'$, since $H_0' \cap H_1' \cap H_2' = 0$. Hence

$$H' = (H' \cap H_0') + (H' \cap H_1') \subseteq H_0' + H_1' \subseteq K_1 + K_2 + K_3.$$

This yields that $\pi(x) \subseteq H' \subseteq K_1 + K_2 + K_3$ for all singular points x in W with $H := \langle a, x \rangle$ a hyperbolic line.

Let next x be a singular point with $x \subseteq a^{\perp}$. We choose a singular point y with $y \subseteq x^{\perp}$, $y \not\subseteq a^{\perp}$. Then $L_1 = \langle x, y \rangle$ is a singular line. Let z be a point in L_1 with $z \neq x, y$, then $z \not\subseteq a^{\perp}$. Hence $\pi(x) \subseteq \langle \pi(L_1 \cap S) \rangle = \langle \pi(z), \pi(y) \rangle \subseteq K_1 + K_2 + K_3$ by the preceding paragraph.

Hence $\pi(x) \subseteq K_1 + K_2 + K_3$ for all singular points in W, a contradiction by (2.4). Thus $P' \subseteq H_2'$ and $P' = \bigcap \langle \pi(H \cap S) \rangle$, where H is a hyperbolic line which contains a, is a point in V.

3.2. Definition:

For each non-singular point a of W we set

 $\pi(a) := \bigcap \langle \pi(H \cap S) \rangle$, where H is a hyperbolic line which contains a.

By (3.1) $\pi(a)$ is a point in V.

Using (2.6), (2.13) we see that the definition given above is also valid for singular points a of W. Thus we have extended π to arbitrary points of W.

3.3. If x is a singular point and a is a non-singular point of W with $a \subseteq x^{\perp}$, then $\pi(a) \subseteq \langle \pi(x^{\perp} \cap S) \rangle$.

Proof. Let $x = Lx_1$ and $H_1 = \langle x_1, y_1 \rangle$ with (x_1, y_1) a hyperbolic pair. Since $W = H_1 \perp H_1^{\perp}$, there are $\alpha \in L$ and $s \in H_1^{\perp}$ with $a = L(\alpha x_1 + s)$. As in (2.7) we write $s = \beta x_2 + y_2$, where $0 \neq \beta \in L$ and (x_2, y_2) is a hyperbolic pair in H_1^{\perp} . With $H = \langle \alpha x_1 + \beta x_2, y_2 \rangle$ we obtain

$$\pi(a) \subseteq \langle \pi(H \cap S) \rangle \qquad \text{by (3.2)}$$
$$= \langle \pi(L(\alpha x_1 + \beta x_2)), \pi(Ly_2) \rangle \qquad \text{by (2.13)}.$$

Since $L(\alpha x_1 + \beta x_2)$ and Ly_2 are singular points in x^{\perp} , this yields the claim.

3.4. π is injective on the set of all points of W.

Proof. Let a, b be points in W with $\pi(a) = \pi(b)$. If a and b are singular, then a = b, since π is injective on singular points.

We next assume that a is singular and b is not singular and lead this to a contradiction. Let H be a hyperbolic line which contains b. Then $\pi(a) = \pi(b) \subseteq$

 $\langle \pi(H \cap S) \rangle$ by (3.2). Using (2.5) we obtain $a \subseteq H$ for every hyperbolic line H containing b. Hence a = b, a contradiction.

Thus we are left with the case that a and b are non-singular. We assume that $a \neq b$. Then there exists a singular point x with $x \subseteq a^{\perp}$ and $x \not\subseteq b^{\perp}$. With $H := \langle x, b \rangle$ we obtain $\pi(x), \pi(b) \subseteq \langle \pi(H \cap S) \rangle$ using (3.2). Since $\pi(x) \neq \pi(b)$ by the paragraph above, (2.13) yields that $\langle \pi(H \cap S) \rangle = \langle \pi(x), \pi(b) \rangle = \langle \pi(x), \pi(a) \rangle \subseteq \langle \pi(x^{\perp} \cap S) \rangle$. By (c) this shows $H \subseteq x^{\perp}$, a contradiction.

3.5. Let a be a singular point in W and z be an arbitrary point in W with $L_1 := \langle a, z \rangle$ a line. Then $\pi(y) \subseteq \langle \pi(a), \pi(z) \rangle$ for every point y in L_1 .

Proof. If $z \not\subseteq a^{\perp}$, then (3.2), (2.13) and (3.4) yield

$$\pi(y) \subseteq \langle \pi(L_1 \cap S) \rangle = \langle \pi(a), \pi(z) \rangle.$$

If $z \subseteq a^{\perp}$ and z singular, then the claim follows by (2.1).

So let $z \subseteq a^{\perp}$ and z not singular. Let $a = Lx_1$, $H_1 = \langle x_1, y_1 \rangle$ with (x_1, y_1) a hyperbolic pair and $z = L(cx_1 + s)$, where $c \in L$, $s \in H_1^{\perp}$. We choose different hyperbolic lines H and H_0 in H_1^{\perp} containing s, using (2.10) and excluding the special case mentioned there. Then $E := H \perp a$ and $E_0 := H_0 \perp a$ are different planes of W which are generated by their singular points. We write $H = \langle s, t \rangle$, $H_0 = \langle s, t_0 \rangle$ where t and t_0 are singular points in H_1^{\perp} .

For $a \neq y \subseteq \langle a, z \rangle$, y is contained in the two different hyperbolic lines $M := \langle y, t \rangle$ and $M_0 := \langle y, t_0 \rangle$. Because of $\pi(y) = \langle \pi(M \cap S) \rangle \cap \langle \pi(M_0 \cap S) \rangle$ by (3.2), $\pi(y)$ is contained in $E' := \langle \pi(E \cap S) \rangle$ and in $E_0' := \langle \pi(E_0 \cap S) \rangle$. By (2.11) and (2.12) E' and E_0' are different planes in V. Since $X := \langle z, t \rangle \subseteq E$ is a hyperbolic line, (3.2) yields that $\pi(z) \subseteq \langle \pi(X \cap S) \rangle \subseteq \langle \pi(E \cap S) \rangle = E'$. Similarly we have $\pi(z) \subseteq E_0'$. Hence $E' \cap E_0'$ contains $\langle \pi(a), \pi(z) \rangle$. We obtain $\pi(y) \subseteq E' \cap E_0' = \langle \pi(a), \pi(z) \rangle$ by (3.4).

In the remaining special situation we let b be a singular point in $\langle x_1, y_1, z \rangle^{\perp}$, as constructed in the proof of (2.10). As above $\langle \pi(y), \pi(a), \pi(z) \rangle \subseteq E'$. We assume that $\pi(y) \not\subseteq \langle \pi(a), \pi(z) \rangle$. Then $E' = \langle \pi(y), \pi(a), \pi(z) \rangle \subseteq \langle \pi(b^{\perp} \cap S) \rangle$ by (3.3). Now (c) yields $E \subseteq b^{\perp}$, a contradiction.

4 Construction of a semi–linear mapping on 4⁺–spaces

In this section we show that the mapping π restricted to the set of points of a 4⁺– space in W is induced by a semi–linear mapping. We use the idea of the proof of [JW, (1.2.4)]. The main ingredient in Section 4 is (3.5). For $w \in W$, we often write $\pi(w)$ instead of $\pi(Lw)$.

4.1. Let Q be a 4⁺-space in W. Then there is an embedding $\alpha : L \to K$ and an injective semi-linear (with respect to α) mapping $\varphi : Q \to V$ with $\pi(Lx) = K\varphi(x)$ for $x \in Q$.

Proof. Let $Q = \langle x_1, y_1 \rangle \perp \langle x_2, y_2 \rangle$ be a 4⁺-space in W. Let x_1, x_2, y_1, y_2 be generated by e_1, e_2, e_3, e_4 respectively and let $\pi(e_i)$ be generated by f_i $(i = 1, \ldots, 4)$. By (2.4) f_1, f_2, f_3, f_4 are linearly independent. For $j \geq 2$ we have $L(e_1 + e_j) \subseteq$ $\langle e_1, e_j \rangle$, hence $\pi(e_1 + e_j) \subseteq \langle \pi(e_1), \pi(e_j) \rangle$ by (3.5). Thus there is a $b \in K$ with $\pi(e_1 + e_j) = K(f_1 + bf_j)$. Further, $b \neq 0$, since π is injective. Replacing f_j by bf_j we may assume

$$\pi(e_i) = Kf_i, \quad \pi(e_1 + e_j) = K(f_1 + f_j)$$

for $i, j = 1, \dots, 4, j \ge 2$.

For $j \ge 2$ and $c \in L$ we have $\pi(e_1 + ce_j) \ne \pi(e_j)$. Hence there is a scalar denoted by $\alpha_j(c)$ in K with $\pi(e_1 + ce_j) = K(f_1 + \alpha_j(c)f_j)$ as in the preceding paragraph. This defines a mapping $\alpha_j : L \to K$ with $\alpha_j(0) = 0$ and $\alpha_j(1) = 1$.

We show:

(*) $\alpha_j = \alpha_2 =: \alpha$ is an embedding from L in K for $j \ge 2$.

Let $i, j \geq 2$, $i \neq j$, and $c_i, c_j \in L$. Then $L(e_1 + c_j e_j + c_i e_i)$ is contained in $\langle e_1 + c_j e_j, e_i \rangle$ and in $\langle e_1 + c_i e_i, e_j \rangle$. Hence (3.5) and the fact that f_1, f_i, f_j are linearly independent yield

$$\pi(e_1 + c_j e_j + c_i e_i) = K(f_1 + \alpha_j(c_j)f_j + \alpha_i(c_i)f_i)$$

for $i, j \ge 2, i \ne j$.

Similarly, $L(c_j e_j + e_i)$ is contained in $\langle e_j, e_i \rangle$ and in $\langle e_1, e_1 + c_j e_j + e_i \rangle$. Using the above paragraph and $\alpha_i(1) = 1$, we obtain

$$\pi(c_j e_j + e_i) = K(\alpha_j(c_j)f_j + f_i)$$

for $i, j \ge 2, i \ne j$.

Let $i \geq 3$ and $c, d \in L$. Then $L(e_1 + (c+d)e_2 + e_i) \subseteq \langle e_1 + ce_2, de_2 + e_i \rangle$. Since $e_1 + ce_2$ is singular, applying π and (3.5) yield $K(f_1 + \alpha(c+d)f_2 + f_i) \subseteq \langle f_1 + \alpha(c)f_2, \alpha(d)f_2 + f_i \rangle$. Hence

$$\alpha(c+d) = \alpha(c) + \alpha(d)$$

for $c, d \in L$ by comparing coefficients.

Similarly, for $c, d \in L$ we have $L(e_1 + cde_2 + ce_i) \subseteq \langle e_1, de_2 + e_i \rangle$. Thus $K(f_1 + \alpha(cd)f_2 + \alpha_i(c)f_i) \subseteq \langle f_1, \alpha(d)f_2 + f_i \rangle$ as above. This leads to

$$\alpha(cd) = \alpha_i(c)\alpha(d)$$

for $i \geq 3, c, d \in L$ by comparing coefficients.

The special case d = 1 yields $\alpha_i = \alpha$ for $i \ge 3$ and α is a homomorphism.

Further, if $c \in L$ with $\alpha(c) = 0$ then $\pi(e_1 + ce_2) = Kf_1 = \pi(e_1)$. Since π is injective on singular points we obtain c = 0, and α is injective. Thus $\alpha : L \to K$ is an embedding and (*) holds.

Next we show:

(**) If
$$x = \sum_{i=1}^{4} c_i e_i \in W$$
, then $\pi(Lx) = K(\sum_{i=1}^{4} \alpha(c_i)f_i)$.

If only one of the coefficients c_i is different from 0 the claim holds.

We first assume that exactly two of the coefficients c_i are different from 0. If $c_1 \neq 0$, we use the fact that $\pi(e_1 + ce_i) = K(f_1 + \alpha(c)f_i)$ for $c \in L$. If $c_1 = 0$, then there are $i, j \geq 2, i \neq j$ with $Lx = L(c_ie_i + c_je_j) \subseteq \langle e_1, e_1 + c_ie_i + c_je_j \rangle$. Further, $Lx \subseteq \langle e_i, e_j \rangle$. We apply π and use the intermediate step of the proof that α is an embedding. This yields the claim.

We now assume that exactly three of the coefficients c_i are different from 0. If $c_1 \neq 0$, we use the intermediate step as in the preceding paragraph. If $c_1 = 0$, then $Lx \subseteq \langle e_1 - c_2e_2 - c_3e_3, e_1 + c_4e_4 \rangle$ and $Lx \subseteq \langle e_1 - c_3e_3 - c_4e_4, e_1 + c_2e_2 \rangle$. Since $e_1 + c_4e_4$ and $e_1 + c_2e_2$ are singular, we can use (3.5) and the claim follows.

Finally, assume that all coefficients c_i are different from 0. Then we have $Lx \subseteq \langle c_1e_1 + c_3e_3 + c_4e_4, e_2 \rangle$ and $Lx \subseteq \langle c_1e_1 + c_2e_2, c_3e_3 + c_4e_4 \rangle$ with e_2 and $c_1e_1 + c_2e_2$ singular. Hence we can finish the proof of (**) as above.

The mapping $\varphi : Q \to V$ defined by $\varphi(\sum_{i=1}^{4} c_i e_i) := \sum_{i=1}^{4} \alpha(c_i) f_i$ is semi-linear (with respect to the embedding $\alpha : L \to K$) and satisfies $\pi(Lx) = K\varphi(x)$ for $x \in Q$. Further φ is injective, since α is.

5 The construction of a semi–linear mapping inducing π

In this last section of the proof of the Main Theorem we show that the mapping π from the set of all points of W into the set of points of V constructed in (3.2) is induced by a semi-linear mapping. We proceed similarly as in the proof of the Fundamental Theorem of Projective Geometry in [Ba, p. 44].

5.1. Let Lx and Ly be different points of W. At least one of Lx and Ly is assumed to be singular. Let $\pi(Lx) = Kx'$. Then there exists a unique $y' \in V$ such that $\pi(Ly) = Ky'$ and $\pi(L(x - y)) = K(x' - y')$. We write h(x, x', y) := y' and set h(x, x', 0) := 0.

Proof. Since $L(x - y) \subseteq Lx + Ly$, (3.5) yields that $\pi(L(x - y)) \subseteq \pi(Lx) + \pi(Ly)$. Hence $\pi(L(x - y)) = Kt$, where t = cx' - z with $c \in K$ and $z \in \pi(Ly)$. Necessarily $c \neq 0$ and $z \neq 0$, since π is injective by (3.4). Hence $y' := c^{-1}z$ satisfies the above conditions. The uniqueness of y' is straight forward.

5.2. If Lx and Ly are different points with at least one singular, then we have h(x, x', y) = y' if and only if h(y, y', x) = x'.

Proof. This is obvious from the definition of h in (5.1).

5.3. Let $u, v, t \in W$ be linearly independent with u, v singular and $u \notin v^{\perp}$. Let $\pi(Lu) = Ku', \pi(Lv) = Kv', \pi(Lt) = Kt'$. If h(u, u', v) = v' and h(u, u', t) = t', then h(v, v', t) = t'.

Proof. We have to show that $\pi(L(v-t)) = K(v'-t')$. Since $\langle u, v \rangle$ is a hyperbolic line, the plane $E := \langle u, v, t \rangle$ is contained in some 4⁺-space Q. Let $a \in E$ be

singular with $E = \langle u, v, a \rangle$. Then $\pi(Lu) + \pi(Lv) + \pi(La)$ is 3-dimensional by (2.14). Using (3.5) we obtain that $\pi(La) \subseteq \pi(Lu) + \pi(Lv) + \pi(Lt)$. Hence u', v', t' are linearly independent. By (4.1) there is an embedding $\alpha : L \to K$ and an injective semi-linear mapping $\varphi : Q \to V$ with $\pi(Lx) = K\varphi(x)$ for $x \in Q$. Hence $Ku' = K\varphi(u), Kz' = K\varphi(z), K(u' - z') = K\varphi(u - z)$ for $z \in \{v, t\}$. Comparing coefficients yields $\varphi(v - t) = \varphi(v) - \varphi(t) = \lambda(v' - t')$ for some $\lambda \in K^*$. Hence $\pi(L(v - t)) = K(v' - t')$.

5.4. Let $x, a, b \in W$ be linearly independent and singular and let $\pi(Lx) = Kx'$. Then h(x, x', a + b) = h(x, x', a) + h(x, x', b).

Proof. We set a' := h(x, x', a), b' := h(x, x', b). By (2.14) x', a', b' are linearly independent. We have to prove that h(x, x', a + b) = a' + b'. By definition of h we have to show that $\pi(L(a + b)) = K(a' + b')$ and that $\pi(L(x - a - b)) = K(x' - a' - b')$.

We first consider the second equation. Since $L(x - a - b) \subseteq L(x - a) + Lb$ and $L(x - a - b) \subseteq L(x - b) + La$ with b and a singular, we can apply (3.5). Thus $\pi(L(x - a - b))$ is contained in K(x' - a') + Kb' and in K(x' - b') + Ka'. Comparing coefficients yields $\pi(L(x - a - b)) = K(x' - a' - b')$.

Further, $L(a + b) \subseteq La + Lb$ and $L(a + b) \subseteq Lx + L(x - a - b)$. Since a and x are singular, (3.5) and the preceding paragraph show that $\pi(L(a + b))$ is contained in Ka' + Kb' and in Kx' + K(x' - a' - b'). Hence $\pi(L(a + b)) = K(a' + b')$.

5.5. Let $x, a, b \in W$ be singular with $Lx \not\subseteq La + Lb$ and let $\pi(Lx) = Kx'$. Then h(x, x', a + b) = h(x, x', a) + h(x, x', b).

Proof. If x, a, b are linearly independent this is (5.4). Thus, we may assume that x, a, b are linearly dependent and hence $La = Lb \neq Lx$. Since W contains singular lines, there exists a $w \in W$ with w, w + a singular and x, a, w linearly independent. We obtain

$$h(x, x', w) + h(x, x', a + b)$$

= $h(x, x', w + a + b)$ by (5.4)
= $h(x, x', w + a) + h(x, x', b)$ by (5.4)
= $h(x, x', w) + h(x, x', a) + h(x, x', b)$ by (5.4).

In the first application of (5.4) x, w, a + b are singular and linearly independent (or a + b = 0). Subtraction of h(x, x', w) yields the claim.

5.6. Since W contains singular lines, there are $u, v, w \in W$ singular and linearly independent with $u \notin v^{\perp}$, $u \notin w^{\perp}$, $v \notin w^{\perp}$. We let $\pi(Lu) = Ku'$ and set v' := h(u, u', v), w' := h(u, u', w).

5.7. If $x, y \in \{u, v, w\}$ with $x \neq y$, then h(x, x', y) = y'.

Proof. By (5.2) we have to consider the cases (x, y) = (u, v), (u, w), (v, w). In the first two cases the claim holds by definition and in the third case we use (5.3).

5.8. Let $0 \neq t \in W$. Then two of the three expressions h(u, u', t), h(v, v', t) and h(w, w', t) are defined and equal. We denote this value by $\varphi(t)$.

Proof. We have $Lt \not\subseteq (Lu + Lv) \cap (Lu + Lw) \cap (Lv + Lw) = 0$. Hence without loss $Lt \not\subseteq Lu + Lv$ and u, v, t are linearly independent. Now h(u, u', v) = v' and h(u, u', t) := t' yields h(v, v', t) := t' by (5.3).

5.9. The mapping $\varphi : W \to V$ defined in (5.8) (we set $\varphi(0) = 0$) satisfies $\pi(Lt) = K\varphi(t)$ for $0 \neq t \in W$.

Proof. We have $\varphi(t) = h(x, x', t)$ for a suitable $x \in \{u, v, t\}$, hence $\pi(Lt) = K\varphi(t)$.

5.10. We have $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in W$ with a, b singular.

Proof. Without loss $a, b \neq 0$. We first consider the case that $a+b \neq 0$. Then by (5.8) $\varphi(a+b) = h(x, x', a+b) = h(y, y', a+b)$ for suitable x, y with $\{u, v, w\} = \{x, y, z\}$ and $L(a+b) \not\subseteq Lx + Ly$. Hence $Lx \not\subseteq La + Lb$ or $Ly \not\subseteq La + Lb$. Without loss $Lx \not\subseteq La + Lb$. Since x, a, b are singular, (5.5) yields h(x, x', a+b) = h(x, x', a) + h(x, x', b). Since $La \not\subseteq Lx + Ly$ or $La \not\subseteq Lx + Lz$, we have $h(x, x', a) = \varphi(a)$ by (5.8). Similarly $h(x, x', b) = \varphi(b)$, and the claim follows.

If a + b = 0, we choose $c \neq 0$ singular with $c \neq a$ and b + c singular. Then the first case yields $\varphi(c) = \varphi(a + b + c) = \varphi(a) + \varphi(b + c) = \varphi(a) + \varphi(b) + \varphi(c)$, i. e. (5.10).

5.11. We have $\varphi(a+b) = \varphi(a) + \varphi(b)$ for $a, b \in W$ with a singular.

Proof. Let $a = x_1$, $H_1 = \langle x_1, y_1 \rangle$ with (x_1, y_1) a hyperbolic pair and $b = \alpha x_1 + \beta y_1 + s$ with $s \in H_1^{\perp}$. We write $s = \gamma x_2 + \delta y_2$, where (x_2, y_2) is a hyperbolic pair in H_1^{\perp} . Hence

$$\varphi(a+b) = \varphi((x_1 + \alpha x_1 + \gamma x_2) + (\beta y_1 + \delta y_2))$$

$$= \varphi(x_1 + (\alpha x_1 + \gamma x_2)) + \varphi(\beta y_1 + \delta y_2) \qquad \text{by (5.10)}$$

$$= \varphi(x_1) + \varphi(\alpha x_1 + \gamma x_2) + \varphi(\beta y_1 + \delta y_2) \qquad \text{by (5.10)}$$

$$= \varphi(x_1) + \varphi(\alpha x_1 + \gamma x_2 + \beta y_1 + \delta y_2) \qquad \text{by (5.10)}$$

$$= \varphi(a) + \varphi(b).$$

5.12. If $n \in \mathbb{N}$ and a_1, \ldots, a_n are singular, then $\varphi(\sum_{i=1}^n a_i) = \sum_{i=1}^n \varphi(a_i)$.

Proof. We may assume $a_i \neq 0$ for i = 1, ..., n. With (5.11) the claim follows by induction on n.

5.13. The mapping φ is additive, i.e. $\varphi(a+b) = \varphi(a) + \varphi(b)$ for $a, b \in W$.

Proof. Since W is generated by its singular points, we can choose a basis $\{e_i \mid i \in I\}$ where e_i is singular $(i \in I)$. We write a and b as linear combination of the basis vectors and apply (5.12).

5.14. The mapping φ is injective.

Proof. Since $\varphi : (W, +) \to (V, +)$ is a homomorphism, we have to show that ker $\varphi = 0$. If $0 \neq t \in W$ with $\varphi(t) = 0$, then $\pi(Lt) = K\varphi(t) = 0$, a contradiction.

5.15. For $0 \neq t \in W$ and $0 \neq \lambda \in L$ we have $K\varphi(t) = \pi(Lt) = \pi(L(\lambda t)) = K\varphi(\lambda t)$. Hence $\varphi(\lambda t) = \alpha(\lambda, t)\varphi(t)$, where $\alpha(\lambda, t) \in K$. We set $\alpha(0, t) := 0$.

5.16. If $0 \neq t_1, t_2 \in W$, then $\alpha(\lambda, t_1) = \alpha(\lambda, t_2)$ for $\lambda \in L$.

Proof. If t_1 and t_2 are linearly independent, then the claim follows by a straight forward calculation using the definition of α . If t_1 and t_2 are linearly dependent, we choose $0 \neq t \in W$ with $Lt \neq Lt_1 = Lt_2$ and restrict to the first case.

5.17. For $\lambda \in L$ we set $\alpha(\lambda) := \alpha(\lambda, t_0)$ where $0 \neq t_0 \in W$. By (5.16) this definition is independent of the choice of t_0 and we have $\varphi(\lambda t) = \alpha(\lambda)\varphi(t)$ for $\lambda \in L$, $t \in W$.

5.18. The mapping $\alpha : L \to K$ is an embedding.

Proof. This is straight forward.

5.19. The steps (5.1) to (5.18) show that there is an embedding $\alpha : L \to K$ and an injective semi-linear (with respect to α) mapping such that $\pi(Lx) = K\varphi(x)$ for $0 \neq x \in W$. This completes the proof of the Main Theorem.

References

- [Ba] Baer, R.: Linear algebra and projective geometry. Academic Press, 1952.
- [HO] Hahn, A. J., O'Meara, O. T.: *The classical groups and K-theory*. Grundlehren Math. Wiss., **291**. Springer, New York, 1989.
- [JW] James, D. G., Weisfeiler, B.: On the geometry of unitary groups. J. of Algebra **63** (1980), 514-540.
- [Lef1] Lefèvre-Percsy, C.: Projectivités conservant un espace polaire faiblement plongé. Acad. Roy. Belg. Bull. Cl. Sci. (5) 67 (1981), 45-50.
- [Lef2] Lefèvre-Percsy, C.: Espaces polaires faiblement plongés dans un espace projectif. J. Geom. 16 (1982), 126-137.
- [TVM1] Thas, J., Van Maldeghem, H.: Orthogonal, symplectic and unitary polar spaces sub-weakly embedded in polar space. To appear in Comp. Math.
- [TVM2] Thas, J., Van Maldeghem, H.: Sub-weakly embedded singular and degenerate polar spaces. To appear in Geom. Dedicata.
- [Ti] Tits, J.: Buildings of spherical type and finite BN-pairs. Lecture Notes in Math., 386. Springer-Verlag, Berlin Heidelberg New York, 1974.

Mathematisches Institut Justus-Liebig-Universitaet Giessen Arndtstrasse 2 35392 Giessen Germany email : Anja.Steinbach@math.uni-giessen.de