About an integral operator preserving meromorphic starlike functions

Eugen Drăghici*

Abstract

Let $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane.Let Σ_{k} be the class of meromorphic functions f in \mathcal{U} having the form: $$
f(z)=\frac{1}{z}+\alpha_{k} z^{k}+\cdots, 0<|z|<1, k \geq 0
$$

A function $f \in \Sigma=\Sigma_{0}$ is called starlike if

$$
\operatorname{Re}\left[-\frac{z f^{\prime}(z)}{f(z)}\right]>0 \operatorname{in} \mathcal{U}
$$

Let denote by Σ_{k}^{*} the class of starlike functions in Σ_{k} and by A_{n} the class of holomorphic functions g of the form:

$$
g(z)=z+a_{n+1} z^{n+1}+\cdots, z \in \mathcal{U}, n \geq 1
$$

With suitable conditions on $k, p \in \mathbb{N}$, on $c \in \mathbb{R}$,on $\gamma \in \mathbb{C}$ and on the function $g \in A_{k+1}$, the author shows that the integral operator $L_{g, c, \gamma}: \Sigma \rightarrow \Sigma$ defined by:

$$
K_{g, c}(f)(z) \equiv \frac{c}{g^{c+1}(z)} \int_{0}^{z} f(t) g^{c}(t) \mathrm{e}^{\gamma t^{p}} d t, z \in \mathcal{U}, f \in \Sigma
$$

$\operatorname{maps} \Sigma_{k}^{*}$ into Σ_{l}^{*}, where $l=\min \{p-1, k\}$.

[^0]
1 Introduction

Let $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$ be the unit disc in the complex plane. We denote by Σ_{k} the class of meromorphic functions f in \mathcal{U} having the form:

$$
f(z)=\frac{1}{z}+\alpha_{k} z^{k}+\cdots, 0<|z|<1, k \geq 0
$$

A function $f \in \Sigma=\Sigma_{0}$ is called starlike if:

$$
\operatorname{Re}\left[-\frac{z f^{\prime}(z)}{f(z)}\right]>0, z \in \mathcal{U}
$$

Let denote by Σ_{k}^{*} the class of starlike functions in Σ_{k}.
Let A_{n} be the class of functions

$$
g(z)=z+a_{n+1} z^{n+1}+\cdots, z \in \mathcal{U}, n \geq 1
$$

that are holomorphic in \mathcal{U}. Let $k, p \in \mathbb{N}, c>0, \gamma \in \mathbb{C}$ and $g \in A_{k+1}$ with $g(z) / z \neq 0$ in \mathcal{U}.Let us define the following integral operators:

$$
I_{g, c}, J_{g, c}, K_{g, c} \text { and } L_{g, c, \gamma}: \Sigma \rightarrow \Sigma
$$

by the following equations:

$$
\begin{gather*}
I_{g, c}(f)(z)=\frac{c}{g^{c+1}(z)} \int_{0}^{z} f(t) g^{c}(t) g^{\prime}(t) d t, z \in \mathcal{U}, f \in \Sigma \tag{1}\\
J_{g, c}(f)(z)=\frac{c}{g^{c+1}(z)} \int_{0}^{z} \frac{z f(t) g^{c+1}(t)}{t} d t, z \in \mathcal{U}, f \in \Sigma \tag{2}\\
K_{g, c}(f)(z)=\frac{c}{g^{c+1}(z)} \int_{0}^{z} f(t) g^{c}(t) d t, z \in \mathcal{U}, \quad f \in \Sigma \tag{3}\\
L_{g, c, \gamma}(f)(z)=\frac{c}{g^{c+1}(z)} \int_{0}^{z} f(t) g^{c}(t) \text { mathrme } e^{\gamma t^{p}} d t, z \in \mathcal{U}, f \in \Sigma \tag{4}
\end{gather*}
$$

In [1] and [2] the authors found sufficient conditions on c and g so that

$$
I_{g, c}\left(\Sigma_{k}^{*}\right) \subset \Sigma_{k}^{*}, J_{g, c}\left(\Sigma_{k}^{*}\right) \subset \Sigma_{k}^{*} \text { and } K_{g, c}\left(\Sigma_{k}^{*}\right) \subset \Sigma_{k}^{*}
$$

The purpose of this article is to find sufficient conditions on g, c and γ so that $L_{g, c, \gamma}\left(\sum_{k}^{*}\right) \subset \Sigma_{l}^{*}$ where $l=\min \{p-1, k\}$. For $\gamma=0$ we obtain Theorem 1 from [2]. In section 4 we give also a new example of an integral operator that preserves meromorphic starlike functions.

2 Preliminaries

For proving our main result we will need the following definitions and lemmas.
If f and g are holomorphic functions in \mathcal{U} and g is univalent, then we say that f is subordinate to g, written $f \prec g$ or $f(z) \prec g(z)$ if $f(0)=g(0)$ and $f(\mathcal{U}) \subset g(\mathcal{U})$.

The holomorphic function f, with $f(0)=0$ and $f^{\prime}(0) \neq 0$ is starlike in \mathcal{U} (i.e. f is univalent in \mathcal{U} and $f(\mathcal{U})$ is starlike with respect to the origin) if and only if $\operatorname{Re}\left[z f^{\prime}(z) / f(z)\right]>0$ in \mathcal{U}.

Lemma 1 [6] Let h be starlike in \mathcal{U} and let $p(z)=1+p_{n} z^{n}+\cdots$ be holomorphic in \mathcal{U}.If

$$
\frac{z p^{\prime}(z)}{p(z)} \prec h(z)
$$

then $p \prec q$, where

$$
q(z)=\exp \frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} d t
$$

This result is due to T.J.Suffridge and the proof can be found in [6]
Lemma 2 [3] Let the function $\psi: \mathbb{C}^{2} \times \mathcal{U} \rightarrow \mathbb{C}$ satisfy the condition:

$$
\operatorname{Re} \psi[i s, t ; z] \leq 0
$$

for all real s and $t \leq-n\left(1+s^{2}\right) / 2$
If $p(z)=1+p_{n} z^{n}+\cdots$ is holomorphic in \mathcal{U} and

$$
\operatorname{Re} \psi\left[p(z), z p^{\prime}(z) ; z\right]>0, z \in \mathcal{U}
$$

then $\operatorname{Re} p(z)>0$ in \mathcal{U}.
Lemma 3 [4] Let B and C be two complex functions in the unit disc \mathcal{U} satisfying:

$$
|\operatorname{Im} C(z)| \leq n \operatorname{Re} B(z), z \in \mathcal{U}, n \in \mathbb{N}
$$

If $p(z)=1+p_{n} z^{n}+\cdots$ is holomorphic in \mathcal{U} and

$$
\operatorname{Re}\left[B(z) z p^{\prime}(z)+C(z) p(z)\right]>0, z \in \mathcal{U}
$$

then $\operatorname{Re} p(z)>0$ in \mathcal{U}.
We mention here that Lemma 3 is a particular case of Lemma 2. More general forms of this two lemmas and proofs can be found in [5]

3 Main result

Theorem 1 Let $\gamma \in \mathbb{C}, c>0$ and let p and k be positive integers. If $g \in A_{k+1}$ is starlike and $g(z) / z \neq 0$ in \mathcal{U} and if $G(z)=z g^{\prime}(z) / g(z)$ satisfies:

$$
\begin{gather*}
\left.\operatorname{Im}\left[(c+1) g^{\prime}(z)-\frac{g(z)}{z}\right] \mathrm{e}^{-\gamma z^{p}}\right] \leq(k+1) \operatorname{Re} \frac{g(z)}{z} \mathrm{e}^{-\gamma z^{p}}, z \in \mathcal{U} \tag{5}\\
{[2+(k+1)(c+1)] \operatorname{Re} G(z)>2\left[1+p \operatorname{Re} \gamma z^{p}\right], z \in \mathcal{U}} \tag{6}\\
(c+1)\left[\operatorname{Im} z G^{\prime}(z)-2 \operatorname{Im} G(z) \operatorname{Re}\left(1-G(z)+\gamma p z^{p}\right)\right]^{2} \leq \\
\leq\left\{[2+(k+1)(c+1)] \operatorname{Re} G(z)-2\left[1+p \operatorname{Re} \gamma z^{p}\right]\right\} \cdot \\
\cdot\left\{\left[k+1+2(c+1)|G(z)|^{2}\right] \operatorname{Re} G(z)+2(c+1) \operatorname{Re} z G^{\prime}(z) G(z)-2(c+1) \mid G(z)^{2}\left(1+p \operatorname{Re} \gamma z^{p}\right)\right\} \tag{7}
\end{gather*}
$$

then $E_{g, c, \gamma}\left(\Sigma_{k}^{*}\right) \subset \Sigma_{l}^{*}$ where the integral operator $L_{g, c, \gamma}$ is defined by (4) and $l=$ $\min \{p-1, k\}$.

Proof Let $f \in \Sigma_{k}^{*}$ and let $F=L_{g, c, \gamma}(f)$. From (4) we deduce:

$$
\begin{equation*}
z F^{\prime}(z)+(c+1) G(z) F(z)=\frac{c z f(z) \mathrm{e}^{\gamma z^{p}}}{g(z)} \tag{8}
\end{equation*}
$$

Let $\phi(z)=z f(z)=1+\alpha_{k} z^{k+1}+\cdots$. Since $f \in \Sigma_{k}^{*}$ we deduce:

$$
\operatorname{Re} \frac{z \phi^{\prime}(z)}{\phi(z)}=\operatorname{Re}\left(1+\frac{z f^{\prime}(z)}{f(z}\right)<1
$$

and thus

$$
\frac{z \phi^{\prime}(z)}{\phi(z)} \prec \frac{2 z}{1+z}
$$

By Lemma 1 we obtain that $\phi(z) \prec(1+z)^{2 /(k+1)}$ where the power is considered with its principal branch. Since $k+1 \geq 2$ we deduce:

$$
\operatorname{Re} \phi(z)=\operatorname{Re} z f(z)>0 \text { in } \mathcal{U}
$$

Let now $P(z)=z F(z)$. From (8) we obtain:

$$
\mathrm{e}^{-\gamma z^{p}}\left\{\frac{g(z)}{z} z P^{\prime}(z)+\left[(c+1) g^{\prime}(z)-\frac{g(z)}{z}\right] P(z)\right\}=c z f(z)
$$

Hence:

$$
\operatorname{Re}\left\{\mathrm{e}^{-\gamma z^{p}} \frac{g(z)}{z} z P^{\prime}(z)+\mathrm{e}^{-\gamma z^{p}}\left[(c+1) g^{\prime}(z)-\frac{g(z)}{z}\right] P(z)\right\}>0 \text { in } \mathcal{U}
$$

Then, from (5) and Lemma 3 it follows immediately that:
$\operatorname{Re} P(z)=\operatorname{Re}[z F(z)]>0$ in \mathcal{U}. Hence, the function

$$
p(z)=-\frac{z F^{\prime}(z)}{F(z)}=1+q_{l+1} z^{l+1}+\cdots
$$

is holomorphic in \mathcal{U} and (8) becomes:

$$
F(z)[(c+1) G(z)-p(z)]=\frac{c z f(z) \mathrm{e}^{\gamma z^{p}}}{g(z)}
$$

Taking the logarithmic derivative, we obtain:

$$
p(z)+\frac{z p^{\prime}(z)-(c+1) z G^{\prime}(z)}{(c+1) G(z)-p(z)}+1-G(z)+\gamma p z^{p}=-\frac{z f^{\prime}(z)}{f(z)}
$$

Because $f \in \Sigma_{k}^{*}$, we deduce:

$$
\begin{equation*}
\operatorname{Re}\left[p(z)+\frac{z p^{\prime}(z)-(c+1) z G^{\prime}(z)}{(c+1) G(z)-p(z)}+1-G(z)+\gamma p z^{p}\right]>0 \text { in } \mathcal{U} \tag{9}
\end{equation*}
$$

Let now define $\psi: \mathbb{C}^{2} \times \mathcal{U} \rightarrow \mathbb{C}$ by

$$
\psi[u, v ; z]=u+\frac{v-(c+1) z G^{\prime}(z)}{(c+1) G(z)-u}+1-G(z)+\gamma p z^{p}
$$

From (9) we have:

$$
\begin{equation*}
\operatorname{Re} \psi\left[p(z), z p^{\prime}(z) ; z\right]>0 \text { in } \mathcal{U} \tag{10}
\end{equation*}
$$

In order to show that (10) implies $\operatorname{Re} p(z)>0$ in \mathcal{U} it is sufficient to check the inequality:

$$
\begin{equation*}
\operatorname{Re} \psi[i s, t ; z]=\operatorname{Re} \frac{t-(c+1) z G^{\prime}(z)}{(c+1) G(z)-i s}+1-\operatorname{Re} G(z)+\operatorname{Re} \gamma p z^{p} \leq 0 \tag{11}
\end{equation*}
$$

for all real s and $t \leq-(k+1)(c+1) / 2$ and then to apply Lemma 2.
If we denote:

$$
\begin{equation*}
D=|(c+1) G(z)-i s|^{2}=(c+1)^{2}|G(z)|^{2}-2(c+1) \operatorname{Im} G(z)+s^{2} \tag{12}
\end{equation*}
$$

then we have:

$$
\begin{aligned}
\operatorname{Re} \psi[i s, t, z]=\frac{1}{D} \operatorname{Re}\{t & (c+1) \overline{G(z)}+i s t-(c+1)^{2} z G^{\prime}(z) \overline{G(z)}-(c+1) i s z G^{\prime}(z)+ \\
& \left.+\left(1-G(z)+\gamma p z^{p}\right)[(c+1) \overline{G(z)}+i s][(c+1) G(z)-i s]\right\}
\end{aligned}
$$

Because $t \leq-(k+1)\left(1+s^{2}\right) / 2$ and g is starlike(i.e. $\operatorname{Re} G(z)>0$ in $\left.\mathcal{U}\right)$, we have:

$$
\begin{array}{r}
2 D \operatorname{Re} \psi[i s, t ; z] \leq-\left\{s^{2}\left[(2+(k+1)(c+1)) \operatorname{Re} G(z)-2\left(1+p \operatorname{Re} \gamma z^{p}\right)\right]-\right. \\
-2 s(c+1)\left[\operatorname{Im} z G^{\prime}(z)-2 \operatorname{Im} G(z) \operatorname{Re}\left(1-G(z)+\gamma p z^{p}\right)\right]+ \\
+(c+1)\left[\left(k+1+2(c+1)|G(z)|^{2}\right) \operatorname{Re} G(z)+2(c+1) \operatorname{Re} z G^{\prime}(z) \overline{G(z)}\right]- \\
\left.-2(c+1)^{2}|G(z)|^{2}\left(1+p \operatorname{Re} \gamma z^{p}\right)\right\}
\end{array}
$$

Then, from (6) and (7) it follows immediately that $\operatorname{Re} \psi[i s, t ; z] \leq 0$ for all real s and $t \leq-(k+1)\left(s^{2}+1\right) / 2$
Hence,by Lemma 2 we obtain that p has positive real part in \mathcal{U}, and thus $F \in \Sigma_{k}^{*}$ and the theorem is proved.

4 Some particular cases

1. If we let $\gamma=0$, by applying Theorem 1 we obtain the result from [2].
2. If we let $c=k=p-1=1, g(z)=z \exp \frac{\lambda z^{2}}{2}$ and $\gamma=-\lambda / 2$, then $G(z)=1+\lambda z^{2}$ and for $|\lambda|<1$ we have immediately that $\operatorname{Re} G(z)>0$ in \mathcal{U}. Hence, g is starlike in \mathcal{U} for $|\lambda|<1$
Let $\lambda z^{2}=\rho \mathrm{e}^{i \theta}, 0<\rho<1, \theta \in \mathbb{R}$ and let $\tau=\rho \sin \theta \in(-1,1)$.
Condition (5) is equivalent to:

$$
|2 \rho \sin (\theta+\tau)+\sin \tau| \leq 2 \cos \tau
$$

It is easy to show that this inequality holds for all $\theta \in \mathbb{R}$ and $\rho \leq(\sqrt{2}-1) / 2$.
Condition (6) is equivalent to:

$$
4(1+\rho \cos \theta)>0
$$

which is true for all $\rho \in(0,1)$.
Condition (7) is equivalent to:

$$
\rho^{4} \sin ^{2} 2 \theta-4 \rho^{3} \cos ^{3} \theta-3 \rho^{2}\left(2 \cos ^{2} \theta+1\right)-6 \rho \cos \theta-1 \leq 0
$$

It is easy to show that this last inequality holds for all $\rho \leq(\sqrt{2}-1) / 2)$. Hence, by applying Theorem 1 we deduce the following result:

Corollary 1 If $\lambda \in \mathbb{C}$ with $|\lambda| \leq(\sqrt{2}-1) / 2=0.2071 \ldots$ and if L is the integral operator defined by $F=L(f)$, where

$$
F(z)=\frac{1}{z^{2} \mathrm{e}^{\lambda z^{2}}} \int_{0}^{z} t f(t) d t
$$

then $L\left(\Sigma_{1}^{*}\right) \subset \Sigma_{1}^{*}$.

References

[1] H.Al-Amiri, P.T.Mocanu, Integral operators preserving meromorphic starlike functions, Mathematica (Cluj-Romania) (to appear).
[2] E.Draghici, An integral operator preserving meromorphic starlike functions, (to appear).
[3] S.S.Miller, P.T.Mocanu, Second order differential inequalities in the complex plane, J.Math.Anal.Appl. 65(1978), pp.289-305.
[4] S.S.Miller, P.T.Mocanu, Differential subordinations and inequalities in the complex plane, J. of Diff.Equs., 67, 2(1987), pp 199-211.
[5] S.S.Miller, P.T.Mocanu, The theory and applications of second order differential subordinations, Studia Univ. Babeş-Bolyai, Math., 34, 4(1989), pp. 3-33.
[6] T.J.Suffridge, Some remarks on convex maps of the unit disc, Duke Math. J., 37(1979), pp. 775-777.

Department of Mathematics
"Lucian Blaga"-University 2400, Sibiu
Romania.

[^0]: *The author aknowleges support received from the "Conference of the German Academies of Sciences" (Konferenz der Deutschen Akademien der Wissenschaften), with funds provided by the "Volkswagen Stiftung". This work was done while the author was visiting the University of Hagen in Germany.

 1991 Mathematics Subject Classification : Primary: 30C80,30C45, Secondary: 30D.
 Key words and phrases : meromorphic starlike function,subordination.

