
About an integral operator preserving

meromorphic starlike functions

Eugen Drăghici∗

Abstract

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane.Let Σk be
the class of meromorphic functions f in U having the form:

f(z) =
1
z

+ αkz
k + · · · , 0 < |z| < 1, k ≥ 0

A function f ∈ Σ = Σ0 is called starlike if

Re
[
−zf

′(z)
f(z)

]
> 0 in U

Let denote by Σ∗k the class of starlike functions inΣk and by An the class of
holomorphic functions g of the form:

g(z) = z + an+1z
n+1 + · · · , z ∈ U , n ≥ 1

With suitable conditions on k, p ∈ N,on c ∈ R,on γ ∈ C and on the function
g ∈ Ak+1, the author shows that the integral operator
Lg,c,γ : Σ→ Σ defined by:

Kg,c(f)(z) ≡ c

gc+1(z)

∫ z

0
f(t)gc(t)eγt

p
dt, z ∈ U , f ∈ Σ

maps Σ∗k into Σ∗l , where l = min{p− 1, k}.
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1 Introduction

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane.We denote by
Σk the class of meromorphic functions f in U having the form:

f(z) =
1

z
+ αkz

k + · · · , 0 < |z| < 1, k ≥ 0

A function f ∈ Σ = Σ0 is called starlike if:

Re

[
−zf

′(z)

f(z)

]
> 0 , z ∈ U

Let denote by Σ∗k the class of starlike functions in Σk.
Let An be the class of functions

g(z) = z + an+1z
n+1 + · · · , z ∈ U , n ≥ 1

that are holomorphic in U .Let k, p ∈ N, c > 0, γ ∈ C and g ∈ Ak+1 with g(z)/z 6= 0
in U .Let us define the following integral operators:

Ig,c , Jg,c , Kg,c and Lg,c,γ : Σ→ Σ

by the following equations:

Ig,c(f)(z)=
c

gc+1(z)

∫ z

0
f(t)gc(t)g′(t)dt , z ∈ U , f ∈Σ (1)

Jg,c(f)(z)=
c

gc+1(z)

∫ z

0

zf(t)gc+1(t)

t
dt , z ∈ U , f ∈ Σ (2)

Kg,c(f)(z)=
c

gc+1(z)

∫ z

0
f(t)gc(t)dt , z ∈ U , f ∈ Σ (3)

Lg,c,γ(f)(z) =
c

gc+1(z)

∫ z

0
f(t)gc(t) mathrmeγt

p

dt, z ∈ U , f ∈Σ (4)

In [1] and [2] the authors found sufficient conditions on c and g so that

Ig,c (Σ∗k) ⊂ Σ∗k , Jg,c (Σ∗k) ⊂ Σ∗k and Kg,c (Σ∗k) ⊂ Σ∗k

The purpose of this article is to find sufficient conditions on g, c and γ so that
Lg,c,γ (Σ∗k) ⊂ Σ∗l where l = min{p − 1, k}. For γ = 0 we obtain Theorem 1 from
[2]. In section 4 we give also a new example of an integral operator that preserves
meromorphic starlike functions.

2 Preliminaries

For proving our main result we will need the following definitions and lemmas.
If f and g are holomorphic functions in U and g is univalent, then we say that f

is subordinate to g, written f ≺ g or f(z) ≺ g(z) if f(0) = g(0) and f(U) ⊂ g(U).
The holomorphic function f , with f(0) = 0 and f ′(0) 6= 0 is starlike in U (i.e.

f is univalent in U and f(U) is starlike with respect to the origin) if and only if
Re[zf ′(z)/f(z)] > 0 in U .
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Lemma 1 [6] Let h be starlike in U and let p(z) = 1+pnz
n+ · · · be holomorphic

in U .If
zp′(z)

p(z)
≺ h(z)

then p ≺ q, where

q(z) = exp
1

n

∫ z

0

h(t)

t
dt.

This result is due to T.J.Suffridge and the proof can be found in [6]

Lemma 2 [3] Let the function ψ : C2 × U → C satisfy the condition:

Reψ[is, t; z]≤ 0

for all real s and t ≤ −n(1 + s2)/2
If p(z) = 1 + pnz

n + · · · is holomorphic in U and

Reψ[p(z), zp′(z); z] > 0 , z ∈ U

then Re p(z) > 0 in U .

Lemma 3 [4] Let B and C be two complex functions in the unit disc U satisfying:

|ImC(z)| ≤ nReB(z) , z ∈ U , n ∈ N

If p(z) = 1 + pnz
n + · · · is holomorphic in U and

Re [B(z)zp′(z) + C(z)p(z)] > 0 , z ∈ U

then Re p(z) > 0 in U .

We mention here that Lemma 3 is a particular case of Lemma 2. More general
forms of this two lemmas and proofs can be found in [5]

3 Main result

Theorem 1 Let γ ∈ C, c > 0 and let p and k be positive integers. If g ∈ Ak+1

is starlike and g(z)/z 6= 0 in U and if G(z) = zg′(z)/g(z) satisfies:∣∣∣∣∣Im
[
(c+ 1)g′(z)− g(z)

z

]
e−γz

p

]
≤ (k + 1) Re

g(z)

z
e−γz

p

, z ∈ U (5)

[2 + (k + 1)(c + 1)] ReG(z) > 2 [1 + pReγzp] , z ∈ U (6)

(c+ 1) [Im zG′(z)− 2 ImG(z) Re (1−G(z) + γpzp)]
2 ≤

≤ {[2 + (k + 1)(c+ 1)] ReG(z)− 2 [1 + pRe γzp]}·
·
{[
k+1+2(c+1)|G(z)|2

]
ReG(z)+2(c+1)RezG′(z)G(z)−2(c+1)|G(z)|2(1+pReγzp)

}
(7)

then  Lg,c,γ (Σ∗k) ⊂ Σ∗l where the integral operator Lg,c,γ is defined by (4) and l =
min{p− 1, k}.
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Proof Let f ∈ Σ∗k and let F = Lg,c,γ(f). From (4) we deduce:

zF ′(z) + (c+ 1)G(z)F (z) =
czf(z)eγz

p

g(z)
(8)

Let φ(z) = zf(z) = 1 + αkz
k+1 + · · · . Since f ∈ Σ∗k we deduce:

Re
zφ′(z)

φ(z)
= Re

(
1 +

zf ′(z)

f(z

)
< 1

and thus
zφ′(z)

φ(z)
≺ 2z

1 + z

By Lemma 1 we obtain that φ(z) ≺ (1 + z)2/(k+1) where the power is considered
with its principal branch. Since k + 1 ≥ 2 we deduce:

Reφ(z) = Rezf(z) > 0 in U

Let now P (z) = zF (z). From (8) we obtain:

e−γz
p

{
g(z)

z
zP ′(z) +

[
(c+ 1)g′(z)− g(z)

z

]
P (z)

}
= czf(z)

Hence:

Re

{
e−γz

p g(z)

z
zP ′(z) + e−γz

p

[
(c+ 1)g′(z)− g(z)

z

]
P (z)

}
> 0 in U

Then, from (5) and Lemma 3 it follows immediately that:
ReP (z) = Re[zF (z)] > 0 in U . Hence, the function

p(z) = −zF
′(z)

F (z)
= 1 + ql+1z

l+1 + · · ·

is holomorphic in U and (8) becomes:

F (z) [(c+ 1)G(z) − p(z)] =
czf(z)eγz

p

g(z)

Taking the logarithmic derivative, we obtain:

p(z) +
zp′(z)− (c + 1)zG′(z)

(c+ 1)G(z) − p(z)
+ 1−G(z) + γpzp = −zf

′(z)

f(z)

Because f ∈ Σ∗k, we deduce:

Re

[
p(z) +

zp′(z)− (c+ 1)zG′(z)

(c+ 1)G(z)− p(z)
+ 1−G(z) + γpzp

]
> 0 in U (9)

Let now define ψ : C2 × U → C by

ψ[u, v; z] = u+
v − (c+ 1)zG′(z)

(c+ 1)G(z) − u + 1−G(z) + γpzp
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From (9) we have:

Reψ[p(z), zp′(z); z] > 0 in U (10)

In order to show that (10) implies Re p(z) > 0 in U it is sufficient to check the
inequality:

Reψ[is, t; z] = Re
t− (c+ 1)zG′(z)

(c+ 1)G(z) − is + 1− ReG(z) + Re γpzp ≤ 0 (11)

for all real s and t ≤ −(k + 1)(c+ 1)/2 and then to apply Lemma 2.
If we denote:

D = |(c+ 1)G(z) − is|2 = (c+ 1)2 |G(z)|2 − 2(c+ 1) ImG(z) + s2 (12)

then we have:

Reψ[is,t; z]=
1

D
Re{t(c+1)G(z) + ist−(c+1)2zG′(z)G(z)−(c+1)iszG′(z) +

+(1−G(z)+γpzp)
[
(c+1)G(z)+is

]
[(c+1)G(z)−is]}

Because t ≤ −(k + 1)(1 + s2)/2 and g is starlike( i.e. ReG(z) > 0 in U ), we have:

2DReψ[is, t; z] ≤ −{s2 [(2 + (k + 1)(c+ 1)) ReG(z)−2 (1+ pRe γzp)]−
−2s(c + 1)[Im zG′(z)−2 ImG(z) Re (1−G(z)+ γpzp)]+

+(c+ 1)
[(
k + 1 + 2(c+ 1) |G(z)|2

)
ReG(z)+2(c+ 1) Re zG′(z)G(z)

]
−

−2(c + 1)2 |G(z)|2 (1 + pRe γzp)}

Then, from (6) and (7) it follows immediately that Reψ[is, t; z] ≤ 0 for all real s
and t ≤ −(k + 1)(s2 + 1)/2
Hence,by Lemma 2 we obtain that p has positive real part in U , and thus F ∈ Σ∗k
and the theorem is proved.

4 Some particular cases

1. If we let γ = 0, by applying Theorem 1 we obtain the result from [2].
2. If we let c = k = p−1 = 1, g(z) = zexpλz

2

2
and γ = −λ/2, then G(z) = 1+λz2

and for |λ| < 1 we have immediately that ReG(z) > 0 in U . Hence, g is starlike in
U for |λ| < 1
Let λz2 = ρeiθ, 0 < ρ < 1, θ ∈ R and let τ = ρ sin θ ∈ (−1, 1).
Condition (5) is equivalent to:

|2ρ sin(θ + τ ) + sin τ | ≤ 2 cos τ

It is easy to show that this inequality holds for all θ ∈ R and ρ ≤ (
√

2− 1)/2.
Condition (6) is equivalent to:

4(1 + ρ cos θ) > 0
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which is true for all ρ ∈ (0, 1).
Condition (7) is equivalent to:

ρ4 sin2 2θ − 4ρ3 cos3 θ − 3ρ2(2 cos2 θ + 1)− 6ρ cos θ − 1 ≤ 0

It is easy to show that this last inequality holds for all ρ ≤ (
√

2− 1)/2). Hence, by
applying Theorem 1 we deduce the following result:

Corollary 1 If λ ∈ C with |λ| ≤ (
√

2−1)/2 = 0.2071 . . . and if L is the integral
operator defined by F = L(f), where

F (z) =
1

z2eλz2

∫ z

0
tf(t)dt

then L (Σ∗1) ⊂ Σ∗1.
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