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Introduction

In spite of its elegance, extreme point theory plays a modest role in complex func-
tion theory. In a series of papers Brickman, Hallenbeck, Mac Gregor and Wilken
determined the extreme points of some classical families of analytic functions. An
excellent overview of their results is contained in [4]. Of fundamental importance is
the availability of the extreme points of the set P of functions f analytic on the unit
disc, with positive real part, normalized by f(0) = 1. These extreme points can be
obtained from an integral representation formula given by Herglotz in 1911 [5]. A
truly beautiful derivation of ExtP was given by Holland [6]. In this note we present
yet another method, based on elementary functional analysis. As an application
we determine the extreme points of the set F of functions f analytic on the unit
disc, with imaginary part bounded by π

2
and normalized by f(0) = 0. They were

originally determined by Milcetich [7] but our derivation is simpler. Finally we de-
termine the extreme points of the set Pα of functions f ∈ P for which | arg f | ≤ απ

2

for some constant α < 1. These were earlier described by Abu-Muhanna and Mac
Gregor [1].

Preliminaries

Let H(∆) be the set of analytic functions on the unit disc ∆ in C. It is wellknown
[9, page 1] that H(∆) provided with the metric

d(f, g) =
∞∑
n=2

1

2n
max
|z|≤n−1

n

|f − g|
1 + |f − g|
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is a locally convex space. Convergence with respect to d is the same as locally
uniform convergence. There is an explicit description of the dual space H(∆)∗.

Theorem: (Toeplitz [11]). There is a 1-1 correspondence between continuous linear

functionals L on H(∆) and sequences bn with lim sup n
√

1bn1 < 1. If f : z →
∞∑
n=0

anz
n

belongs to H(∆) then

L(f) =
∞∑
n=0

anbn.

The theorem can also be expressed as follows: There is a 1-1 correspondence be-
tween continuous linear functionals on H(∆) and analytic functions b on some open
neighbourhood ∆r of ∆. If f ∈ H(∆) then

L(f) =
1

2πi

∫
|z|=ρ

f(z)b(
1

z
)
dz

z
where

1

r
< ρ < 1.

Proof: It is evident that each such function b defines an element of H(∆)∗. Con-
versely if L ∈ H(∆)∗ we put

bn = L(zn).

If the sequence bn had a subsequence bnk (with bnk 6= 0) for which lim
nk→∞

nk

√
|bnk | ≥ 1,

then ∑
nk

znk

bnk

would determine an element f of H(∆). Continuity of L would imply that

L(f) =
∑
nk

bnk
bnk

=∞

which is impossible. Therefore we conclude that lim sup n

√
|bn| < 1.

Our main subject of interest is the set P ⊂ H(∆) of functions

f : z → 1 +
∞∑
n=1

anz
n

for which Re f > 0. Evidently P is convex. P is also a compact subset of H(∆) [9,
page 2]. We have the following result.

Lemma: (Schur [10]) Let p : z → 1 + 2
∞∑
n=1

pnz
n and q : z → 1 + 2

∞∑
n=1

qnz
n belong

to P . Then p ∗ q ∈ P where

p ∗ q(z) = 1 + 2
∞∑
n=1

pnqnz
n.

Proof: For z ∈ ∆ we have

0 < 1
2π

∫
|w|=ρ>|z|

Re p( z
w

) Re q(w)dw
iw

= 1
2

Re 1
2πi

∫
|w|=ρ

p( z
w

){q(w) + q(w)}dw
w

=

1
2

Re {1 + 4
∞∑
n=1

pnqnz
n + 1} = Re p ∗ q(z).
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Extreme points of P

In order to determine the extreme points of P we shall apply the following result
which is sometimes called the theorem of Milman and Rutman.

Lemma: Let X be a locally convex space, let Q be a compact subset of X and
assume that its closed convex hull co(Q) is also compact. Then Q contains all the
extreme points of co(Q).

For a proof of this (elementary) lemma we refer to [2, page 440].

For θ ∈ [0, 2π] we define

kθ(z) =
1 + eiθz

1− eiθz = 1 + 2
∞∑
n=1

einθzn.

Note that kθ ∈ P .

Theorem: The set of extreme points of P is

E = {kθ : 0 ≤ θ < 2π}.

Proof: It is easy to see that E is a compact subset of H(∆).
We shall show that co(E) = P . Assume that there exists a function p ∈ P\co(E).

Then, from Hahn-Banach’s separation theorem [8, page 58] we deduce the existence
of an L ∈ H(∆)∗ and a number λ such that for all f ∈ co(E)

Re L(f) > λ > Re L(p).

Since Re L(f) = Re b0 + Re
∞∑
n=1

bnfn and Re L(p) = Re b0 + Re
∞∑
n=1

bnpn we may

assume that b0 ∈ R and that

Re L(f) > 0 > Re L(p).

In particular Re L(kθ) = b0 + 2 Re
∞∑
n=1

bne
inθ > 0.

From the maximum principle we see that for all z ∈ ∆

b0 + 2 Re
∞∑
n=1

bnz
n > 0,

so in particular b0 > 0, hence

β : z → 1 + 2
∞∑
n=1

bn
b0
zn

belongs to P . From Schur’s Lemma we conclude that

β ∗ p : z → 1 +
∞∑
n=1

pn
bn
b0
zn
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is also an element of P and since lim sup n

√
|bn| < 1, β ∗ p is continuous on ∆ and

we even have Re β ∗ p(1) ≥ 0, i.e.

L(p) = b0 Re β ∗ p(1) ≥ 0,

a contradiction. Therefore we have co(E) = P , and as a consequence of the theorem
of Milman and Rutman we see that Ext P ⊂ E.
Since the group of rotations z → eiθz acts transitively on E we conclude that
Ext P = E.

Corollary: By Krein-Milman’s theorem [8, p.71 th.3.22 and p.78 th.3.28] we obtain:
For every f ∈ P there exists a probability measure µ on [0, 2π] such that

f =
∫ 2π

0
kθdµ(θ).

It is easy to see that there is a 1-1 correspondence between elements of P and
probability measures on [0, 2π]. The integral representation is called Herglotz’s
integral representation.

The next theorem also follows from Hahn-Banach.

Theorem: Let A be an infinite subset of ∆ and let h ∈ H(∆) be a function for
which h(n)(0) 6= 0(n = 0, 1, 2, . . .).
Then the closed linear span

M = [[z → h(wz) : w ∈ A]]

is equal to H(∆).

Proof: Again by Hahn-Banach’s theorem [8, page 59] ifM did not contain an element
f of H(∆) there would be an L ∈ H(∆)∗ such that L annihilates M , but L(f) = 1.
From

h(wz) =
∞∑
n=0

h(n)(0)

n!
wnzn

we see that for w ∈ A

L
(
h(wz)

)
=
∞∑
n=0

bn
h(n)(0)

n!
wn = 0

hence the analytic function z →
∞∑
n=0

bn
h(n)(0)
n!

zn which is defined on ∆r for some r > 1

has infinitely many zeros on ∆ and is therefore identically zero, so bn = 0 for all n.
Then L(f) = 0, a contradiction.

Extreme points of F

Let F be the subset of H(∆) consisting of the functions

f : z →
∞∑
n=1

anz
n
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for which −π
2
< Im f(z) < π

2
. A function f belongs to F if and only if exp ◦f ∈ P .

The exponential function however doesn’t preserve linear relations. We shall employ
the following criterion

f ∈ F ⇐⇒


1 + 2i

π
f ∈ P

1− 2i
π
f ∈ P.

(1)

Theorem: f ∈ F ⇐⇒ There is an integrable function ϕ on [0, 2π] such that

−1 ≤ ϕ ≤ 1

∫ 2π
0 ϕ(θ)dθ = 0

and such that

f =
πi

2

∫ 2π

0
kθϕ(θ)

dθ

2π
.

Proof: From (1) and from Herglotz’s representation we deduce the existence of
probability measures µ and ν or [0, 2π] such that

1 + 2i
π
f =

∫ 2π
0 kθdµ(θ)

1− 2i
π
f =

∫ 2π
0 kθdν(θ).

(2)

Addition leads to ∫ 2π

0
kθd

1

2

(
µ(θ) + ν(θ)

)
= 1

and from the uniqueness of Herglotz’s representation we conclude that 1
2
(µ + ν) is

equal to normalized Lebesgue measure dθ
2π

. As a consequence, µ and ν are absolutely
continuous. Thus there exist integrable functions u and v on [0, 2π] such that 0 ≤ u,
0 ≤ v, u+ v = 2,

∫ 2π
0 udθ =

∫ 2π
0 vdθ = 2π

µ = u
dθ

2π
, ν = v

dθ

2π
.

Substitution into (2) and subtraction leads to

f =
πi

4

∫ 2π

0
kθ
(
v(θ)− u(θ)

)dθ
2π
.

This shows that ϕ = 1
2
(v−u) satisfies the requirements of the theorem. Conversely,

all functions

f =
πi

2

∫ 2π

0
kθϕ(θ)

dθ

2π

evidently belong to F .

Corollary: Im f = π
2

∫ 2π
0 Re kθ · ϕ(θ) dθ

2π
, and from well-known properties of the

Poisson integral representation [3, page 5, Cor 2] we derive that

lim
r↑1

Im f(re−it) =
π

2
ϕ(t)
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From the last theorem, we obtain Ext F without any difficulty

Theorem: f ∈ Ext F ⇐⇒ The corresponding function ϕ satisfies |ϕ| = 1 a.e.

Proof: f ∈ Ext F ⇐⇒ ϕ ∈ Ext {ψ ∈ L1[0, 2π] : −1 ≤ ψ ≤ 1,
∫ 2π

0 ψ = 0}.
If |ϕ| 6= 1 on some set of positive measure, then there is also a set A of positive

measure such that 0 ≤ ϕ < 1 (or such that −1 < ϕ ≤ 0).
Split A into two subsets A1 and A2 such that∫

A1

(1− ϕ) =
∫
A2

(1− ϕ)

and define
ϕ1 = ϕ · 1Ac + 1A1 + (2ϕ− 1)1A2

ϕ2 = ϕ · 1Ac + (2ϕ− 1)1A1 + 1A2 .

Then ϕ = 1
2
ϕ1 + 1

2
ϕ2. Conversely if |ϕ| = 1 a.e. then evidently

ϕ ∈ Ext{ψ ∈ L1[0, 2π],−1 ≤ ψ ≤ 1,
∫ 2π

0
ψ = 0}.

Corollary: f ∈ F is an extreme point of F if and only if

| lim
r↑1

Im f(reit), | = π

2

for almost all t ∈ [0, 2π].

Of course, the extreme points of the set of functions f ∈ H(∆) for which f(0) = 0
and |Im f | < a are precisely those functions f for which

| lim
r↑1

Im f(reit)| = a

for almost all t ∈ [0, 2π].

Example: For ϕ = −1[0,π] + 1[π,2π) the corresponding function

f : z → log
1 + z

1− z

maps ∆ conformally onto the strip {z : |Im z| < π
2
}. This f is an extreme point of

F .

Remark: There is an analogue of Schur’s Lemma for F . Let

f : z →
∞∑
n=1

fnz
n and g : z →

∞∑
n=1

gnz
n

belong to F . Then

z → 1

πi

∞∑
n=1

fngnz
n

belongs to F .
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Proof: From (1) we see that 1± 2i
π
f ∈ P and 1± 2i

π
g ∈ P .

Thus, by Schur’s lemma

(1± 2i

π
f) ∗ (1± 2i

π
g) ∈ P

i.e.

z → 1± 2Σ
fngn
π2

zn ∈ P.

Again from (1) we deduce that z → 1
πi

∞∑
n=1

fngnz
n ∈ F .

By similar arguments one can show that if f : z →
∞∑
n=1

fnz
n ∈ F and p : z →

1 + 2
∞∑
n=1

pnz
n ∈ P , then

z →
∞∑
n=1

pnfnz
n ∈ F.

Extreme points of Pα

Let 0 < α < 1. We focus our attention on the set

Pα = {f ∈ P : |arg f | < α
π

2
}.

We have some characterizations of Pα.

f ∈ Pα ⇐⇒ f
1
α ∈ P ⇐⇒ 1

α
log f ∈ F,

but since neither exponentiation nor log preserve linearity we cannot derive Ext Pα
directly from this correspondence. We start with two lemmas concerning the set

G = {z ∈ C : |arg z| < α
π

2
}.

Lemma 1: Let z, w ∈ C have positive real part and let z2, w2 ∈ G.
If λ ∈ R and if

|λ| < cos
απ

2
,

then

zw(1 + λ
z − w
z + w

) ∈ G.

Proof: We denote arg z = t, arg w = s; then −απ
4
< s, t < απ

4
, hence

cos(t− s) > cosα
π

2
> |λ|.

By an elementary computation we obtain

arg(1 + λ
z − w
z + w

) = arctan
2λ|z| |w| sin(t− s)

(1 + λ)|z|2 + (1− λ)|w|2 + 2|z| |w| cos(t− s) .
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Since
2|λ| |z| |w|

(1 + λ)|z|2 + (1− λ)|w|2 + 2|z| |w| cos(t− s) <

<
2|z| |w| cosαπ

2

(1 + λ)|z|2 + (1− λ)|w|2 + 2|z| |w| cosαπ
2

< 1

we have

| arg(1 + λ
z − w
z + w

)| ≤ arctan(sin |t− s|) ≤ |t− s|,

and therefore

2 min(| arg z|, | argw|) ≤ arg zw(1 + λ
z − w
z + w

) ≤ 2 max(| arg z|, | argw|),

i.e.

zw(1 + λ
z − w
z + w

) ∈ G.

Lemma 2: Let z ∈ G and let w ∈ C. Suppose that z + w ∈ G and z − w ∈ G. If
λ ∈ R and if

|λ| < 3

16
sinαπ

then

z
z + λw

z − λw ∈ G.

Proof: It is sufficient to show that

| arg z|+ | arg
z + λw

z − λw | < α
π

2
.

Since z ± w ∈ G we have w ∈ (−z + G) ∩ (z − G), i.e. w is an element of the
parallellogram with vertices

±z, and ± 2

sinαπ
(Im z cos2 α

π

2
+ i Re z sin2 α

π

2
).

λw is an element of a homothetic parallellogram. Therefore∣∣∣∣∣arg
z + λw

z − λw

∣∣∣∣∣
is maximal if we choose

w =
2

sinαπ
(Im z cos2 α

π

2
+ i Re z sin2 α

π

2
).

For this choice of w we have (since |λ| < 1
4

sinαπ)

λ2|w|2 ≤ 1

4
{(Im z)2 cos4 α

π

2
+ (Re z)2 sin4 α

π

2
} ≤ 1

4
|z|2.



The extreme points of a class of functions with positive real part 457

By an elementary computation we obtain

arg
z + λw

z − λw = arctan 4λ
(Re z)2 sin2 απ

2
− (Im z)2 cos2 απ

2

(|z|2 − λ2|w|2) sinαπ
,

so we deduce that∣∣∣arg z+λw
z−λw

∣∣∣ ≤ arctan 4|λ| (Re z)2 sin2 απ
2
−(Im z)2 cos2 απ

2
3
4
|z|2 sinαπ

≤ arctan 1
|z|2
(
(Re z)2 sin2 απ

2
− (Im z)2 cos2 απ

2

)
= arctan sin(απ

2
− arg z) · sin(απ

2
+ arg z)

= arctan sin(απ
2
− | arg z|) · sin(απ

2
+ | arg z|)

≤ arctan sin(απ
2
− | arg z|) < απ

2
− | arg z|,

and the lemma is proved.

Now we are able to determine Ext Pα.

Theorem: Let f ∈ Pα; then f ∈ Ext Pα if and only if 1
α

log f ∈ Ext F .

Proof: If f ∈ Pα, then 1
α

log f ∈ F . Assume that 1
α

log f 6∈ Ext F .
Then there are functions f1, f2 ∈ F , f1 6= f2 such that f = 1

2
(f1 + f2), or

equivalently, there exist functions g, h ∈ Pα, g 6= h such that f =
√
gh. As a

consequence of lemma 1 we have for all |λ| < cos απ
2√

gh(1 + λ

√
g −
√
h

√
g +
√
h

) ∈ Pα.

For such λ we have

f =
√
gh =

1

2

√
gh(1 + λ

√
g −
√
h

√
g +
√
h

) +
1

2

√
gh(1− λ

√
g −
√
h

√
g +
√
h

),

hence f 6∈ Ext Pα.
Conversely, if f ∈ Pα, f 6∈ Ext Pα, then there is a non-constant function g ∈

H(∆) such that f ± g ∈ Pα. Now lemma 2 implies that for |λ| < 3
16

sinαπ

f
f + λg

f − λg ∈ Pα.

For such λ we have

f =

√
f
f + λg

f − λg ·
√
f
f − λg
f + λg

i.e.
1

α
log f =

1

2
{ 1

α
log

√
f
f + λg

f − λg +
1

α
log

√
f
f − λg
f + λg

},

hence 1
α

log f 6∈ Ext F .

Corollary: Let f ∈ Pα; then f ∈ Ext Pα if and only if

| lim
r↑1

arg f(reit)| = α
π

2
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for almost all t ∈ [0, 2π].

There is an analogue of Schur’s lemma for Pα. We make use of yet another
characterization of Pα. The functions

φ1 : z → i

sinαπ
2

(e−iα
π
2 z − cosα

π

2
)

and

φ2 : z → −i
sinαπ

2

(eiα
π
2 z − cosα

π

2
)

map G into the right halfplane. Note that

f ∈ Pα ⇐⇒ φj(f) ∈ P (j = 1, 2).

Theorem: If f ∈ Pα and g ∈ P , then f ∗ g ∈ Pα.

Proof: φj(f ∗ g) = φj(f) ∗ g ∈ P (j = 1, 2) by Schur’s lemma, hence

f ∗ g ∈ Pα.
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