The extreme points of a class of functions with positive real part

R.A. Kortram

Introduction

In spite of its elegance, extreme point theory plays a modest role in complex function theory. In a series of papers Brickman, Hallenbeck, Mac Gregor and Wilken determined the extreme points of some classical families of analytic functions. An excellent overview of their results is contained in [4]. Of fundamental importance is the availability of the extreme points of the set P of functions f analytic on the unit disc, with positive real part, normalized by $f(0)=1$. These extreme points can be obtained from an integral representation formula given by Herglotz in 1911 [5]. A truly beautiful derivation of $\operatorname{Ext} P$ was given by Holland [6]. In this note we present yet another method, based on elementary functional analysis. As an application we determine the extreme points of the set F of functions f analytic on the unit disc, with imaginary part bounded by $\frac{\pi}{2}$ and normalized by $f(0)=0$. They were originally determined by Milcetich [7] but our derivation is simpler. Finally we determine the extreme points of the set P_{α} of functions $f \in P$ for which $|\arg f| \leq \alpha \frac{\pi}{2}$ for some constant $\alpha<1$. These were earlier described by Abu-Muhanna and Mac Gregor [1].

Preliminaries

Let $H(\Delta)$ be the set of analytic functions on the unit disc Δ in \mathbb{C}. It is wellknown [9, page 1] that $H(\Delta)$ provided with the metric

$$
d(f, g)=\sum_{n=2}^{\infty} \frac{1}{2^{n}} \max _{|z| \leq \frac{n-1}{n}} \frac{|f-g|}{1+|f-g|}
$$

Received by the editors April 1996.
Communicated by R. Delanghe.
is a locally convex space. Convergence with respect to d is the same as locally uniform convergence. There is an explicit description of the dual space $H(\Delta)^{*}$.
Theorem: (Toeplitz [11]). There is a 1-1 correspondence between continuous linear functionals L on $H(\Delta)$ and sequences b_{n} with $\lim \sup \sqrt[n]{1 b_{n} 1}<1$. If $f: z \rightarrow \sum_{n=0}^{\infty} a_{n} z^{n}$ belongs to $H(\Delta)$ then

$$
L(f)=\sum_{n=0}^{\infty} a_{n} b_{n} .
$$

The theorem can also be expressed as follows: There is a $1-1$ correspondence between continuous linear functionals on $H(\Delta)$ and analytic functions b on some open neighbourhood Δ_{r} of $\bar{\Delta}$. If $f \in H(\Delta)$ then

$$
L(f)=\frac{1}{2 \pi i} \int_{|z|=\rho} f(z) b\left(\frac{1}{z}\right) \frac{d z}{z} \quad \text { where } \quad \frac{1}{r}<\rho<1 .
$$

Proof: It is evident that each such function b defines an element of $H(\Delta)^{*}$. Conversely if $L \in H(\Delta)^{*}$ we put

$$
b_{n}=L\left(z^{n}\right) .
$$

If the sequence b_{n} had a subsequence $b_{n_{k}}\left(\right.$ with $\left.b_{n_{k}} \neq 0\right)$ for which $\lim _{n_{k} \rightarrow \infty} \sqrt[n_{k}]{\left|b_{n_{k}}\right| \geq 1 \text {, }}$ then

$$
\sum_{n_{k}} \frac{z^{n_{k}}}{b_{n_{k}}}
$$

would determine an element f of $H(\Delta)$. Continuity of L would imply that

$$
L(f)=\sum_{n_{k}} \frac{b_{n_{k}}}{b_{n_{k}}}=\infty
$$

which is impossible. Therefore we conclude that $\lim \sup \sqrt[n]{\left|b_{n}\right|}<1$.
Our main subject of interest is the set $P \subset H(\Delta)$ of functions

$$
f: z \rightarrow 1+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

for which Ref>0. Evidently P is convex. P is also a compact subset of $H(\Delta)[9$, page 2]. We have the following result.

Lemma: (Schur [10]) Let $p: z \rightarrow 1+2 \sum_{n=1}^{\infty} p_{n} z^{n}$ and $q: z \rightarrow 1+2 \sum_{n=1}^{\infty} q_{n} z^{n}$ belong to P. Then $p * q \in P$ where

$$
p * q(z)=1+2 \sum_{n=1}^{\infty} p_{n} q_{n} z^{n} .
$$

Proof: For $z \in \Delta$ we have

$$
\begin{aligned}
& 0<\frac{1}{2 \pi} \int_{|w|=\rho>|z|} \operatorname{Re} p\left(\frac{z}{w}\right) \operatorname{Re} q(w) \frac{d w}{i w}=\frac{1}{2} \operatorname{Re} \frac{1}{2 \pi i} \int_{|w|=\rho} p\left(\frac{z}{w}\right)\{q(w)+\overline{q(w)}\} \frac{d w}{w}= \\
& \frac{1}{2} \operatorname{Re}\left\{1+4 \sum_{n=1}^{\infty} p_{n} q_{n} z^{n}+1\right\}=\operatorname{Re} p * q(z) .
\end{aligned}
$$

Extreme points of P

In order to determine the extreme points of P we shall apply the following result which is sometimes called the theorem of Milman and Rutman.

Lemma: Let X be a locally convex space, let Q be a compact subset of X and assume that its closed convex hull $\overline{c o}(Q)$ is also compact. Then Q contains all the extreme points of $\overline{c o}(Q)$.
For a proof of this (elementary) lemma we refer to [2, page 440].
For $\theta \in[0,2 \pi]$ we define

$$
k_{\theta}(z)=\frac{1+e^{i \theta} z}{1-e^{i \theta} z}=1+2 \sum_{n=1}^{\infty} e^{i n \theta} z^{n} .
$$

Note that $k_{\theta} \in P$.
Theorem: The set of extreme points of P is

$$
E=\left\{k_{\theta}: 0 \leq \theta<2 \pi\right\} .
$$

Proof: It is easy to see that E is a compact subset of $H(\Delta)$.
We shall show that $\overline{c o}(E)=P$. Assume that there exists a function $p \in P \backslash \overline{c o}(E)$. Then, from Hahn-Banach's separation theorem [8, page 58] we deduce the existence of an $L \in H(\Delta)^{*}$ and a number λ such that for all $f \in \overline{c o}(E)$

$$
\operatorname{Re} L(f)>\lambda>\operatorname{Re} L(p)
$$

Since $\operatorname{Re} L(f)=\operatorname{Re} b_{0}+\operatorname{Re} \sum_{n=1}^{\infty} b_{n} f_{n}$ and $\operatorname{Re} L(p)=\operatorname{Re} b_{0}+\operatorname{Re} \sum_{n=1}^{\infty} b_{n} p_{n}$ we may assume that $b_{0} \in \mathbb{R}$ and that

$$
\operatorname{Re} L(f)>0>\operatorname{Re} L(p)
$$

In particular $\operatorname{Re} L\left(k_{\theta}\right)=b_{0}+2 \operatorname{Re} \sum_{n=1}^{\infty} b_{n} e^{i n \theta}>0$.
From the maximum principle we see that for all $z \in \Delta$

$$
b_{0}+2 \operatorname{Re} \sum_{n=1}^{\infty} b_{n} z^{n}>0
$$

so in particular $b_{0}>0$, hence

$$
\beta: z \rightarrow 1+2 \sum_{n=1}^{\infty} \frac{b_{n}}{b_{0}} z^{n}
$$

belongs to P. From Schur's Lemma we conclude that

$$
\beta * p: z \rightarrow 1+\sum_{n=1}^{\infty} p_{n} \frac{b_{n}}{b_{0}} z^{n}
$$

is also an element of P and since $\lim \sup \sqrt[n]{\left|b_{n}\right|}<1, \beta * p$ is continuous on $\bar{\Delta}$ and we even have $\operatorname{Re} \beta * p(1) \geq 0$, i.e.

$$
L(p)=b_{0} \operatorname{Re} \beta * p(1) \geq 0,
$$

a contradiction. Therefore we have $\overline{c o}(E)=P$, and as a consequence of the theorem of Milman and Rutman we see that Ext $P \subset E$.
Since the group of rotations $z \rightarrow e^{i \theta} z$ acts transitively on E we conclude that Ext $P=E$.

Corollary: By Krein-Milman's theorem [8, p. 71 th. 3.22 and p. 78 th.3.28] we obtain: For every $f \in P$ there exists a probability measure μ on $[0,2 \pi]$ such that

$$
f=\int_{0}^{2 \pi} k_{\theta} d \mu(\theta)
$$

It is easy to see that there is a $1-1$ correspondence between elements of P and probability measures on $[0,2 \pi]$. The integral representation is called Herglotz's integral representation.

The next theorem also follows from Hahn-Banach.
Theorem: Let A be an infinite subset of $\bar{\Delta}$ and let $h \in H(\Delta)$ be a function for which $h^{(n)}(0) \neq 0(n=0,1,2, \ldots)$.
Then the closed linear span

$$
M=\llbracket z \rightarrow h(w z): w \in A \rrbracket
$$

is equal to $H(\Delta)$.
Proof: Again by Hahn-Banach's theorem [8, page 59] if M did not contain an element f of $H(\Delta)$ there would be an $L \in H(\Delta)^{*}$ such that L annihilates M, but $L(f)=1$. From

$$
h(w z)=\sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} w^{n} z^{n}
$$

we see that for $w \in A$

$$
L(h(w z))=\sum_{n=0}^{\infty} b_{n} \frac{h^{(n)}(0)}{n!} w^{n}=0
$$

hence the analytic function $z \rightarrow \sum_{n=0}^{\infty} b_{n} \frac{h^{(n)}(0)}{n!} z^{n}$ which is defined on Δ_{r} for some $r>1$ has infinitely many zeros on $\bar{\Delta}$ and is therefore identically zero, so $b_{n}=0$ for all n. Then $L(f)=0$, a contradiction.

Extreme points of F

Let F be the subset of $H(\Delta)$ consisting of the functions

$$
f: z \rightarrow \sum_{n=1}^{\infty} a_{n} z^{n}
$$

for which $-\frac{\pi}{2}<\operatorname{Im} f(z)<\frac{\pi}{2}$. A function f belongs to F if and only if exp of $\in P$. The exponential function however doesn't preserve linear relations. We shall employ the following criterion

$$
f \in F \Longleftrightarrow\left\{\begin{array}{l}
1+\frac{2 i}{\pi} f \in P \tag{1}\\
1-\frac{2 i}{\pi} f \in P
\end{array}\right.
$$

Theorem: $f \in F \Longleftrightarrow$ There is an integrable function φ on $[0,2 \pi]$ such that

$$
\begin{aligned}
& -1 \leq \varphi \leq 1 \\
& \int_{0}^{2 \pi} \varphi(\theta) d \theta=0
\end{aligned}
$$

and such that

$$
f=\frac{\pi i}{2} \int_{0}^{2 \pi} k_{\theta} \varphi(\theta) \frac{d \theta}{2 \pi}
$$

Proof: From (1) and from Herglotz's representation we deduce the existence of probability measures μ and ν or $[0,2 \pi]$ such that

$$
\left\{\begin{array}{l}
1+\frac{2 i}{\pi} f=\int_{0}^{2 \pi} k_{\theta} d \mu(\theta) \tag{2}\\
1-\frac{2 i}{\pi} f=\int_{0}^{2 \pi} k_{\theta} d \nu(\theta)
\end{array}\right.
$$

Addition leads to

$$
\int_{0}^{2 \pi} k_{\theta} d \frac{1}{2}(\mu(\theta)+\nu(\theta))=1
$$

and from the uniqueness of Herglotz's representation we conclude that $\frac{1}{2}(\mu+\nu)$ is equal to normalized Lebesgue measure $\frac{d \theta}{2 \pi}$. As a consequence, μ and ν are absolutely continuous. Thus there exist integrable functions u and v on $[0,2 \pi]$ such that $0 \leq u$, $0 \leq v, u+v=2, \int_{0}^{2 \pi} u d \theta=\int_{0}^{2 \pi} v d \theta=2 \pi$

$$
\mu=u \frac{d \theta}{2 \pi}, \quad \nu=v \frac{d \theta}{2 \pi} .
$$

Substitution into (2) and subtraction leads to

$$
f=\frac{\pi i}{4} \int_{0}^{2 \pi} k_{\theta}(v(\theta)-u(\theta)) \frac{d \theta}{2 \pi} .
$$

This shows that $\varphi=\frac{1}{2}(v-u)$ satisfies the requirements of the theorem. Conversely, all functions

$$
f=\frac{\pi i}{2} \int_{0}^{2 \pi} k_{\theta} \varphi(\theta) \frac{d \theta}{2 \pi}
$$

evidently belong to F.
Corollary: $\operatorname{Im} f=\frac{\pi}{2} \int_{0}^{2 \pi} \operatorname{Re} k_{\theta} \cdot \varphi(\theta) \frac{d \theta}{2 \pi}$, and from well-known properties of the Poisson integral representation [3, page 5, Cor 2] we derive that

$$
\lim _{r \uparrow 1} \operatorname{Im} f\left(r e^{-i t}\right)=\frac{\pi}{2} \varphi(t)
$$

From the last theorem, we obtain Ext F without any difficulty
Theorem: $f \in \operatorname{Ext} F \Longleftrightarrow$ The corresponding function φ satisfies $|\varphi|=1$ a.e.
Proof: $f \in \operatorname{Ext} F \Longleftrightarrow \varphi \in \operatorname{Ext}\left\{\psi \in L^{1}[0,2 \pi]:-1 \leq \psi \leq 1, \int_{0}^{2 \pi} \psi=0\right\}$.
If $|\varphi| \neq 1$ on some set of positive measure, then there is also a set A of positive measure such that $0 \leq \varphi<1$ (or such that $-1<\varphi \leq 0$).
Split A into two subsets A_{1} and A_{2} such that

$$
\int_{A_{1}}(1-\varphi)=\int_{A_{2}}(1-\varphi)
$$

and define

$$
\begin{aligned}
& \varphi_{1}=\varphi \cdot 1_{A^{c}}+1_{A_{1}}+(2 \varphi-1) 1_{A_{2}} \\
& \varphi_{2}=\varphi \cdot 1_{A^{c}}+(2 \varphi-1) 1_{A_{1}}+1_{A_{2}} .
\end{aligned}
$$

Then $\varphi=\frac{1}{2} \varphi_{1}+\frac{1}{2} \varphi_{2}$. Conversely if $|\varphi|=1$ a.e. then evidently

$$
\varphi \in \operatorname{Ext}\left\{\psi \in L^{1}[0,2 \pi],-1 \leq \psi \leq 1, \int_{0}^{2 \pi} \psi=0\right\}
$$

Corollary: $f \in F$ is an extreme point of F if and only if

$$
\left|\lim _{r \uparrow 1} \operatorname{Im} f\left(r e^{\mathrm{it}}\right),\right|=\frac{\pi}{2}
$$

for almost all $t \in[0,2 \pi]$.
Of course, the extreme points of the set of functions $f \in H(\Delta)$ for which $f(0)=0$ and $|\operatorname{Im} f|<a$ are precisely those functions f for which

$$
\left|\lim _{r \uparrow 1} \operatorname{Im} f\left(r e^{\mathrm{it}}\right)\right|=a
$$

for almost all $t \in[0,2 \pi]$.
Example: For $\varphi=-1_{[0, \pi]}+1_{[\pi, 2 \pi)}$ the corresponding function

$$
f: z \rightarrow \log \frac{1+z}{1-z}
$$

maps Δ conformally onto the strip $\left\{z:|\operatorname{Im} z|<\frac{\pi}{2}\right\}$. This f is an extreme point of F.

Remark: There is an analogue of Schur's Lemma for F. Let

$$
f: z \rightarrow \sum_{n=1}^{\infty} f_{n} z^{n} \text { and } g: z \rightarrow \sum_{n=1}^{\infty} g_{n} z^{n}
$$

belong to F. Then

$$
z \rightarrow \frac{1}{\pi i} \sum_{n=1}^{\infty} f_{n} g_{n} z^{n}
$$

belongs to F.

Proof: From (1) we see that $1 \pm \frac{2 i}{\pi} f \in P$ and $1 \pm \frac{2 i}{\pi} g \in P$.
Thus, by Schur's lemma

$$
\left(1 \pm \frac{2 i}{\pi} f\right) *\left(1 \pm \frac{2 i}{\pi} g\right) \in P
$$

i.e.

$$
z \rightarrow 1 \pm 2 \Sigma \frac{f_{n} g_{n}}{\pi^{2}} z^{n} \in P
$$

Again from (1) we deduce that $z \rightarrow \frac{1}{\pi i} \sum_{n=1}^{\infty} f_{n} g_{n} z^{n} \in F$.
By similar arguments one can show that if $f: z \rightarrow \sum_{n=1}^{\infty} f_{n} z^{n} \in F$ and $p: z \rightarrow$ $1+2 \sum_{n=1}^{\infty} p_{n} z^{n} \in P$, then

$$
z \rightarrow \sum_{n=1}^{\infty} p_{n} f_{n} z^{n} \in F .
$$

Extreme points of \mathbf{P}_{α}

Let $0<\alpha<1$. We focus our attention on the set

$$
P_{\alpha}=\left\{f \in P:|\arg f|<\alpha \frac{\pi}{2}\right\} .
$$

We have some characterizations of P_{α}.

$$
f \in P_{\alpha} \Longleftrightarrow f^{\frac{1}{\alpha}} \in P \Longleftrightarrow \frac{1}{\alpha} \log f \in F
$$

but since neither exponentiation nor \log preserve linearity we cannot derive Ext P_{α} directly from this correspondence. We start with two lemmas concerning the set

$$
G=\left\{z \in \mathbb{C}:|\arg z|<\alpha \frac{\pi}{2}\right\}
$$

Lemma 1: Let $z, w \in \mathbb{C}$ have positive real part and let $z^{2}, w^{2} \in G$.
If $\lambda \in \mathbb{R}$ and if

$$
|\lambda|<\cos \frac{\alpha \pi}{2}
$$

then

$$
z w\left(1+\lambda \frac{z-w}{z+w}\right) \in G
$$

Proof: We denote $\arg z=t, \arg w=s$; then $-\alpha \frac{\pi}{4}<s, t<\alpha \frac{\pi}{4}$, hence

$$
\cos (t-s)>\cos \alpha \frac{\pi}{2}>|\lambda| .
$$

By an elementary computation we obtain

$$
\arg \left(1+\lambda \frac{z-w}{z+w}\right)=\arctan \frac{2 \lambda|z||w| \sin (t-s)}{(1+\lambda)|z|^{2}+(1-\lambda)|w|^{2}+2|z||w| \cos (t-s)}
$$

Since

$$
\begin{aligned}
& \frac{2|\lambda||z||w|}{(1+\lambda)|z|^{2}+(1-\lambda)|w|^{2}+2|z||w| \cos (t-s)}< \\
& <\frac{2|z||w| \cos \alpha \frac{\pi}{2}}{(1+\lambda)|z|^{2}+(1-\lambda)|w|^{2}+2|z||w| \cos \alpha \frac{\pi}{2}}<1
\end{aligned}
$$

we have

$$
\left|\arg \left(1+\lambda \frac{z-w}{z+w}\right)\right| \leq \arctan (\sin |t-s|) \leq|t-s|,
$$

and therefore

$$
2 \min (|\arg z|,|\arg w|) \leq \arg z w\left(1+\lambda \frac{z-w}{z+w}\right) \leq 2 \max (|\arg z|,|\arg w|)
$$

i.e.

$$
z w\left(1+\lambda \frac{z-w}{z+w}\right) \in G .
$$

Lemma 2: Let $z \in G$ and let $w \in \mathbb{C}$. Suppose that $z+w \in G$ and $z-w \in G$. If $\lambda \in \mathbb{R}$ and if

$$
|\lambda|<\frac{3}{16} \sin \alpha \pi
$$

then

$$
z \frac{z+\lambda w}{z-\lambda w} \in G
$$

Proof: It is sufficient to show that

$$
|\arg z|+\left|\arg \frac{z+\lambda w}{z-\lambda w}\right|<\alpha \frac{\pi}{2} .
$$

Since $z \pm w \in G$ we have $w \in(-z+G) \cap(z-G)$, i.e. w is an element of the parallellogram with vertices

$$
\pm z, \text { and } \pm \frac{2}{\sin \alpha \pi}\left(\operatorname{Im} z \cos ^{2} \alpha \frac{\pi}{2}+i \operatorname{Re} z \sin ^{2} \alpha \frac{\pi}{2}\right)
$$

λw is an element of a homothetic parallellogram. Therefore

$$
\left|\arg \frac{z+\lambda w}{z-\lambda w}\right|
$$

is maximal if we choose

$$
w=\frac{2}{\sin \alpha \pi}\left(\operatorname{Im} z \cos ^{2} \alpha \frac{\pi}{2}+i \operatorname{Re} z \sin ^{2} \alpha \frac{\pi}{2}\right) .
$$

For this choice of w we have (since $|\lambda|<\frac{1}{4} \sin \alpha \pi$)

$$
\lambda^{2}|w|^{2} \leq \frac{1}{4}\left\{(\operatorname{Im} z)^{2} \cos ^{4} \alpha \frac{\pi}{2}+(\operatorname{Re} z)^{2} \sin ^{4} \alpha \frac{\pi}{2}\right\} \leq \frac{1}{4}|z|^{2} .
$$

By an elementary computation we obtain

$$
\arg \frac{z+\lambda w}{z-\lambda w}=\arctan 4 \lambda \frac{(\operatorname{Re} z)^{2} \sin ^{2} \alpha \frac{\pi}{2}-(\operatorname{Im} z)^{2} \cos ^{2} \alpha \frac{\pi}{2}}{\left(|z|^{2}-\lambda^{2}|w|^{2}\right) \sin \alpha \pi},
$$

so we deduce that

$$
\begin{aligned}
\left|\arg \frac{z+\lambda w}{z-\lambda w}\right| & \leq \arctan 4|\lambda| \frac{(\operatorname{Re} z)^{2} \sin ^{2} \alpha \frac{\pi}{2}-(\operatorname{Im} z)^{2} \cos ^{2} \alpha \frac{\pi}{2}}{\frac{3}{4}|z|^{2} \sin \alpha \pi} \\
& \leq \arctan \frac{1}{|z|^{2}}\left((\operatorname{Re} z)^{2} \sin ^{2} \alpha \frac{\pi}{2}-(\operatorname{Im} z)^{2} \cos ^{2} \alpha \frac{\pi}{2}\right) \\
& =\arctan \sin \left(\alpha \frac{\pi}{2}-\arg z\right) \cdot \sin \left(\alpha \frac{\pi}{2}+\arg z\right) \\
& =\arctan \sin \left(\alpha \frac{\pi}{2}-|\arg z|\right) \cdot \sin \left(\alpha \frac{\pi}{2}+|\arg z|\right) \\
& \leq \arctan \sin \left(\alpha \frac{\pi}{2}-|\arg z|\right)<\alpha \frac{\pi}{2}-|\arg z|,
\end{aligned}
$$

and the lemma is proved.
Now we are able to determine Ext P_{α}.
Theorem: Let $f \in P_{\alpha}$; then $f \in \operatorname{Ext} P_{\alpha}$ if and only if $\frac{1}{\alpha} \log f \in \operatorname{Ext} F$.
Proof: If $f \in P_{\alpha}$, then $\frac{1}{\alpha} \log f \in F$. Assume that $\frac{1}{\alpha} \log f \notin \operatorname{Ext} F$.
Then there are functions $f_{1}, f_{2} \in F, f_{1} \neq f_{2}$ such that $f=\frac{1}{2}\left(f_{1}+f_{2}\right)$, or equivalently, there exist functions $g, h \in P_{\alpha}, g \neq h$ such that $f=\sqrt{g h}$. As a consequence of lemma 1 we have for all $|\lambda|<\cos \frac{\alpha \pi}{2}$

$$
\sqrt{g h}\left(1+\lambda \frac{\sqrt{g}-\sqrt{h}}{\sqrt{g}+\sqrt{h}}\right) \in P_{\alpha} .
$$

For such λ we have

$$
f=\sqrt{g h}=\frac{1}{2} \sqrt{g h}\left(1+\lambda \frac{\sqrt{g}-\sqrt{h}}{\sqrt{g}+\sqrt{h}}\right)+\frac{1}{2} \sqrt{g h}\left(1-\lambda \frac{\sqrt{g}-\sqrt{h}}{\sqrt{g}+\sqrt{h}}\right),
$$

hence $f \notin \operatorname{Ext} P_{\alpha}$.
Conversely, if $f \in P_{\alpha}, f \notin \operatorname{Ext} P_{\alpha}$, then there is a non-constant function $g \in$ $H(\Delta)$ such that $f \pm g \in P_{\alpha}$. Now lemma 2 implies that for $|\lambda|<\frac{3}{16} \sin \alpha \pi$

$$
f \frac{f+\lambda g}{f-\lambda g} \in P_{\alpha}
$$

For such λ we have

$$
f=\sqrt{f \frac{f+\lambda g}{f-\lambda g}} \cdot \sqrt{f \frac{f-\lambda g}{f+\lambda g}}
$$

i.e.

$$
\frac{1}{\alpha} \log f=\frac{1}{2}\left\{\frac{1}{\alpha} \log \sqrt{f \frac{f+\lambda g}{f-\lambda g}}+\frac{1}{\alpha} \log \sqrt{f \frac{f-\lambda g}{f+\lambda g}}\right\}
$$

hence $\frac{1}{\alpha} \log f \notin \operatorname{Ext} F$.
Corollary: Let $f \in P_{\alpha}$; then $f \in \operatorname{Ext} P_{\alpha}$ if and only if

$$
\left|\lim _{r \uparrow 1} \arg f\left(r e^{\mathrm{it}}\right)\right|=\alpha \frac{\pi}{2}
$$

for almost all $t \in[0,2 \pi]$.
There is an analogue of Schur's lemma for P_{α}. We make use of yet another characterization of P_{α}. The functions

$$
\phi_{1}: z \rightarrow \frac{i}{\sin \alpha \frac{\pi}{2}}\left(e^{-i \alpha \frac{\pi}{2}} z-\cos \alpha \frac{\pi}{2}\right)
$$

and

$$
\phi_{2}: z \rightarrow \frac{-i}{\sin \alpha \frac{\pi}{2}}\left(e^{i \alpha \frac{\pi}{2}} z-\cos \alpha \frac{\pi}{2}\right)
$$

map G into the right halfplane. Note that

$$
f \in P_{\alpha} \Longleftrightarrow \phi_{j}(f) \in P \quad(j=1,2)
$$

Theorem: If $f \in P_{\alpha}$ and $g \in P$, then $f * g \in P_{\alpha}$.
Proof: $\phi_{j}(f * g)=\phi_{j}(f) * g \in P(j=1,2)$ by Schur's lemma, hence

$$
f * g \in P_{\alpha} .
$$

References

[1] Y. Abu-Muhanna; T.H. Mac Gregor. Extreme points of families of analytic functions subordinate to convex mappings. Math. Z. 176 (1981) 511-519. MR 82 \#30021.
[2] N. Dunford; J. Schwartz. Linear Operators Part 1. Interscience (1957).
[3] P.L. Duren. Theory of H^{p} spaces. Academic Press (1970).
[4] D.J. Hallenbeck; T.H. Mac Gregor. Linear Problems and Convexity Techniques in Geometric Function Theory. Pitman (1984).
[5] G. Herglotz. Über Potenzreihen mit positivem, reellen Teil in Einheitskreis. Ber. Verh. Sachs. Akad. Wiss. Leipzig (1911) 501-511.
[6] F. Holland. The extreme points of a class of functions with positive real part. Math. Ann. 202 (1973) 85-88. MR 49 \# 562.
[7] John G. Milcetich. On the extreme points of some sets of analytic functions. Proc. Amer. Math. Soc. 45 (1974) 223-228. MR 50 \# 4957.
[8] W. Rudin. Functional Analysis. Mac Graw Hill (1973).
[9] G. Schober. Univalent Functions. Selected topics. Lecture Notes in Math. vol 478. Springer (1975).
[10] I. Schur. Über Potenzreihen die im Innern der Einheitskreises beschränkt sind. Journal für reine und angewandte Math. 147 (1917) 205-232; 148 (1918) 122-145.
[11] O. Toeplitz. Die linearen vollkommenen Räume der Funktionentheorie. Comment. Math. Helv. 23 (1949) 222-242.

Mathematisch Instituut, Katholieke Universiteit Toernooiveld,
6525 ED Nijmegen, the Netherlands

