The extreme points of a class of functions with positive real part

R.A. Kortram

Introduction

In spite of its elegance, extreme point theory plays a modest role in complex function theory. In a series of papers Brickman, Hallenbeck, Mac Gregor and Wilken determined the extreme points of some classical families of analytic functions. An excellent overview of their results is contained in [4]. Of fundamental importance is the availability of the extreme points of the set P of functions f analytic on the unit disc, with positive real part, normalized by f(0) = 1. These extreme points can be obtained from an integral representation formula given by Herglotz in 1911 [5]. A truly beautiful derivation of ExtP was given by Holland [6]. In this note we present yet another method, based on elementary functional analysis. As an application we determine the extreme points of the set F of functions f analytic on the unit disc, with imaginary part bounded by $\frac{\pi}{2}$ and normalized by f(0) = 0. They were originally determined by Milcetich [7] but our derivation is simpler. Finally we determine the extreme points of the set P_{α} of functions $f \in P$ for which $|\arg f| \leq \alpha \frac{\pi}{2}$ for some constant $\alpha < 1$. These were earlier described by Abu-Muhanna and Mac Gregor [1].

Preliminaries

Let $H(\Delta)$ be the set of analytic functions on the unit disc Δ in \mathbb{C} . It is wellknown [9, page 1] that $H(\Delta)$ provided with the metric

$$d(f,g) = \sum_{n=2}^{\infty} \frac{1}{2^n} \max_{|z| \le \frac{n-1}{n}} \frac{|f-g|}{1+|f-g|}$$

Received by the editors April 1996.

Communicated by R. Delanghe.

Bull. Belg. Math. Soc. 4 (1997), 449-459

is a locally convex space. Convergence with respect to d is the same as locally uniform convergence. There is an explicit description of the dual space $H(\Delta)^*$.

Theorem: (Toeplitz [11]). There is a 1-1 correspondence between continuous linear functionals L on $H(\Delta)$ and sequences b_n with $\limsup \sqrt[n]{1b_n 1} < 1$. If $f: z \to \sum_{n=0}^{\infty} a_n z^n$ belongs to $H(\Delta)$ then

$$L(f) = \sum_{n=0}^{\infty} a_n b_n$$

The theorem can also be expressed as follows: There is a 1-1 correspondence between continuous linear functionals on $H(\Delta)$ and analytic functions b on some open neighbourhood Δ_r of $\overline{\Delta}$. If $f \in H(\Delta)$ then

$$L(f) = \frac{1}{2\pi i} \int_{|z|=\rho} f(z)b(\frac{1}{z})\frac{dz}{z} \quad \text{where} \quad \frac{1}{r} < \rho < 1.$$

Proof: It is evident that each such function b defines an element of $H(\Delta)^*$. Conversely if $L \in H(\Delta)^*$ we put

$$b_n = L(z^n).$$

If the sequence b_n had a subsequence b_{n_k} (with $b_{n_k} \neq 0$) for which $\lim_{n_k \to \infty} \sqrt[n_k]{|b_{n_k}|} \ge 1$, then

$$\sum_{n_k} \frac{z^{n_k}}{b_{n_k}}$$

would determine an element f of $H(\Delta)$. Continuity of L would imply that

$$L(f) = \sum_{n_k} \frac{b_{n_k}}{b_{n_k}} = \infty$$

which is impossible. Therefore we conclude that $\limsup \sqrt[n]{|b_n|} < 1$.

Our main subject of interest is the set $P \subset H(\Delta)$ of functions

$$f: z \to 1 + \sum_{n=1}^{\infty} a_n z^n$$

for which Re f > 0. Evidently P is convex. P is also a compact subset of $H(\Delta)$ [9, page 2]. We have the following result.

Lemma: (Schur [10]) Let $p: z \to 1+2 \sum_{n=1}^{\infty} p_n z^n$ and $q: z \to 1+2 \sum_{n=1}^{\infty} q_n z^n$ belong to P. Then $p * q \in P$ where

$$p * q(z) = 1 + 2\sum_{n=1}^{\infty} p_n q_n z^n.$$

Proof: For $z \in \Delta$ we have

$$0 < \frac{1}{2\pi} \int_{|w|=\rho > |z|} \operatorname{Re} p(\frac{z}{w}) \operatorname{Re} q(w) \frac{dw}{iw} = \frac{1}{2} \operatorname{Re} \frac{1}{2\pi i} \int_{|w|=\rho} p(\frac{z}{w}) \{q(w) + \overline{q(w)}\} \frac{dw}{w} = \frac{1}{2} \operatorname{Re} \{1 + 4\sum_{n=1}^{\infty} p_n q_n z^n + 1\} = \operatorname{Re} p * q(z).$$

Extreme points of P

In order to determine the extreme points of P we shall apply the following result which is sometimes called the theorem of Milman and Rutman.

Lemma: Let X be a locally convex space, let Q be a compact subset of X and assume that its closed convex hull $\overline{co}(Q)$ is also compact. Then Q contains all the extreme points of $\overline{co}(Q)$.

For a proof of this (elementary) lemma we refer to [2, page 440].

For $\theta \in [0, 2\pi]$ we define

$$k_{\theta}(z) = \frac{1 + e^{i\theta}z}{1 - e^{i\theta}z} = 1 + 2\sum_{n=1}^{\infty} e^{in\theta}z^{n}.$$

Note that $k_{\theta} \in P$.

Theorem: The set of extreme points of P is

$$E = \{k_\theta : 0 \le \theta < 2\pi\}.$$

Proof: It is easy to see that E is a compact subset of $H(\Delta)$.

We shall show that $\overline{co}(E) = P$. Assume that there exists a function $p \in P \setminus \overline{co}(E)$. Then, from Hahn-Banach's separation theorem [8, page 58] we deduce the existence of an $L \in H(\Delta)^*$ and a number λ such that for all $f \in \overline{co}(E)$

Re
$$L(f) > \lambda >$$
 Re $L(p)$.

Since Re $L(f) = \operatorname{Re} b_0 + \operatorname{Re} \sum_{n=1}^{\infty} b_n f_n$ and Re $L(p) = \operatorname{Re} b_0 + \operatorname{Re} \sum_{n=1}^{\infty} b_n p_n$ we may assume that $b_0 \in \mathbb{R}$ and that

$$\operatorname{Re} L(f) > 0 > \operatorname{Re} L(p)$$

In particular Re $L(k_{\theta}) = b_0 + 2$ Re $\sum_{n=1}^{\infty} b_n e^{in\theta} > 0.$

From the maximum principle we see that for all $z \in \Delta$

$$b_0 + 2 \operatorname{Re} \sum_{n=1}^{\infty} b_n z^n > 0,$$

so in particular $b_0 > 0$, hence

$$\beta: z \to 1 + 2\sum_{n=1}^{\infty} \frac{b_n}{b_0} z^n$$

belongs to P. From Schur's Lemma we conclude that

$$\beta * p : z \to 1 + \sum_{n=1}^{\infty} p_n \frac{b_n}{b_0} z^n$$

is also an element of P and since $\limsup \sqrt[n]{|b_n|} < 1$, $\beta * p$ is continuous on $\overline{\Delta}$ and we even have $\operatorname{Re} \beta * p(1) \ge 0$, i.e.

$$L(p) = b_0 \operatorname{Re} \beta * p(1) \ge 0,$$

a contradiction. Therefore we have $\overline{co}(E) = P$, and as a consequence of the theorem of Milman and Rutman we see that Ext $P \subset E$.

Since the group of rotations $z \to e^{i\theta} z$ acts transitively on E we conclude that Ext P = E.

Corollary: By Krein-Milman's theorem [8, p.71 th.3.22 and p.78 th.3.28] we obtain: For every $f \in P$ there exists a probability measure μ on $[0, 2\pi]$ such that

$$f = \int_0^{2\pi} k_\theta d\mu(\theta).$$

It is easy to see that there is a 1-1 correspondence between elements of P and probability measures on $[0, 2\pi]$. The integral representation is called Herglotz's integral representation.

The next theorem also follows from Hahn-Banach.

Theorem: Let A be an infinite subset of $\overline{\Delta}$ and let $h \in H(\Delta)$ be a function for which $h^{(n)}(0) \neq 0 (n = 0, 1, 2, ...)$. Then the closed linear span

$$M = \llbracket z \to h(wz) : w \in A \rrbracket$$

is equal to $H(\Delta)$.

Proof: Again by Hahn-Banach's theorem [8, page 59] if M did not contain an element f of $H(\Delta)$ there would be an $L \in H(\Delta)^*$ such that L annihilates M, but L(f) = 1. From

$$h(wz) = \sum_{n=0}^{\infty} \frac{h^{(n)}(0)}{n!} w^n z^n$$

we see that for $w \in A$

$$L(h(wz)) = \sum_{n=0}^{\infty} b_n \frac{h^{(n)}(0)}{n!} w^n = 0$$

hence the analytic function $z \to \sum_{n=0}^{\infty} b_n \frac{h^{(n)}(0)}{n!} z^n$ which is defined on Δ_r for some r > 1 has infinitely many zeros on $\overline{\Delta}$ and is therefore identically zero, so $b_n = 0$ for all n. Then L(f) = 0, a contradiction.

Extreme points of F

Let F be the subset of $H(\Delta)$ consisting of the functions

$$f: z \to \sum_{n=1}^{\infty} a_n z^n$$

for which $-\frac{\pi}{2} < \text{Im } f(z) < \frac{\pi}{2}$. A function f belongs to F if and only if $\exp \circ f \in P$. The exponential function however doesn't preserve linear relations. We shall employ the following criterion

$$f \in F \iff \begin{cases} 1 + \frac{2i}{\pi} f \in P \\ 1 - \frac{2i}{\pi} f \in P. \end{cases}$$
(1)

Theorem: $f \in F \iff$ There is an integrable function φ on $[0, 2\pi]$ such that

$$-1 \le \varphi \le 1$$
$$\int_0^{2\pi} \varphi(\theta) d\theta = 0$$

and such that

$$f = \frac{\pi i}{2} \int_0^{2\pi} k_\theta \varphi(\theta) \frac{d\theta}{2\pi}.$$

Proof: From (1) and from Herglotz's representation we deduce the existence of probability measures μ and ν or $[0, 2\pi]$ such that

$$\begin{cases} 1 + \frac{2i}{\pi} f = \int_0^{2\pi} k_\theta d\mu(\theta) \\ 1 - \frac{2i}{\pi} f = \int_0^{2\pi} k_\theta d\nu(\theta). \end{cases}$$
(2)

Addition leads to

$$\int_0^{2\pi} k_{\theta} d\frac{1}{2} \left(\mu(\theta) + \nu(\theta) \right) = 1$$

and from the uniqueness of Herglotz's representation we conclude that $\frac{1}{2}(\mu + \nu)$ is equal to normalized Lebesgue measure $\frac{d\theta}{2\pi}$. As a consequence, μ and ν are absolutely continuous. Thus there exist integrable functions u and v on $[0, 2\pi]$ such that $0 \le u$, $0 \le v$, u + v = 2, $\int_0^{2\pi} u d\theta = \int_0^{2\pi} v d\theta = 2\pi$

$$\mu = u \frac{d\theta}{2\pi}, \quad \nu = v \frac{d\theta}{2\pi}.$$

Substitution into (2) and subtraction leads to

$$f = \frac{\pi i}{4} \int_0^{2\pi} k_\theta \Big(v(\theta) - u(\theta) \Big) \frac{d\theta}{2\pi}.$$

This shows that $\varphi = \frac{1}{2}(v-u)$ satisfies the requirements of the theorem. Conversely, all functions

$$f = \frac{\pi i}{2} \int_0^{2\pi} k_\theta \varphi(\theta) \frac{d\theta}{2\pi}$$

evidently belong to F.

Corollary: Im $f = \frac{\pi}{2} \int_0^{2\pi} \operatorname{Re} k_\theta \cdot \varphi(\theta) \frac{d\theta}{2\pi}$, and from well-known properties of the Poisson integral representation [3, page 5, Cor 2] we derive that

$$\lim_{r\uparrow 1} \operatorname{Im} f(re^{-it}) = \frac{\pi}{2}\varphi(t)$$

From the last theorem, we obtain Ext F without any difficulty

Theorem: $f \in \text{Ext } F \iff$ The corresponding function φ satisfies $|\varphi| = 1$ a.e. *Proof:* $f \in \text{Ext } F \iff \varphi \in \text{Ext } \{\psi \in L^1[0, 2\pi] : -1 \le \psi \le 1, \int_0^{2\pi} \psi = 0\}.$

If $|\varphi| \neq 1$ on some set of positive measure, then there is also a set A of positive measure such that $0 \leq \varphi < 1$ (or such that $-1 < \varphi \leq 0$). Split A into two subsets A_1 and A_2 such that

$$\int_{A_1}(1-\varphi)=\int_{A_2}(1-\varphi)$$

and define

$$\varphi_1 = \varphi \cdot \mathbf{1}_{A^c} + \mathbf{1}_{A_1} + (2\varphi - 1)\mathbf{1}_{A_2} \varphi_2 = \varphi \cdot \mathbf{1}_{A^c} + (2\varphi - 1)\mathbf{1}_{A_1} + \mathbf{1}_{A_2}.$$

Then $\varphi = \frac{1}{2}\varphi_1 + \frac{1}{2}\varphi_2$. Conversely if $|\varphi| = 1$ a.e. then evidently

$$\varphi \in \operatorname{Ext}\{\psi \in L^1[0, 2\pi], -1 \le \psi \le 1, \int_0^{2\pi} \psi = 0\}.$$

Corollary: $f \in F$ is an extreme point of F if and only if

$$|\lim_{r\uparrow 1} \operatorname{Im} f(re^{\mathrm{it}}),| = \frac{\pi}{2}$$

for almost all $t \in [0, 2\pi]$.

Of course, the extreme points of the set of functions $f \in H(\Delta)$ for which f(0) = 0and |Im f| < a are precisely those functions f for which

$$\left|\lim_{r\uparrow 1} \operatorname{Im} f(re^{\mathrm{it}})\right| = a$$

for almost all $t \in [0, 2\pi]$.

Example: For $\varphi = -1_{[0,\pi]} + 1_{[\pi,2\pi)}$ the corresponding function

$$f: z \to \log \frac{1+z}{1-z}$$

maps Δ conformally onto the strip $\{z : |\text{Im } z| < \frac{\pi}{2}\}$. This f is an extreme point of F.

Remark: There is an analogue of Schur's Lemma for F. Let

$$f: z \to \sum_{n=1}^{\infty} f_n z^n$$
 and $g: z \to \sum_{n=1}^{\infty} g_n z^n$

belong to F. Then

$$z \to \frac{1}{\pi i} \sum_{n=1}^{\infty} f_n g_n z^n$$

belongs to F.

Proof: From (1) we see that $1 \pm \frac{2i}{\pi} f \in P$ and $1 \pm \frac{2i}{\pi} g \in P$.

Thus, by Schur's lemma

$$(1 \pm \frac{2i}{\pi}f) * (1 \pm \frac{2i}{\pi}g) \in P$$

i.e.

$$z \to 1 \pm 2\Sigma \frac{f_n g_n}{\pi^2} z^n \in P$$

Again from (1) we deduce that $z \to \frac{1}{\pi i} \sum_{n=1}^{\infty} f_n g_n z^n \in F$. By similar arguments one can show that if $f : z \to \sum_{n=1}^{\infty} f_n z^n \in F$ and $p : z \to 1+2\sum_{n=1}^{\infty} p_n z^n \in P$, then

$$z \to \sum_{n=1}^{\infty} p_n f_n z^n \in F.$$

Extreme points of P_{α}

Let $0 < \alpha < 1$. We focus our attention on the set

$$P_{\alpha} = \{ f \in P : |\arg f| < \alpha \frac{\pi}{2} \}.$$

We have some characterizations of P_{α} .

$$f \in P_{\alpha} \iff f^{\frac{1}{\alpha}} \in P \iff \frac{1}{\alpha} \log f \in F,$$

but since neither exponentiation nor log preserve linearity we cannot derive Ext P_{α} directly from this correspondence. We start with two lemmas concerning the set

$$G = \{ z \in \mathbb{C} : |\arg z| < \alpha \frac{\pi}{2} \}.$$

Lemma 1: Let $z, w \in \mathbb{C}$ have positive real part and let $z^2, w^2 \in G$.

If $\lambda \in \mathbb{R}$ and if

$$|\lambda| < \cos\frac{\alpha\pi}{2},$$

then

$$zw(1+\lambda\frac{z-w}{z+w}) \in G$$

Proof: We denote arg z = t, arg w = s; then $-\alpha \frac{\pi}{4} < s, t < \alpha \frac{\pi}{4}$, hence

$$\cos(t-s) > \cos \alpha \frac{\pi}{2} > |\lambda|.$$

By an elementary computation we obtain

$$\arg(1+\lambda\frac{z-w}{z+w}) = \arctan\frac{2\lambda|z| |w|\sin(t-s)}{(1+\lambda)|z|^2 + (1-\lambda)|w|^2 + 2|z| |w|\cos(t-s)}.$$

Since

$$\frac{2|\lambda| |z| |w|}{(1+\lambda)|z|^2 + (1-\lambda)|w|^2 + 2|z| |w|\cos(t-s)} < \frac{2|z| |w|\cos\alpha\frac{\pi}{2}}{(1+\lambda)|z|^2 + (1-\lambda)|w|^2 + 2|z| |w|\cos\alpha\frac{\pi}{2}} < 1$$

we have

$$|\arg(1+\lambda\frac{z-w}{z+w})| \le \arctan(\sin|t-s|) \le |t-s|,$$

and therefore

$$2\min(|\arg z|, |\arg w|) \leq \arg zw(1 + \lambda \frac{z-w}{z+w}) \leq 2\max(|\arg z|, |\arg w|),$$

i.e.

$$zw(1+\lambda\frac{z-w}{z+w}) \in G.$$

Lemma 2: Let $z \in G$ and let $w \in \mathbb{C}$. Suppose that $z + w \in G$ and $z - w \in G$. If $\lambda \in \mathbb{R}$ and if

$$|\lambda| < \frac{3}{16} \sin \alpha \pi$$

then

$$z\frac{z+\lambda w}{z-\lambda w}\in G$$

Proof: It is sufficient to show that

$$|\arg z| + |\arg \frac{z + \lambda w}{z - \lambda w}| < \alpha \frac{\pi}{2}.$$

Since $z \pm w \in G$ we have $w \in (-z + G) \cap (z - G)$, i.e. w is an element of the parallellogram with vertices

$$\pm z$$
, and $\pm \frac{2}{\sin \alpha \pi} (\text{Im } z \cos^2 \alpha \frac{\pi}{2} + i \text{ Re } z \sin^2 \alpha \frac{\pi}{2})$

 λw is an element of a homothetic parallellogram. Therefore

$$\arg \frac{z + \lambda w}{z - \lambda w}$$

is maximal if we choose

$$w = \frac{2}{\sin \alpha \pi} (\operatorname{Im} z \cos^2 \alpha \frac{\pi}{2} + i \operatorname{Re} z \sin^2 \alpha \frac{\pi}{2}).$$

For this choice of w we have (since $|\lambda| < \frac{1}{4} \sin \alpha \pi$)

$$\lambda^2 |w|^2 \le \frac{1}{4} \{ (\operatorname{Im} z)^2 \cos^4 \alpha \frac{\pi}{2} + (\operatorname{Re} z)^2 \sin^4 \alpha \frac{\pi}{2} \} \le \frac{1}{4} |z|^2.$$

By an elementary computation we obtain

$$\arg \frac{z + \lambda w}{z - \lambda w} = \arctan 4\lambda \frac{(\operatorname{Re} z)^2 \sin^2 \alpha \frac{\pi}{2} - (\operatorname{Im} z)^2 \cos^2 \alpha \frac{\pi}{2}}{(|z|^2 - \lambda^2 |w|^2) \sin \alpha \pi},$$

so we deduce that

$$\begin{aligned} \left| \arg \frac{z+\lambda w}{z-\lambda w} \right| &\leq \arctan 4 |\lambda| \frac{(\operatorname{Re} z)^2 \sin^2 \alpha \frac{\pi}{2} - (\operatorname{Im} z)^2 \cos^2 \alpha \frac{\pi}{2}}{\frac{3}{4} |z|^2 \sin \alpha \pi} \\ &\leq \arctan \frac{1}{|z|^2} \left((\operatorname{Re} z)^2 \sin^2 \alpha \frac{\pi}{2} - (\operatorname{Im} z)^2 \cos^2 \alpha \frac{\pi}{2} \right) \\ &= \arctan \sin (\alpha \frac{\pi}{2} - \arg z) \cdot \sin (\alpha \frac{\pi}{2} + \arg z) \\ &= \arctan \sin (\alpha \frac{\pi}{2} - |\arg z|) \cdot \sin (\alpha \frac{\pi}{2} + |\arg z|) \\ &\leq \arctan \sin (\alpha \frac{\pi}{2} - |\arg z|) < \alpha \frac{\pi}{2} - |\arg z|, \end{aligned}$$

and the lemma is proved.

Now we are able to determine Ext P_{α} .

Theorem: Let $f \in P_{\alpha}$; then $f \in \text{Ext } P_{\alpha}$ if and only if $\frac{1}{\alpha} \log f \in \text{Ext } F$.

Proof: If $f \in P_{\alpha}$, then $\frac{1}{\alpha} \log f \in F$. Assume that $\frac{1}{\alpha} \log f \notin \text{Ext } F$.

Then there are functions $f_1, f_2 \in F$, $f_1 \neq f_2$ such that $f = \frac{1}{2}(f_1 + f_2)$, or equivalently, there exist functions $g, h \in P_{\alpha}, g \neq h$ such that $f = \sqrt{gh}$. As a consequence of lemma 1 we have for all $|\lambda| < \cos \frac{\alpha \pi}{2}$

$$\sqrt{gh}(1+\lambda\frac{\sqrt{g}-\sqrt{h}}{\sqrt{g}+\sqrt{h}}) \in P_{\alpha}$$

For such λ we have

$$f = \sqrt{gh} = \frac{1}{2}\sqrt{gh}(1 + \lambda \frac{\sqrt{g} - \sqrt{h}}{\sqrt{g} + \sqrt{h}}) + \frac{1}{2}\sqrt{gh}(1 - \lambda \frac{\sqrt{g} - \sqrt{h}}{\sqrt{g} + \sqrt{h}}),$$

hence $f \notin \text{Ext } P_{\alpha}$.

Conversely, if $f \in P_{\alpha}$, $f \notin \text{Ext } P_{\alpha}$, then there is a non-constant function $g \in H(\Delta)$ such that $f \pm g \in P_{\alpha}$. Now lemma 2 implies that for $|\lambda| < \frac{3}{16} \sin \alpha \pi$

$$f\frac{f+\lambda g}{f-\lambda g} \in P_{\alpha}$$

For such λ we have

$$f = \sqrt{f \frac{f + \lambda g}{f - \lambda g}} \cdot \sqrt{f \frac{f - \lambda g}{f + \lambda g}}$$

i.e.

$$\frac{1}{\alpha}\log f = \frac{1}{2} \{ \frac{1}{\alpha}\log \sqrt{f\frac{f+\lambda g}{f-\lambda g}} + \frac{1}{\alpha}\log \sqrt{f\frac{f-\lambda g}{f+\lambda g}} \},$$

hence $\frac{1}{\alpha} \log f \notin \text{Ext } F$.

Corollary: Let $f \in P_{\alpha}$; then $f \in \text{Ext } P_{\alpha}$ if and only if

$$|\lim_{r\uparrow 1}\arg f(re^{\rm it})|=\alpha\frac{\pi}{2}$$

for almost all $t \in [0, 2\pi]$.

There is an analogue of Schur's lemma for P_{α} . We make use of yet another characterization of P_{α} . The functions

$$\phi_1: z \to \frac{i}{\sin \alpha \frac{\pi}{2}} \left(e^{-i\alpha \frac{\pi}{2}} z - \cos \alpha \frac{\pi}{2} \right)$$

and

$$\phi_2: z \to \frac{-i}{\sin \alpha \frac{\pi}{2}} (e^{i\alpha \frac{\pi}{2}} z - \cos \alpha \frac{\pi}{2})$$

map G into the right halfplane. Note that

$$f \in P_{\alpha} \iff \phi_j(f) \in P \qquad (j = 1, 2).$$

Theorem: If $f \in P_{\alpha}$ and $g \in P$, then $f * g \in P_{\alpha}$. *Proof:* $\phi_j(f * g) = \phi_j(f) * g \in P$ (j = 1, 2) by Schur's lemma, hence

$$f * g \in P_{\alpha}.$$

References

- Y. Abu-Muhanna; T.H. Mac Gregor. Extreme points of families of analytic functions subordinate to convex mappings. Math. Z. 176 (1981) 511-519. MR 82 #30021.
- [2] N. Dunford; J. Schwartz. Linear Operators Part 1. Interscience (1957).
- [3] P.L. Duren. Theory of H^p spaces. Academic Press (1970).
- [4] D.J. Hallenbeck; T.H. Mac Gregor. Linear Problems and Convexity Techniques in Geometric Function Theory. Pitman (1984).
- [5] G. Herglotz. Über Potenzreihen mit positivem, reellen Teil in Einheitskreis. Ber. Verh. Sachs. Akad. Wiss. Leipzig (1911) 501-511.
- [6] F. Holland. The extreme points of a class of functions with positive real part. Math. Ann. 202 (1973) 85-88. MR 49 # 562.
- John G. Milcetich. On the extreme points of some sets of analytic functions. Proc. Amer. Math. Soc. 45 (1974) 223-228. MR 50 # 4957.
- [8] W. Rudin. Functional Analysis. Mac Graw Hill (1973).
- [9] G. Schober. Univalent Functions. Selected topics. Lecture Notes in Math. vol 478. Springer (1975).

- [10] I. Schur. Über Potenzreihen die im Innern der Einheitskreises beschränkt sind. Journal für reine und angewandte Math. 147 (1917) 205-232; 148 (1918) 122-145.
- [11] O. Toeplitz. Die linearen vollkommenen Räume der Funktionentheorie. Comment. Math. Helv. 23 (1949) 222-242.

Mathematisch Instituut, Katholieke Universiteit Toernooiveld, 6525 ED Nijmegen, the Netherlands