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Abstract

This paper gives certain new classes of transformation formulas in the
form of multiple-series identities involving several variables. The results ob-
tained, besides being capable of unifying and providing extensions to various
transformation and reduction formulas, also yield other new formulas. The
applicability of the main results is treated briefly in the concluding section.

1 Introduction

Transformation and reduction (or summation) formulas relating to special functions
of one or several variables are of utmost importance. These are invariably used in
different applied branches of theoretical physics and engineering sciences. See, for
example [1], [3], [7], [8], and [9].

While working on an alternative proof of a recently posed problem concern-
ing a certain hypergoemetric identity, Grosjean and Srivastava [2] were lead to its
multiple-series generalization and to its other related extensions. Several transfor-
mation and reduction formulas of hypergeometric functions have been deduced in [2]
from the main multiple-series identities. Multiple-series identities have also recently
been obtained in [5], [8], and were also recorded in [9]. Our motive in this paper
is to obtain new classes of transformation formulas in the form of certain general
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multiple-series identities (Theorems 1-4, below). These results can be applied to
substantially more general classes of special functions and orthogonal polynomials.
Applications are discussed briefly in the concluding section of this paper.

Denoting by (ap) the p-dimensional vector of complex numbers (a1, . . . , ap), and
let the Pochhammer symbol (λ)n stand for

(1.1) (λ)n =
Γ(λ + n)

Γ(λ)
=

{
1, if n = 0,
λ(λ + 1) . . . (λ + n− 1), if n ∈ {1, 2 . . .}

}
,

then the generalized hypergeometric series in r variables z1, . . . , zr is defined by ([9,
p. 38, eqn. (24)])

(1.2) F p:p1;...;pr
q:q1;...;qr

 (ap) : (b1
p1

); . . . ; (brpr);
z1, . . . , zr

(cq) : (d1
q1

); . . . ; (drqr);


=

∞∑
m1,...,mr=0

f(m1, . . . , mr)
r∏
i=1

{zmii /mi!},

where

(1.3) f(m1, . . . , mr) =

p∏
i=1

(ai)m1+...mr

q∏
i=1

(ci)m1+...+mr

r∏
k=1



pk∏
i=1

(bki )mk

qk∏
i=1

(dki )mk

 .

When r = 1, (1.2) reduces to the generalized hypergeometric function of one vari-
able, and for r = 2, it reduces to the generalized Kampé de Fériet function of two
variables.

For further details about these functions, see [9, Chapter 1]. In our sequel we
shall also be using the triple hypergeometric series of Srivastava (see [9,p. 44])
F (3)[x, y, z] which provides unification of Lauricella’s fourteen hypergeometric func-
tions F1, F2, . . . , F14 and additional functions HA, HB and HC .

2 Main results

For non-negative integers mj and qj we define

(2.1) Ai(mi, qi) =
[mi/qi]∑
ki=0

(−mi)qikiBi(mi, ki), (i ∈ {1, . . . , r}),

where [x] denotes the greatest integer in x, and Bi(mi, ki)(mi, ki ≥ 0,
i ∈ {1, . . . , r}) are bounded sequences of real (or complex) parameters.

Consider the multiple-series

(2.2) I =
∞∑

m1,...,mr=0

∆(m1, . . . , mr)
r∏
i=1

{
Ai(mi, qi)

xmii
mi!

}
,
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where ∆(m1, . . . , mr) is a bounded multiple sequence of real (or complex) parame-
ters, and |xi| ≤ Ri(Ri > 0, ∀i ∈ {1, . . . , r}),

Using (2.1), and the elementary relation

(2.3) (−m)k =

(−1)km!/(m− k)!, 0 ≤ k ≤ m,

0, k > m,

then (2.2) gives

(2.4) I =
∞∑

m1,...,mr=0

∆(m1, . . . , mr) ·
r∏
i=1


[mi/qi]∑
ki=0

(−1)qiki

(mi − qiki)!
Bi(mi, ki)x

mi
i

 .
The absolute convergence of the series involved permits change in the order of sum-
mation, and with this assumption making an appeal to the series arrangement prop-
erty [10, Lemma 3, p. 10], we are lead to the following multiple-series identity :

Theorem 1. Corresponding to the bounded sequence Bi(mi, ki), let Ai(mi, qi) be
defined by (2.1), ∀i ∈ {1, . . . , r), where mi, qi are non-negative integers. Then

(2.5)
∞∑

m1,...,mr=0

∆(m1, . . . , mr)
r∏
i=1

{
Ai(mi, qi)

xmii
mi!

}

=
∞∑

m1,k1,...,mr,kr=0

∆(m1 + q1k1, . . . , mr + qrkr)

·
r∏
i=1

{
(−1)qikiBi(mi + qiki, ki)

xmi+qikii

mi!

}
,

where, ∆(m1, . . . , mr) is a single-valued, bounded multiple sequence of real (or com-
plex) parameters such that each of the series involved is absolutely convergent.

Following [2], we consider other interesting variations of Theorem 1. To this end,
let us put the sequence

(2.6) ∆(m1, . . . , mr) = Ω(m1, . . . , mr)
r∏
i=1

{mi !},

and

(2.7) Bi(mi, ki) = ci(ki)/mi !,

so that from (2.1), we write

(2.8) A∗i (mi, qi) =
[mi/qi]∑
ki=0

(−mi)qiki Ci(ki)/mi !, (∀i ∈ {1, . . . , r}),

then Theorem 1 yields the following :



520 R.K. Raina – R.K. Ladha

Theorem 2. For non-negative integersmi, qi(i = 1, . . . , r) there exists the identity :

(2.9)
∞∑

m1,...,mr=0

Ω(m1, . . . , mr)
r∏
i=1

{A∗i (mi, qi)x
mi
i }

=
∞∑

m1,k1,...,mr ,kr=0

Ω(m1 + q1k1, . . . , mr + qrkr) ·
r∏
i=1

{
(−1)qikiCi(ki)

xmi+qikii

mi!

}
,

where, A∗i (mi, qi) is defined by (2.8), and Ω(m1, . . . , mr) is a bounded multiple se-
quence of real (or complex) parameters such that each of the series is absolutely
convergent.

If we set the sequence

(2.10) Ω(m1, . . . , mr) = C∗(m1 + . . .+mr),

and invoke the elementary identity

(2.11)
∞∑

m1,...,mr=0

f(m1 + . . . +mr)
r∏
i=1

{zmii /mi!} =
∞∑
m=0

(z1 + . . .+ zr)
mf(m)

m!
,

then Theorem 2 gives the result :

Theorem 3. Under the assumptions of Theorem 2, there exists the identity

(2.12)
∞∑

m1,...,mr=0

C∗(m1 + . . . +mr)
r∏
i=1

{A∗i (mi, qi)x
mi
i }

=
∞∑

k1,...,kr,m=0

C∗(m + q1k1 + . . . + qrkr)

· (x1 + . . . + xr)
m

m!

r∏
i=1

{Ci(ki)(−xi)qiki},

where C∗(m) is an arbitrary bounded sequence such that the series involved in (2.12)
converge absolutely.

Another variation of Theorem 2 can be contemplated if we put

(2.13) Ω(m1, . . . , mr) = C∗(m1 + . . .+mr)(γ1)m1 . . . (γr)mr ,

and

(2.14) xi = x (i = 1, . . . , r),

in Theorem 2, and make use of the identity [10, p. 61, eqn. (9)] :

(2.15)

∞∑
m1,...,mr=0

f(m1 + . . .+mr)
r∏
i=1

{(γ1)mix
mi
i /mi!}

=
∞∑
m=0

f(m)(γ1 + . . .+ γr)m
xm

m!
,

to simplify the multiple m-series on the right side of (2.9), and this way we are lead
to the following :
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Theorem 4. Under the assumptions of Theorem 2, there exists the identity

∞∑
m1,...,mr=0

C∗(m1 + . . .+mr)
r∏
i=1

{A∗i (mi, qi)(γi)mix
mi}

=
∞∑

k1,...,kr,m=0

C∗(m+ q1k1 + . . .+ qrkr)
xm

m!

·(γ1 + q1k1 + . . . + γr + qrkr)m
r∏
i=1

{(γr)qikiCi(ki)(−xi)qiki},

provided that the series involved in (2.16) converge absolutely.

3 Applications

On account of the presence of arbitrary sequences, our Theorems 1-4 would widely be
applicable and thus lead to numerous interesting transformation and reduction (or
summation) formulas. We shall consider some cases of deductions, thereby revealing
the usefulness of our main results.

We observe that if
qi = 2 (i = 1, . . . , r),

and

(3.1) Ci(ki) =
2−2ki

ki!(λi + 1/2)ki
,

then from (2.8) by Gauss summation theorem [10, p.30, eqn. (7)], we have

(3.2) A∗i (mi, qi) =
2mi(λi)mi
mi!(2λi)mi

,

then Theorems 2, 3 and 4 give the recent known results of Grosjean and Srivasta [2,
pp. 289-291].

It is worth noticing that most of the reduction formulas recorded in Srivasta-
Karlsson’s monograph [9, Chapter 1] would emerge from our Theorems 1 and 2
by suitably specializing the arbitrary sequences in accordance with the involvement
of various summation theorems relating to the hypergeometric functions listed, for
instance, in [4, Chapter 7]. To illustrate, we deduce one such reduction formula from
Theorem 1.

For qi = 1, we put

(3.3) Bi(mi, ki) =
(ai)ki(bi)ki

(ci)ki(1 + ai + bi − ci −mi)kiki!
,

so that from [4, p. 539, entry 88] :

(3.4) Ai(mi, 1) =
(ci − ai)mi(ci − bi)mi
(ci)mi(ci − ai − bi)mi

.
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Theorem 1 gives then

(3.5)
∞∑

m1,...,mr=0

∆(m1, . . . , mr)
r∏
i=1

{(ci − ai)mi(ci − bi)mixmii
(ci)mi(ci − ai − bi)mimi!

}

=
∞∑

m1,k1,...,mr,kr=0

∆(m1 + k1, . . . , mr + kr)

·
r∏
i=1

{ (−1)ki(ai)ki(bi)ki
(ci)ki(1 + ai + bi − ci −mi − ki)kimi!ki!

xmi+kii }.

If r = 1, and

(3.6) ∆(m) =
(α1)m . . . (αP )m
(β1)m . . . (βQ)m

,

then (3.5) in conjunction with the definition (1.2) assumes the form

(3.7) F P :1;2
Q+1 :0;1

 (αP ) : c − a− b ; a, b ;
x, x

(βQ), c− a− b : −−− ; c ;



= P+2FQ+2

 (αP ), c− a, c− b;
x

(βQ), c, c− a− b;

 , P ≤ Q
Next, for qi = 2, we set,

(3.8) Ci(ki) = (−1/4t2i )
ki/ki!,

in (2.8) to get

(3.9) A∗i (mi, 2) = (2ti)
miHmi(ti)/mi!,

where Hn(t) denotes the Hermite polynomials [10,p.40]. With the substitutions (3.8)
and (3.9), Theorem 3 yields

(3.10)
∞∑

m1,...,mr=0

C∗(m1 + . . . +mr)
r∏
i=1

{(xi/2ti)miHmi(ti)/mi!}

=
∞∑

k1,...,kr,m=0

C∗(m+ 2k1 + . . .+ 2kr)

· (x1 + . . .+ xr)
m

m!

r∏
i=1

{(−x2
i/4t

2
i )
ki/ki!}.

When r = 2, (3.10) takes the form

(3.11)

∞∑
m,n=0

A(m+ n)Hm(u)Hn(v)
(x/2u)m

m!

(y/2v)n

n!

=
∞∑

m,n,p=0

A(m + 2n+ 2p)
(x + y)m

m!

(−x2/4u2)n

n!

(−y2/4v2)p

p!
.
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Lastly, when qi = 1, and

(3.12) Ci(ki) =
(λi)ki

(µi)kiki!
,

in (2.8) then from Gauss summation theorem [10,p.30, eqn. (9)], we have

(3.13) A∗i (mi, 1) =
(µi − λi)mi
(µi)mimi!

,

and choosing the sequence C∗(m) same as in (3.6), we arrive at the following result
from Theorem 4 :

(3.14) F P :2;...;2
Q:1;...;1

 (αP ) : γ1, µ1 − λ1; . . . , γr , µr − λr ;
x, . . . , x

(βQ) : µ1; . . . ;µr ;


=

∞∑
m=0

(α1)m . . . (αp)m
(β1)m . . . (βQ)m

(γ1 + . . .+ γr)m
xm

m!

· F P+1:2;...;2
Q+1:1;...;1

 (αP +m) ,
∑
γi +m : γ1, λ1; . . . , γr, λr ;

−x, . . . ,−x
(βQ +m) ,

∑
γi : µ1; . . . ;µr ;

 ,
where P ≤ Q, and

∑
γi = γ1 + . . .+ γr .

If P = Q = 0, and r = 2, then in view of [9,p.28, eqn.(31)], (3.14) in terms of
the triple hypergeometric series gives

(3.15) 2F1

 α, γ − β ;
x

γ ;

 2F1

 λ, v − µ ;
x

v ;



= F (3)

 α + λ :: −; − ;−;−; α, β ; λ, µ ;
x,−x,−x

− :: −; α + λ ;−;−; γ ; v ;


We conclude this paper by remarking that numerous other transformation and re-
duction (or summation) formulas involving various special functions can be deduced
from Theorems 1-4. More importantly, as pointed out in the derivation of (3.11), the
specialisations of arbitrary sequences in Theorems 1-4 can be set as in [6], yielding
summation formulas for different classical orthogonal polynomials also.
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