Monotonous stability for neutral fixed points

J. Bair G. Haesbroeck

Abstract

We give subtle, simple and precise results about the convergence or the divergence of the sequence $\left(x_{n}\right)$, where $x_{j}=f\left(x_{j-1}\right)$ for every integer j, when the initial element x_{0} is in the neighbourhood of a neutral fixed point, i.e. a point x^{*} such that $f\left(x^{*}\right)=x^{*}$ with $\left|f^{\prime}\left(x^{*}\right)\right|=1$ (where f is a C^{∞} function defined on a subset of \mathbb{R}).

1 Introduction

Throughout this paper, we consider a C^{∞} function f defined on a subset $S=$ $\operatorname{dom} f$ of \mathbb{R} and a fixed point x^{*} for f, i.e. a point x^{*} which will be supposed in the interior of S and such that $f\left(x^{*}\right)=x^{*}$.

Given a point $x_{0} \in S$, we define the orbit of x_{0} under f to be the infinite sequence of points $x_{0}, x_{1}, x_{2}, \ldots$, where $x_{0}=f^{0}\left(x_{0}\right), \quad x_{1}=f\left(x_{0}\right)=f^{1}\left(x_{0}\right), \quad x_{2}=f\left(x_{1}\right)=$ $f^{2}\left(x_{0}\right), \ldots, x_{n+1}=f\left(x_{n}\right)=f^{n+1}\left(x_{0}\right), \ldots$: the point x_{0} is called the seed of this orbit which will be denoted by $\mathcal{O}\left(f ; x_{0}\right)[3,4]$.

The aim of this note is to very simply study the asymptotic behavior (i.e. the convergence or divergence) of an orbit the seed of which is in a suitable neighbourhood of a fixed point.

The situation is clear and well-known when x^{*} is hyperbolic, i.e. when $\left|f^{\prime}\left(x^{*}\right)\right| \neq 1$ [3]. Indeed, if $\left|f^{\prime}\left(x^{*}\right)\right|<1$, then x^{*} is stable or attracting; this means that there exists an open interval I which contains x^{*} and such that $f(I) \subset I$ and $\lim _{n \rightarrow \infty} f^{n}(x)=x^{*}$ for every $x \in I$ [3, p. 43] [7, p. 45]. Moreover, if $\left|f^{\prime}\left(x^{*}\right)\right|>1$, then x^{*} is unstable or repelling; this means that there exists an open interval I which contains x^{*} and for which the following condition is satisfied : if $x \in I \backslash\left\{x^{*}\right\}$, there exists an integer $n>0$ such that $f^{n}(x) \notin I[3$, p. 44] [6, p. 20].

[^0]When x^{*} is neutral (i.e. when x^{*} is not hyperbolic), Holmgren says that "nothing definitive can be said about the behavior of points near $x^{* "}$ [5, p. 53]; nevertheless, easy examples show that several typical situations are possible : x^{*} may be stable, unstable, "semistable from above", "semistable from below" as it can be seen on these figures which give the orbit analysis [3] in classical cases.

(a) stable
$f^{\prime}\left(x^{*}\right)=-1$

(c) semistable from below

$$
f^{\prime}\left(x^{*}\right)=1
$$

(b) unstable
$f^{\prime}\left(x^{*}\right)=-1$

(d) semistable from above

$$
f^{\prime}\left(x^{*}\right)=1
$$

These curves suggest that, even if the first derivative is "inconclusive" [6, p. 160] for neutral fixed points, some interesting results can nevertheless be found in this case.

It is necessary to consider separately the cases where x^{*} is positively neutral (i.e. $f^{\prime}\left(x^{*}\right)=1$) and negatively neutral (i.e. $f^{\prime}\left(x^{*}\right)=-1$). The fundamental reason for this distinction is the following : in the first case, the function f is increasing in a neighbourhood U of x^{*} so that $f\left(U \cap\left(-\infty, x^{*}\right)\right) \subset\left(-\infty, x^{*}\right)$ and $f\left(U \cap\left(x^{*},+\infty\right)\right) \subset$ $\left(x^{*},+\infty\right)$; in the second case, f is decreasing in a neighbourhood U of x^{*} so that $f\left(U \cap\left(-\infty, x^{*}\right)\right) \subset\left(x^{*},+\infty\right)$ and $f\left(U \cap\left(x^{*},+\infty\right)\right) \subset\left(-\infty, x^{*}\right)$.

2 Positively neutral fixed points

Because f is increasing near its positively neutral fixed point x^{*}, the orbit under f with a seed x_{0} in a neighbourhood of x^{*} is often a monotone sequence. This ascertainment leads to these definitions which are slight and appropriate changes of classical ones $[3,4,6]$.

- x^{*} is monotonously attracting from below (for f) if there exists a positive real number ε such that, for every $x \in\left(x^{*}-\varepsilon, x^{*}\right)$, the orbit $\mathcal{O}(f ; x)$ is strictly increasing and converges to x^{*};
- x^{*} is monotonously attracting from above (for f) if there exists a positive real number ε such that, for every $x \in\left(x^{*}, x^{*}+\varepsilon\right)$, the orbit $\mathcal{O}(f ; x)$ is strictly decreasing and converges to x^{*};
- x^{*} is monotonously repelling from below (for f) if there exists a positive real number ε such that, for every $x \in\left(x^{*}-\varepsilon, x^{*}\right)$, there is a positive integer n such that $f^{k}(x)<f^{k-1}(x)$ for $k \in\{1,2, \ldots, n\}$ and $f^{n}(x) \notin\left(x^{*}-\varepsilon, x^{*}+\varepsilon\right)$;
- x^{*} is monotonously repelling from above (for f) if there exists a positive real number ε such that, for every $x \in\left(x^{*}, x^{*}+\varepsilon\right)$, there is a positive integer n such that $f^{k-1}(x)<f^{k}(x)$ for $k \in\{1,2, \ldots, n\}$ and $f^{n}(x) \notin\left(x^{*}-\varepsilon, x^{*}+\varepsilon\right)$;
- x^{*} is monotonously stable (for f) if it is monotonously attracting from below and from above (for f);
- x^{*} is monotonously semistable from below (for f) if it is monotonously attracting from below, but monotonously repelling from above (for f);
- x^{*} is monotonously semistable from above (for f) if it is monotonously attracting from above, but monotonously repelling from below (for f);
- x^{*} is monotonously unstable (for f) if it is monotonoulsy repelling from below and from above (for f).

It is clear that if x^{*} is monotonously stable (resp. monotonously unstable) for f, then x^{*} is also stable (resp. unstable) for f in the preceding sense, but the converse is not true.

If x^{*} is a positively neutral fixed point for f, then the point $P^{*}=\left(x^{*}, x^{*}\right)$ lies on the graph of f and the line with equation $y=x$ is tangent at P^{*} to this curve. Thus,
usually, we have $f(x)<x$ or $f(x)>x$ for every point x belonging to ($x^{*}-\varepsilon, x^{*}$) and to $\left(x^{*}, x^{*}+\varepsilon\right)$ for a suitable $\varepsilon>0$. Now we prove that such a condition characterizes the monotonous stability (from below and from above) of x^{*} (for f).

Proposition 1 Let x^{*} be a positively neutral fixed point for f.
a) x^{*} is monotonously attracting from below for f if and only if there exists a positive real number ε such that $f(x)>x$ for every $x \in\left(x^{*}-\varepsilon, x^{*}\right)$;
b) x^{*} is monotonously attracting from above for f if and only if there exists a positive real number ε such that $f(x)<x$ for every $x \in\left(x^{*}, x^{*}+\varepsilon\right)$;
c) x^{*} is monotonously repelling from below for f if and only if there exists a positive real number ε such that $f(x)<x$ for every $x \in\left(x^{*}-\varepsilon, x^{*}\right)$;
d) x^{*} is monotonously repelling from above for f if and only if there exists a positive real number ε such that $f(x)>x$ for every $x \in\left(x^{*}, x^{*}+\varepsilon\right)$.

Proof. a) The condition is clearly necessary.
Conversely, we may suppose the existence of a real positive number ε such that f is strictly increasing on the open interval $I=\left(x^{*}-\varepsilon, x^{*}\right)$ and such that $f(x)>$ $x \forall x \in I$. Therefore, for every $x \in I$, the orbit $\mathcal{O}(f ; x)$ is increasing and bounded by x^{*} : so, $\mathcal{O}(f ; x)$ converges to a limit $\bar{x} \in\left(x^{*}-\varepsilon, x^{*}\right]$ and \bar{x} is a fixed point for f. Because of the assumption $f(x)>x$ when $x \in I, \bar{x}=x^{*}$.
b) The proof is similar to a).
c) Necessity of the condition is a trivial consequence of the definitions.

Conversely, let ε be a positive real number such that f is increasing on $I=$ $\left(x^{*}-\varepsilon, x^{*}\right)$ and $f(x)<x \forall x \in I$. For an arbitrary real number $x_{0} \in I$, it is possible to construct the first elements of a decreasing sequence $x_{0}, x_{1}, x_{2}, \ldots$. If the orbit $\mathcal{O}\left(f ; x_{0}\right)$ is well-defined (i.e. if $f^{n}\left(x_{0}\right) \in S$ for every integer n), then there are two possibilities : there exists an integer n such that $x^{*}>x_{n-1}>x^{*}-\varepsilon$ and $x_{n} \leq x^{*}-\varepsilon$, whence the conclusion, or all the elements of $\mathcal{O}\left(f ; x_{0}\right)$ are greater than $x^{*}-\varepsilon$, whence $\mathcal{O}\left(f ; x_{0}\right)$ converges to a limit \bar{x} which belongs to $\left[x^{*}-\varepsilon, x^{*}\right) \backslash\left(x^{*}-\varepsilon, x^{*}\right):$ in these conditions, $\bar{x}=x^{*}-\varepsilon$ and $x^{*}-\varepsilon$ is a fixed point for f, with $f(x)<x \quad \forall x \in\left(x^{*}-\varepsilon, x^{*}\right)$ and $f^{\prime}\left(x^{*}-\varepsilon\right) \geq 0$, so we can adopt, for the fixed point $x^{*}-\varepsilon$, the reasoning made in the case b) for x^{*}. In summary, it is always sufficient to take $\frac{\varepsilon}{2}$, instead of ε, in the definition of a monotonously repelling fixed point from below in order to reach to the conclusion.
d) The proof is similar to the preceding one.

Proposition 2 Let x^{*} be a positively neutral fixed point for f. Denote by n the smallest integer greater or equal to 2 such that $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right) \neq 0$.
a) If n is odd and $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)<0$, then x^{*} is monotonously stable for f;
b) If n is odd and $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)>0$, then x^{*} is monotonously unstable for f;
c) If n is even and $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)>0$, then x^{*} is monotonously semistable from below for f;
d) If n is even and $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)<0$, then x^{*} is monotonously semistable from above for f;
e) If f is strictly convex on an open interval I containing x^{*}, then x^{*} is monotonously semistable from below for f;
f) If f is strictly concave on an open interval I containing x^{*}, then x^{*} is monotonously semistable from above for f.

Proof. By Taylor's Theorem, we know that

$$
f(x)=f\left(x^{*}\right)+\sum_{j=1}^{n} \frac{\left(x-x^{*}\right)^{j}}{j!} \frac{d^{j}}{d x^{j}} f\left(x^{*}\right)+R(x)
$$

where $R(x)=\frac{\left(x-x^{*}\right)^{n+1}}{(n+1)!} \frac{d^{n+1}}{d x^{n+1}} f(c)$ for a suitable c between x and x^{*}.
Since $\lim _{x \rightarrow x^{*}} R(x)=0, \quad f(x)-x$ and $\frac{\left(x-x^{*}\right)^{n}}{n!} \frac{d^{n}}{d x^{n}} f\left(x^{*}\right)$ have the same sign for every point x which is sufficiently close to (but different from) x^{*}.

When n is odd, $\frac{\left(x-x^{*}\right)^{n}}{n!}$ and $x-x^{*}$ have the same sign (for $x \neq x^{*}$). Therefore, if $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)<0$, then $f(x)>x$ (resp. $f(x)<x$) for every x close to and less than (resp. greater than) x^{*}. In the same way, if $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)>0$, then $f(x)<x$ (resp. $f(x)>x)$ for every x close to and less than (resp. greater than) x^{*}.

When n is even, $\left(x-x^{*}\right)^{n}$ is positive for $x \neq x^{*}$. Thus, if $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)>0$ (resp. $\frac{d^{n}}{d x^{n}} f\left(x^{*}\right)<0$), then $f(x)>x$ (resp. $f(x)<x$) for every x in a neighbourhood of x^{*} (with $x \neq x^{*}$).

Proposition 1 gives the conclusion for a), b), c) and d).
If f is strictly convex on I, then, for every $x \in I \backslash\left\{x^{*}\right\}$:

$$
f(x)>f\left(x^{*}\right)+\left(x-x^{*}\right) f^{\prime}\left(x^{*}\right)
$$

Since $f^{\prime}\left(x^{*}\right)=1$ and $f\left(x^{*}\right)=x^{*}$, we also have

$$
f(x)>x \quad \forall x \in I \backslash\left\{x^{*}\right\}
$$

and proposition 1 can also be applied.
The reasoning is similar for a strictly concave function.
Examples 1 Let $f(x)=x+\alpha x^{p}$, with $\alpha \in \mathbb{R} \backslash\{0\}, p \in \mathbb{N}$ and $p \geq 2$. The point $x^{*}=0$ is a positively neutral fixed point such that $\frac{d^{j}}{d x^{j}} f\left(x^{*}\right)=0$ for $2 \leq j<p$ and $\frac{d^{p}}{d x^{p}} f\left(x^{*}\right)=\alpha p!$. Thus, if p is odd and $\alpha<0$ (resp. $\alpha>0$), then x^{*} is monotonously stable (resp. unstable) for f; if p is even and $\alpha<0$ (resp. $\alpha>0$), then x^{*} is monotonously semistable from above (resp. below) for f.

3 Negatively neutral fixed points

When $f^{\prime}\left(x^{*}\right)=-1$, the situation is fundamentally different from the preceding case because the orbits whose seed x_{0} is near x^{*} cannot be monotone, but often alternate around x^{*} and consist of two monotone subsequences $\mathcal{O}^{\prime}\left(f ; x_{0}\right)=$ $\left(x_{0}, x_{2}, x_{4}, x_{6}, \ldots\right)$ and $\mathcal{O}^{\prime \prime}\left(f ; x_{0}\right)=\left(x_{1}, x_{3}, x_{5}, \ldots\right)$, where $x_{n}=f^{n}\left(x_{0}\right)$ for every integer n.

So, we introduce this new definition about a fixed point x^{*} for $f: x^{*}$ is alternatively monotonously stable for f if there exists a positive real number ε such that, for every $x_{0} \in\left(x^{*}-\varepsilon, x^{*}+\varepsilon\right), \mathcal{O}^{\prime}\left(f ; x_{0}\right)$ and $\mathcal{O}^{\prime \prime}\left(f ; x_{0}\right)$ are strictly monotone sequences, one being increasing and the other decreasing, which both converge to x^{*}.

Note that if a fixed point x^{*} is alternatively monotonously stable for f, then it is also stable for f, but the converse is not true.

Let x^{*} be a negatively neutral fixed point for f. It is clear that $f^{2}\left(x^{*}\right)=x^{*}$ and $\frac{d}{d x} f^{2}\left(x^{*}\right)=1$. Hence, the line with equation $y=x$ is tangent to the graph of f^{2} at the point $P^{*}=\left(x^{*}, x^{*}\right)$. So, we generally have $f^{2}(x)>x$ or $f^{2}(x)<x$ for every x belonging to $\left(x^{*}-\varepsilon, x^{*}\right)$ and to ($x^{*}, x^{*}+\varepsilon$) for a suitable $\varepsilon>0$. Precisely, we shall see that such a condition characterizes the alternatively monotonous stability of x^{*}.

Proposition 3 Let x^{*} be a negatively neutral fixed point for f.
The following propositions are equivalent :
a) x^{*} is alternatively monotonously stable for f;
b) x^{*} is monotonously stable for f^{2};
c) there exists a positive real number ε such that $f^{2}(x)>x \forall x \in\left(x^{*}-\varepsilon, x^{*}\right)$ and $f^{2}(x)<x \quad \forall x \in\left(x^{*}, x^{*}+\varepsilon\right)$.

Proof. The assertions b) and c) are equivalent by virtue of proposition 1.
Suppose that there exists $\varepsilon>0$ such that, for every $x_{0} \in\left(x^{*}-\varepsilon, x^{*}+\varepsilon\right)$, the two subsequences $\mathcal{O}^{\prime}\left(f ; x_{0}\right)$ and $\mathcal{O}^{\prime \prime}\left(f ; x_{0}\right)$ are monotone and converge to x^{*}; clearly $\mathcal{O}^{\prime}\left(f ; x_{0}\right)$ is increasing and $\mathcal{O}^{\prime \prime}\left(f ; x_{0}\right)$ is decreasing. Of course, x^{*} is monotonously stable for f^{2} because $f^{2}\left(x^{*}\right)=x^{*}$, while $\mathcal{O}\left(f^{2} ; x_{0}\right)$ coïncides with $\mathcal{O}^{\prime}\left(f ; x_{0}\right)$.

Conversely, if x^{*} is monotonously stable for f^{2}, there exists an open interval I containing x^{*} such that $f^{\prime}(x)<0$ for any $x \in I$ and $\mathcal{O}\left(f^{2} ; x_{0}\right)$ converges to x^{*} when x_{0} is an arbitrary element of I.

Moreover, by proposition 1, we have $f^{2}(x)>x$ (resp. $f^{2}(x)<x$) when x is close to and less (resp. greater) than x^{*}, so one of the subsequences $\mathcal{O}^{\prime}\left(f ; x_{0}\right)$ and $\mathcal{O}^{\prime \prime}\left(f ; x_{0}\right)$ is increasing, and the other decreasing.

On the other hand, because f is continuous, it is possible to find a real $\varepsilon>0$ such that $x_{1}=f\left(x_{0}\right)$ belongs to I for every $x_{0} \in J=\left(x^{*}-\varepsilon, x^{*}+\varepsilon\right)$. Let x_{0} be any point of $I \cap J$. The orbit $\mathcal{O}\left(f^{2} ; x_{1}\right)$ converges to x^{*}. Therefore, $\mathcal{O}\left(f ; x_{0}\right)$ also converges to x^{*}, since this sequence consists of elements of $\mathcal{O}\left(f^{2} ; x_{0}\right)$ and $\mathcal{O}\left(f^{2} ; x_{1}\right)$.

As a corollary of this last result, a statement similar to proposition 2 can be given in this case by using the function f^{2} instead of f. Nevertheless, it is convenient to work with the given function f itself. For that, the derivatives of f will be replaced by other more complicated notions as the schwarzian derivative of f [1],i.e.

$$
D_{s} f(x)=\frac{f^{\prime \prime \prime}(x)}{f^{\prime}(x)}-\frac{3}{2}\left(\frac{f^{\prime \prime}(x)}{f^{\prime}(x)}\right)^{2}
$$

and Bell's polynomials defined by

$$
\mathbb{B}_{n, k}\left(x_{1}, x_{2}, \ldots, x_{n-k+1}\right)=\sum \frac{n!}{c_{1}!c_{2}!\ldots(1!)^{c_{1}}(2!)^{c_{2}} \ldots} x_{1}^{c_{1}} x_{2}^{c_{2}} \ldots
$$

where the summation goes for every non-negative integers c_{1}, c_{2}, \ldots such that $c_{1}+$ $2 c_{2}+3 c_{3}+\ldots=n$ and $c_{1}+c_{2}+c_{3}+\ldots=k[2, \mathrm{pp} .144-145] ;$ moreover, we shall denote

$$
b_{n}=\sum_{k=1}^{n} a_{k} \mathbb{B}_{n, k}\left(a_{1}, a_{2}, \ldots, a_{n-k+1}\right)
$$

where, for each $k, a_{k}=\frac{d^{k}}{d x^{k}} f\left(x^{*}\right)$.
Proposition 4 Let x^{*} be a negatively neutral fixed point for f.
a) If $D_{s} f\left(x^{*}\right)<0$, then x^{*} is alternatively monotonously stable for f;
b) If $D_{s} f\left(x^{*}\right)>0$, then x^{*} is unstable for f : more precisely, x^{*} is monotonously unstable for f^{2};
c) When $D_{s} f\left(x^{*}\right)=0$, let n be the smallest integer greater than 3 such that $b_{n} \neq 0 ; n$ is odd; x^{*} is alternatively monotonously stable for f when $b_{n}<0$; x^{*} is unstable for f and monotonously unstable for f^{2} when $b_{n}>0$.

Proof. It is clear that

$$
\begin{gathered}
\frac{d}{d x} f^{2}\left(x^{*}\right)=1, \quad \frac{d^{2}}{d x^{2}} f^{2}\left(x^{*}\right)=0, \\
D_{s} f\left(x^{*}\right)=\frac{1}{2} \frac{d^{3}}{d x^{3}} f^{2}\left(x^{*}\right) \quad \text { and } b_{n}=\frac{d^{n}}{d x^{n}} f^{2}\left(x^{*}\right)
\end{gathered}
$$

due to the formula of Faa di Bueno [2, p. 148].
Now, we prove by contradiction that n is odd. Suppose that n is even. When $b_{n}>0$ (resp. $b_{n}<0$), x^{*} is monotonously semistable from below (resp. from above) for f^{2} by proposition 2 ; this is impossible because if a sequence $\left(x_{0}, f^{2}\left(x_{0}\right)=\right.$ $\left.x_{2}, f^{2}\left(x_{2}\right)=x_{4}, \ldots\right)$ converges to x^{*}, then, by continuity of $f,\left(f\left(x_{0}\right)=x_{1}, f\left(x_{2}\right)=\right.$ $\left.f^{2}\left(x_{1}\right)=x_{3}, f\left(x_{4}\right)=f^{2}\left(x_{3}\right)=x_{5}, \ldots\right)$ is also converging to $f\left(x^{*}\right)=x^{*}$.

Therefore, propositions 2 and 3 give the conclusions.
Remark. When the schwarzian derivative $D_{s} f\left(x^{*}\right)$ is equal to 0 for a negatively neutral fixed point x^{*} for f, it is convenient to successively compute the reals $b_{5}, b_{7}, b_{9}, \ldots$ until obtaining a non-zero number.

Elementary calculations give, for such a point x^{*} :

$$
b_{5}=-2 \frac{d^{5}}{d x^{5}} f\left(x^{*}\right)-15 \frac{d^{4}}{d x^{4}} f\left(x^{*}\right) \frac{d^{2}}{d x^{2}} f\left(x^{*}\right)+30\left[\frac{d^{2}}{d x^{2}} f\left(x^{*}\right)\right]^{4}
$$

Examples 2 Here are some elementary and varied examples of functions for which $x^{*}=0$ is a negatively neutral fixed point.

- $f(x)=-\sin x$ and $g(x)=-\operatorname{arctg} x: 0$ is alternatively monotonously stable for f and for g, since $D_{s} f(0)=-1$ and $D_{s} g(0)=-2$.
- $f(x)=-\arcsin x: 0$ is unstable for f and monotonously unstable for f^{2} because $D_{s} f(0)=1$.
- $f(x)=-x+\alpha x^{2}-\beta x^{3}$, with $\alpha \in \mathbb{R} \backslash\{0\}$ and $\beta \in \mathbb{R}$:
$D_{s} f(0)=6\left(\beta-\alpha^{2}\right), \quad b_{4}=24 \alpha\left(\alpha^{2}-\beta\right)$ and $b_{5}=480 \alpha^{4}$. Therefore, if $\beta<\alpha^{2}$, then 0 is alternatively monotonously stable for f; if $\beta \geq \alpha^{2}$, then 0 is unstable for f and monotonously unstable for f^{2}.
- $f(x)=-x+\alpha x^{p}$, where p is an integer greater than 3 and α is an arbitrary real number which is different from $0: D_{s} f(0)=0$.
If p is odd, then $n=p$ and $b_{n}=-2 \alpha p$! : thus, 0 is alternatively monotonously stable for f when $\alpha>0 ; 0$ is unstable for f and monotonously unstable for f^{2} when $\alpha<0$.
If p is even, then $n=2 p-1$ and $b_{n}=-\alpha^{2} p(2 p-1)$!: 0 is alternatively monotonously stable for f.

References

[1] J. Bair and G. Haesbroeck, La dérivée schwarzienne, Mathématique et Pédagogie, n ${ }^{\circ}$ 108, (1996), pp. 29-38.
[2] L. Comtet, Analyse combinatoire I, (Presses Universitaires de France, 1970).
[3] R.L. Devaney, An Introduction to Chaotic Dynamical Systems, (Addison-Wesley Publ. Comp, 2d Ed., 1989).
[4] R.L. Devaney, A First Course in Chaotic Dynamical Systems, (Addison-Wesley Publ. Comp., 1992).
[5] R.A. Holmgren, A First Course in Discrete Dynamical Systems, (SpringerVerlag, 1991).
[6] J.T. Sandefur, Discrete Dynamical Systems, (Clarendon Press Oxford, 1990).
[7] A.N. Sharkowsky, Y.L. Mainstrenko and E.Y. Romanenko, Difference equations and their application, (Kluwer Academic Publishers, 1993).

```
Jacques BAIR and Gentiane HAESBROECK
Université de Liège
Faculté d'Economie, de Gestion
et de Sciences Sociales
Boulevard du Rectorat }7\mathrm{ (Bât. 31)
4000 LIEGE
e-mail:j.bair@ulg.ac.be
e-mail:g.haesbroeck@ulg.ac.be
```


[^0]: Received by the editors October 1996.
 Communicated by J. Mawhin.
 1991 Mathematics Subject Classification : 26A18, 26A06, 26A48.
 Key words and phrases : neutral fixed point, monotonous stability.

