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Abstract
We analyse the entropy of Hermite polynomials and orthogonal polyno-

mials for the Freud weights w(x) = exp(−|x|m) on R and show how these
entropies are related to information entropy of the one-dimensional harmonic
oscillator. The physical interest in such entropies comes from a stronger ver-
sion of the Heisenberg uncertainty principle, due to Bialynicki-Birula and
Mycielski, which is expressed as a lower bound for the sum of the information
entropies of a quantum-mechanical system in the position space and in the
momentum space.

1 The information entropies of the harmonic oscillator

The Schrödinger equation in D dimensions is given by(
−1

2
∇2 + V

)
ψ = Eψ,

where the potential V and the wave function ψ are functions of x = (x1, . . . , xD) and
E is the energy. The wave function ψ is normalized in such a way that ρ(x) = |ψ(x)|2
is a probability density in position space. If ψ̂(p) is the Fourier transform of the
wave function ψ, then by the Plancherel formula γ(p) = |ψ̂(p)|2 is also a probability
density, but now in the momentum space. The information entropy for the quantum-
mechanical system with potential V is then given by

Sρ = −
∫
RD
ρ(x) log ρ(x) dx
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in the position space, and

Sγ = −
∫
RD
γ(p) log γ(p) dp

in the momentum space. These two entropies have allowed Bialynicki-Birula and
Mycielski [4] to find a new and stronger version of the Heisenberg uncertainty prin-
ciple. For a quantum mechanical system in D dimensions this new uncertainty
relation is

(1.1) Sρ + Sγ ≥ D(1 + log π),

which expresses in a quantitative way that it is impossible to get precise information
in both position and momentum space. High values of Sρ are associated with low
values of Sγ , and vice versa.

In this paper we restrict ourselves to the one-dimensional harmonic oscillator, in
which case D = 1 and the potential has the form

V (x) =
λ2

2
x2.

The possible energy levels are

En = n +
1

2
, n = 0, 1, 2, . . . ,

and the wave functions are Hermite functions e−λx
2/2Hn(x

√
λ), where Hn (n =

0, 1, 2, . . .) are Hermite polynomials [20]. This gives

ρn(x) =

√
λ/π

2nn!
e−λx

2

H2
n(x
√
λ),

and for Hermite functions, the Fourier transform is again a Hermite function, hence

γn(p) =
1√

λπ2nn!
e−p

2/λH2
n(p/
√
λ).

The entropy in the position space then becomes

(1.2) Sρn = log
√
π/λ + log 2nn! +

1√
π2nn!

∫ ∞
−∞

y2H2
n(y)e

−y2

dy

− 1√
π2nn!

∫ ∞
−∞

H2
n(y) logH2

n(y) e
−y2

dy,

and the entropy in the momentum space is

(1.3) Sγn = log
√
πλ+ log 2nn! +

1√
π2nn!

∫ ∞
−∞

y2H2
n(y)e

−y2

dy

− 1√
π2nn!

∫ ∞
−∞

H2
n(y) logH2

n(y) e
−y2

dy.
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The problem thus consists of computing integrals of the form∫ ∞
−∞

y2H2
n(y)e

−y2

dy

and entropy integrals of the Hermite polynomials∫ ∞
−∞

H2
n(y)e

−y2

logH2
n(y) dy.

We will consider a more general situation involving integrals for orthogonal poly-
nomials pn(x) (n = 0, 1, 2 . . .) for the weight function w(x) = e−|x|

m
on R. This

weight function is known as a Freud weight and the case m = 2 corresponds to
Hermite polynomials. Freud studied these weights and the corresponding orthogo-
nal polynomials in detail for m = 2, 4, 6 and formulated conjectures regarding the
asymptotic behaviour of the largest zero of the orthogonal polynomials and the be-
haviour of the coefficients in the three-term recurrence relation for the orthonormal
polynomials. If xn,n is the largest zero of pn, then Freud conjectured that

(1.4) lim
n→∞

n−1/mxn,n =
(

2

λm

)1/m

,

where

λm =
2√
π

Γ(m+1
2

)

Γ(m
2
)

=
m

π

∫ 1

−1

|x|m√
1− x2

dx.

If the three-term recurrence relation for the orthonormal polynomials is

xpn(x) = an+1pn+1(x) + anpn−1(x),

and the orthonormal polynomials are given by pn(x) = γnx
n + · · · , with γn > 0,

then an = γn−1/γn and Freud conjectured that

(1.5) lim
n→∞

n−1/man = lim
n→∞

n−1/mγn−1

γn
=

1

2

(
2

λm

)1/m

.

The conjecture regarding the largest zero behaviour was proved by Rakhmanov [18],
the conjecture regarding the behaviour of the recurrence coefficients was proved by
Alphonse Magnus [12] for even integer values of m, and by Lubinsky, Mhaskar, and
Saff [10] for arbitrary m > 0. For more on these Freud conjectures we refer to Nevai
[16] or to [21, §4.2]. For orthogonal polynomials with respect to Freud weights the
quantities to be computed are

(1.6)
∫ ∞
−∞
|x|mp2

n(x)e
−|x|m dx

and

(1.7)
∫ ∞
−∞

p2
n(x)e

−|x|m log p2
n(x) dx.

Usually we will take the orthonormal polynomials in these integrals. For small n
these integrals give information related to the ground state and a few excited states,



88 W. Van Assche

the asymptotic behaviour as n→∞ gives information about the so called Rydberg
states.

The analytic computation of the integral in (1.6) is easy. By symmetry we have∫ ∞
−∞
|x|mp2

n(x)e
−|x|m dx = 2

∫ ∞
0

xmp2
n(x)e

−xm dx,

and integration by parts gives∫ ∞
−∞
|x|mp2

n(x)e
−|x|m dx = − 2

m

∫ ∞
0

xp2
n(x)(e

−xm)′ dx

=
2

m

∫ ∞
0

[p2
n(x) + 2xpn(x)p

′
n(x)]e

−xm dx.

By symmetry again this is∫ ∞
−∞
|x|mp2

n(x)e
−|x|m dx =

1

m

∫ ∞
−∞

[p2
n(x) + 2xpn(x)p

′
n(x)]e

−|x|m dx

Observe that we can write xp′n(x) = npn(x) + πn−1(x), where πn−1 is a polynomial
of degree at most n− 1. Then by orthonormality we finally get

(1.8)
∫ ∞
−∞
|x|mp2

n(x)e
−|x|m dx =

1 + 2n

m
.

For orthonormal Hermite polynomials pn(x) = (2nn!
√
π)−1/2Hn(x) we choose m = 2

and find ∫ ∞
−∞

y2H2
n(y)e

−y2

dy = (n+
1

2
)2nn!

√
π.

Observe that for the ground state n = 0 this already gives (since H0 = 1)

Sρ0 = log
√
π/λ+

1

2
, Sγ0 = log

√
πλ+

1

2
,

so that Sρ0 + Sγ0 = 1 + log π, and thus the Bialynicki-Birula-Mycielski inequality
(1.1) is sharp in this case.

The evaluation of the entropy integral (1.7) is much more difficult and requires
more knowledge of Hermite polynomials and orthogonal polynomials with Freud
weights.

2 A heuristic approach using logarithmic potentials

If we denote the zeros of pn by x1,n < x2,n < · · · < xn,n, then pn(x) = γn
∏n
j=1(x −

xj,n). The entropy integral (1.7) then becomes

∫ ∞
−∞

p2
n(x)e

−|x|m log p2
n(x) dx = log γ2

n + 2
n∑
j=1

∫ ∞
−∞

p2
n(x)e

−|x|m log |x− xj,n| dx.

If we denote by

U(z;µ) =
∫

log
1

|z − x| dµ(x)
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the (logarithmic) potential of a probability measure µ, and by µn the measure with
density p2

n(x)e
−|x|m, then µn is a probability measure and

U(z;µn) = −
∫ ∞
−∞

p2
n(x)e

−|x|m log |z − x| dx,

so that the entropy integral is also given by

∫ ∞
−∞

p2
n(x)e

−|x|m log p2
n(x) dx = log γ2

n − 2
n∑
j=1

U(xj,n;µn).

This connection with the potential of µn indicates that we can get an idea of the
asymptotic behaviour of the entropy integral in (1.7) if we know the asymptotic
behaviour of γn, the weak convergence of the measures µn and the asymptotic dis-
tribution of the zeros xj,n (1 ≤ j ≤ n). This information is available in the literature.
For the asymptotic behaviour of γn we have the result that

lim
n→∞

n1/mγ1/n
n = 2(

eλm
2

)1/m,

which follows from (and is weaker than) the Freud conjecture (1.5). For the be-
haviour of the measures µn we have

lim
n→∞

∫ ∞
−∞

f

(
(
λm
2n

)1/mx

)
p2
n(x)e

−|x|m dx =
1

π

∫ 1

−1

f(x)√
1− x2

dx =
∫ 1

−1
f(x) dµe(x),

where µe is the equilibrium measure of the interval [−1, 1] and f is an arbitrary
continuous function of at most polynomial growth at ±∞ [6]. Finally, for the dis-
tribution of the zeros we have

lim
n→∞

1

n

n∑
j=1

f

(
(
λm
2n

)1/mxj,n

)
=
∫ 1

−1
f(x)vm(x) dx,

where f is a continuous function of at most polynomial growth at ±∞ and vm is
the Ullman weight

vm(x) =
m

π

∫ 1

|x|

tm−1

√
t2 − x2

dt, x ∈ [−1, 1].

This result was proved by Rakhmanov [18] and also follows from the Freud conjecture
(1.5) (see [21, p. 123]). Observe that for m = 2 the Ullman density is

v2(x) =
2

π

√
1− x2, x ∈ [−1, 1],

which is also known as the semi-circle density and which is well known to describe
the asymptotic distribution of eigenvalues of some random matrices (Wigner [23]).
For m→∞ the Ullman density tends to the density of the measure µe

v∞(x) =
1

π

1√
1− x2

, x ∈ [−1, 1].
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Observe that

U(z;µn) = −
∫ ∞
−∞

log |z/cn − x/cn| p2
n(x)e

−|x|m dx − log cn = U(z/cn; µ̂n)− log cn,

where µ̂n is the rescaled measure with µ̂n(A) = µn(cnA). Then the entropy integral
becomes

1

n

∫ ∞
−∞

p2
n(x) log p2

n(x) e
−|x|m dx

= 2

log γ1/n
n − 1

n

n∑
j=1

U

(
(
λm
2n

)1/mxj,n; µ̂n

)
− log(

λm
2n

)1/m

 .
As n→∞ the right hand side is of the form

2

(
log 2 + log(

eλm
2

)1/m −
∫ 1

−1
U(x;µe)vm(x) dx− log(

λm
2

)1/m

)
,

and since the potential of the equilibrium measure µe has the constant value log 2
on [−1, 1], this quantity reduces to 2/m. Hence, one expects to have

lim
n→∞

1

n

∫ ∞
−∞

p2
n(x) log p2

n(x) e
−|x|m dx =

2

m
.

This is, however, a heuristic reasoning: the limit

lim
n→∞

1

n

n∑
j=1

U

(
(
λm
2n

)1/mxj,n; µ̂n

)
=
∫ 1

−1
U(x;µe)vm(x) dx

does not follow immediately from the results given earlier. In fact the weak conver-
gence of the measure µ̂n and the asymptotic distribution of the zeros only gives

lim inf
n→∞

1

n

n∑
j=1

U

(
(
λm
2n

)1/mxj,n; µ̂n

)
≥
∫ 1

−1
U(x;µe)vm(x) dx

(see [17, Thm. 2.1 on p. 168]), hence more work is needed to get the required
result. Furthermore, this only shows that the entropy integral (1.7) behaves like
2n/m+ o(n), and we would like know the term o(n) in more detail.

3 Entropy of Hermite polynomials

Let us consider the entropy integral for orthonormal Hermite polynomials∫ ∞
−∞

p2
n(y) log p2

n(y) e
−y2

dy,

where pn(x) = (2nn!
√
π)−1/2Hn(x). It is more convenient to consider

En =
∫ ∞
−∞

p2
n(y)e

−y2

log[p2
n(y)e

−y2

] dy,
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since we already know exactly the integral∫ ∞
−∞

p2
n(y)e

−y2

log e−y
2

dy

which is given in (1.8). It is known that the weighted polynomial e−x
2/2Hn(x)

attains its extremum on the finite interval [−
√

2n+ 1,
√

2n + 1] (see [20, Sonin’s
theorem in §7.31 combined with §7.6]). Moreover the successive relative maxima of
e−x

2/2|Hn(x)| form an increasing sequence for x ≥ 0 [20, Thm. 7.6.3 on p. 177], hence
the maximum of e−x

2
H2
n(x) will be attained near the turning point xn =

√
2n + 1.

We can use the asymptotic formula near this turning point [20, p. 201]

e−x
2/2Hn(x) =

31/32n/2+1/4
√
n!

π3/4n1/12
[A(t) +O(n−2/3)],

where x = xn − 2−1/23−1/3n−1/6t and A is the Airy function, which is defined as
the only bounded solution (up to a constant factor) of the differential equation
y′′ + xy/3 = 0, to find that

max
−∞<x<∞

e−x
2

p2
n(x) = max

−xn≤x≤xn
e−x

2

p2
n(x) = O(n−1/6).

Therefore, we split up the integration as

En =
∫ xn

−xn
p2
n(y)e

−y2

log[p2
n(y)e

−y2

] dy +
∫
|x|>xn

p2
n(y)e

−y2

log[p2
n(y)e

−y2

] dy

:=E1,n + E2,n.

Here E1,n will be the dominating term and E2,n will be small compared to E1,n. For
E1,n we can use the Plancherel-Rotach asymptotics [20, Thm. 8.22.9]

e−x
2/2Hn(x) =

√
2nn!√√

πn/2 sin θ

[
sin

(
2n+ 1

4
[sin2θ − 2θ] +

3π

4

)
+O(1/n)

]
,

which holds for x =
√

2n + 1 cos θ and ε ≤ θ ≤ π−ε, with ε > 0. For the orthonormal
polynomials this is

e−x
2

p2
n(x) =

2

π
√

2n sin θ

[
sin2

(
2n+ 1

4
[sin 2θ − 2θ] +

3π

4

)
+O(1/n)

]
,

for x =
√

2n + 1 cos θ and ε ≤ θ ≤ π − ε. With this we have

E1,n =
2

π

∫ π

0
sin2

(
(n+

1

2
)
sin 2θ − 2θ

2
+

3π

4

)

× log

 2

π
√

2n

sin2
(
(n+ 1

2
)[sin 2θ − 2θ]/2 + 3π

4

)
sin θ

 dθ [1 +O(1/n)].

The integral consists of three terms

E1 =
2

π

∫ π

0
sin2

(
(n+

1

2
)
sin 2θ − 2θ

2
+

3π

4

)
dθ

(
log

2

π
√

2n

)
,
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E2 =
2

π

∫ π

0
sin2

(
(n +

1

2
)
sin 2θ − 2θ

2
+

3π

4

)

× log sin2

(
(n+

1

2
)
sin 2θ − 2θ

2
+

3π

4

)
dθ,

and

E3 = − 2

π

∫ π

0
sin2

(
(n+

1

2
)
sin 2θ − 2θ

2
+

3π

4

)
log sin θ dθ.

For the integral in E1 we have

1

π

∫ π

0
sin2

(
(n+

1

2
)
sin 2θ − 2θ

2
+

3π

4

)
dθ =

1

π

∫ π

0
sin2 φdφ +O(1/n),

so that

E1 =

(
log

2

π
√

2n

)
(1 +O(1/n)).

For E2 and E3 we can use a lemma from [2, Lemma 2.1] to evaluate these integrals
asymptotically:

Lemma. Let g be a continuous real function which is periodic with period π,
f ∈ L1[0, π] and γ a measurable function, almost everywhere finite on [0, π]. Then

lim
n→∞

1

π

∫ π

0
g(nθ + γ(θ))f(θ) dθ =

1

π

∫ π

0
g(θ) dθ

1

π

∫ π

0
f(θ) dθ.

Observe that −[sin 2θ − 2θ]/2 is an increasing function, mapping [0, π] to [0, π].
By a change of variables, we can then use this lemma to find

lim
n→∞

E2 =
2

π

∫ π

0
sin2 φ log sin2 φ dφ = 1− 2 log 2,

and

lim
n→∞

E3 = − 2

π

∫ π

0
sin2 φdφ

1

π

∫ π

0
log sin θ dθ = log 2.

Together this gives

E1,n = − log π − log
√

2n+ 1 + o(1).

The remaining term E2,n can be shown to be of smaller order, so that finally∫ ∞
−∞

p2
n(y)e

−y2

log[p2
n(y)e

−y2

] dy = − log π − log
√

2n+ 1 + o(1).

Together with (1.8) this gives

∫ ∞
−∞

p2
n(y)e

−y2

log p2
n(y) dy = n +

3

2
− log π − log

√
2n + o(1).
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4 Entropy of orthogonal polynomials with Freud weights

An asymptotic formula of Plancherel-Rotach type for orthonormal polynomials with
Freud weight e−|x|

m
was conjectured by Nevai in [16], and this conjecture was proved

by Rakhmanov [19]. He showed that

p2
n(x)e

−|x|m =
2

π

cos2 Φn(x)√
x2
n − x2

[1 + o(1)] ,

for |x| ≤ (1− ε)xn, where xn = (2n/λm)1/m and

Φn(x) =
2n+ 1

2

∫ xn

x

(
1− xm

tm

)
dt√

x2
n − t2

− π

4
, x ∈ [0, xn].

With the scaling x = xny this gives

Φn(xny) =
2n + 1

2

∫ 1

y

(
1− ym

tm

)
dt√

1− t2
− π

4

:=
2n + 1

2
φ(y)− π

4
,

so that

p2
n(xny)e

−2n|y|m/λm =
2

πxn

cos2[(n+ 1
2
)φ(y)− π/4]√

1− y2
[1 + o(1)] , |y| ≤ 1− ε.

Observe that for m = 2 we have

φ(cos θ) =
1

2
(sin 2θ − 2θ),

so that this is compatible with the Plancherel-Rotach formula for Hermite polyno-
mials, taking into account that now we use xn =

√
2n rather than xn =

√
2n + 1.

A similar analysis as in the previous section is now possible, but we will not give
the details, which can be found in [22]. It suffices to say that with this analysis one
again has

lim
n→∞

1

n

∫ ∞
−∞

p2
n(x)e

−|x|m log p2
n(x) dx =

2

m
,

as we obtained by heuristic reasoning in Section 2. A more accurate formula can be
obtained in a similiar way as for the Hermite polynomials, using some of the results
obtained by Rakhmanov [18], [19] and Lubinsky and Saff [9], [11], [15]. This has
been done in [2], where it was proved that

−
∫ ∞
−∞

p2
n(x)e

−|x|m log p2
n(x) dx

=
2n + 1

m
− log 2n

m
+

1

m
log

√
πΓ(m/2)

2Γ((m+ 1)/2)
+ 1− log π + o(1).

Observe that this is compatible with the case m = 2 for Hermite polynomials.
Of independent interest for the asymptotic behaviour of orthogonal polynomials

with Freud weights, would be to find an asymptotic formula in the neighborhood of
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the turning point xn = (2n/λm)1/m, similar to the Airy type asymptotics for Hermite
polynomials. Such an asymptotic formula is not known yet, but the existence of such
a formula is made plausible by an asymptotic formula for the largest zeros of certain
Freud polynomials. Máté, Nevai and Totik [13] [14] proved that for positive even
integers m the largest zeros of the orthogonal polynomials pn(x) for the weight
function e−|x|

m
satisfy

n−1/mxn−k+1,n =
(

2

λm

)1/m
(

1− ik
(6n2m2)1/3

)
+ o(n−2/3),

where i1 < i2 < · · · are the zeros of the Airy function.

5 Conclusion

The described analysis (more details are given in [2]) gives for the orthonormal
Hermite polynomials pn(x) = (2nn!

√
π)−1/2Hn(x) as n→∞

−
∫ ∞
−∞

p2
n(x) log p2

n(x) e
−x2

dx = −n+ log
√

2n− 3

2
+ log π + o(1).

In terms of the information entropies (1.2) and (1.3) this gives

Sρn + Sγn = logn− 2 + log 2 + 2 log π + o(1).

This shows that the sum Sρn + Sγn grows like logn as n→∞.
The result described in this paper is a joint effort of J. S. Dehesa and R. J. Yáñez

from Granada (Spain), A. I. Aptekarev and V. S. Buyarov from Moscow (Russia),
and the the present author. Together we also examined the harmonic oscillator in
D > 1 dimensions and the hydrogen atom in D dimensions. For these quantum
mechanical systems the information entropy in position space and in momentum
space can be expressed in terms of the entropy of Laguerre polynomials, and the
angular part also requires the entropy of Gegenbauer polynomials. For these classical
orthogonal polynomials we were able to obtain similar results as those described in
the present paper. See [1]–[3], [5], [22], and [24] for these extensions.
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