
On the Geometries of Superior Order

Radu Miron

The geometries of higher order, defined in the present paper as the study of
the category of jet bundles (Jk

o M, π,M), were suggested by the old problem of
the prolongations to Jk

o M of Riemannian structures g apriori given on the base
manifold M. In the case k = 1 there are very good examples: the geometry of
Finsler spaces and the geometry of Lagrange spaces, [3].

For k > 1 there are some geometrical results concerning the analytical Me-
chanics of superior order and there are some important studies on the total
space of jet bundles. Recently, together with Gh.Atanasiu, we have considered
the notion of k-osculator bundle (OsckM,π, M), which can be identified to the
bundle (Jk

0 M, π, M) and, for it, we have studied:
a. The Geometry of the total space OsckM : vertical distributions, Liouville

vector fields, k-tangent structure, sprays, nonlinear connections, N-linear con-
nections, curvatures, torsions, structure equations etc.

b. Taking this oportunity we solved the problem of the prolongation to
OsckM of the Riemannian structure g apriori given on M . The same problem
for Finsler and Lagrange structures can be formulated.

c. We have defined the notion of higher order Lagrange spaces and studied
for them the most important geometrical object fields.

d. Recently, to the Tsagas’ workshop, in December 1995, at the ”Aristoteles”
University of Thessaloniki, the author presented the theory of subspaces in the
higher Lagrange spaces.

In the present paper I shall describe, in synthesis, the construction of these
geometries.

1. Let M be a real n-dimensional C∞-manifold and (OsckM, π, M) its k-
osculator bundle. We briefly describe the manifold E = OsckM . Two curves in
M , σ, ρ : I → M , with x0 ∈ M as common point, x0 = σ(0) = ρ(0), 0 ∈ I, have
at x0 a ”contact of order k”, (k ∈ N?), if for any function f ∈ F(U), x0 ∈ U ,
(U being an open set in M), satisfy

dα

dtα
(f ◦ σ)(t) |t=0=

dα

dtα
(f ◦ ρ)(t) |t=0, (α = 1, ..., k).

The relation ”contact of order k” is a relation of equivalence. We denote by [ρ]x0

a class of equivalence and named it a ”k-osculator space” in the point x0 to the
manifold M .
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Let Osck
x0

be the set of k-osculator spaces in x0 to M and let us consider the
set

OsckM =
⋃

x0∈M

Osck
x0

and the mapping
π : ([ρ]x0) ∈ OsckM −→ x0 ∈ M.

On the set OsckM there is a natural differentiable structure induced by that
of M such that π becomes a differentiable submersion.

If (U,ϕ) is a local chart in M , x0 ∈ U and ρ : I → M is a curve represented
by

xi = xi(t), t ∈ I, xi
0 = xi(0), (0 ∈ I).

The class [ρ]x0 has a representative element given by

x∗i(t) = xi(0) + t
dxi

dt
(0) + ... + tk

1
k!

dkxi

dtk
(0), t ∈ (−ε, ε) ⊂ I.

The previous polynomial functions are defined by the coefficients:

xi
0 = xi(0), y

(1)i
0 =

dxi

dt
(0), ..., y(k)i

0 =
1
k!

dkxi

dtk
(0).

Therefore, the pair (π−1(U), φ), with

φ : π−1(U) ⊂ E −→ ϕ(U)×R‖\

φ([ρ]x0) = (xi
0, y

(1)i
0 , ..., y

(k)i
0 )

is a local chart on E, (i, j, h, ... = 1, ..., n)
So that, a differentiable atlas AM on M determines a differentiable atlas AE

on E. The triple (OsckM, π, M) is a differentiable bundle.
The previous considerations show that the transformations of the local co-

ordinates (xi, y(1)i, ..., y(k)i) −→ (x̃i, ỹ(1)i, ..., ỹ(k)i) have the form

(1.1)





x̃i = x̃i(x1, ..., xn), det ‖ ∂x̃i

∂xj ‖6= 0
ỹ(1)i = ∂x̃i

∂xj y(1)j

.......... ......................................................

kỹ(k)i = ∂ỹ(k−1)i

∂xj y(1)j + ... + k ∂ỹ(k−1)i

∂y(k−1)j y(k)j ,

where we have

∂ỹ(α)i

∂xj
=

∂ỹ(α+1)i

∂y(1)j
= ... =

∂ỹ(k)i

∂ỹ(k−α)i
, (α = 0, 1, ..., k − 1, y(0) = x) etc.

2. Let us consider the natural basis
(

∂

∂xi
,

∂

∂y(1)i
, ...,

∂

∂y(k)i

)
,
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of the tangent space TuE, u = (x, y(1), ..., y(k)) = (xi, y(1)i, ..., y(k)i).
On E there exist k-vertical distributions V1, ..., Vk. The distribution V1 is

locally generated by the vector fields
(

∂
∂y(1)i , ...,

∂
∂y(k)i

)
; V2 is a subdistribution

of V1, locally generated by
(

∂
∂y(2)i , ...,

∂
∂y(k)i

)
etc ..., Vk is a subdistribution of

Vk−1 locally generated by the vector fields
(

∂
∂(k)i

)
.

All these distributions are integrable.
Also, on E there exist k-independent Liouville vector fields given by

1

Γ= y(1)i ∂

∂y(k)i
,

2

Γ= y(1)i ∂

∂y(k−1)i
+ 2y(2)i ∂

∂y(k)i
, ...,

(2.1)
k

Γ= y(1)i ∂

∂y(1)i
+ ... + ky(k)i ∂

∂y(k)i
.

On the manifold E there exists a k-tangent structure, J : X (E) → X (E),
such that

(2.2) J

(
∂

∂xi

)
=

∂

∂y(1)i
, J

(
∂

∂y(1)i

)
=

∂

∂y(2)i
, ...,

J

(
∂

∂y(k−1)i

)
=

∂

∂y(k)i
, J

(
∂

∂y(k)i

)
= 0.

Of course, we have J(
k

Γ) =
k−1

Γ , ..., J(
2

Γ) =
1

Γ, J(
1

Γ) = 0 and J is an integrable
structure.

A k-spray on E is a vector field S ∈ X (E) with the property

J(S) =
k

Γ .

Then, S can be uniquely represented in the form:

(2.3) S = y(1)i ∂

∂xi
+ ... + ky(k)i ∂

∂y(k−1)i
− (k + 1)Gi ∂

∂y(k)i
,

Gi(x, y(1), ..., y(k)) being the coefficients of the spray S.
A nonlinear connection on E = OsckM is a supplementary regular distribu-

tion N : u ∈ E → Nu ⊂ TuE, to the vertical distribution V : u ∈ E → Vu ⊂
TuE :

TuE = Nu ⊕ Vu, ∀u ∈ E.

Setting N0 = N , N1 = J(N0), ..., Nk−1 = J(Nk−2) we get from the previous
direct decomposition:

(2.4) TuE = N0(u)⊕N1(u)⊕ ...⊕Nk−1(u)⊕ Vu, ∀u ∈ E.

Consequently, to study the geometry of total space of the k-osculator bundle
E = OsckM we shall use a fixed nonlinear connection N and we shall express the
geometrical object fields on E by means of the direct decomposition (2.4). Also,
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N can be determined by some important geometric objects on E, like k-sprays
or higher order Lagrangians.

A local basis adapted to (2.4) is given by

(2.5)
{

δ

δxi
,

δ

δy(1)i
, ...,

δ

δy(k)i

}

where

(2.5)′
δ

δxi
=

∂

∂xi
−N

(1)

j
i

∂

∂y(1)j
− ...−N

(k)

j
i

∂

∂y(k)j

and
δ

δy(1)i
= J

(
δ

δxi

)
, ...,

δ

δy(k)i
= J

(
δ

δy(k−1)i

)
,

δ

δy(k)i
=

∂

∂y(k)i
.

The set of functions
{

N
(1)

j
i, ..., N

(k)

j
i

}
are called the coefficients of the nonlinear

connection N.
The dual adapted basis is as follows

(2.6)
{

δxi, δy(1)i, ..., δy(k)i
}

,

where

(2.6)′ δxi = dxi, δy(1)i = dy(1)i + M
(1)

i
jdxj , ..., δy(k)i =

= dy(k)i + M
(1)

i
jdy(k−1)i + ... + M

(k)

i
jdxj .

The set of functions
{

M
(1)

i
j , ..., M

(k)

i
j

}
are the dual coefficients of the nonlinear

connection N.

The relationships between the direct coefficients
(

N
(1)

i
j , ..., N

(k)

i
j

)
and the dual

coefficients of the nonlinear connection N are the following:

(2.7)





M
(1)

i
j = N

(1)

i
j ,

M
(2)

i
j = N

(2)

i
j −N

(1)

i
mM

(1)

m
j

......... ...................................................

M
(k)

i
j = N

(k)

i
j − N

(k−1)

i
mM

(1)

m
j − ...−N

(1)

i
m M

(k−1)

m
j .

Here we get an important results:
Theorem 2.1. (Miron-Atanasiu). A k-spray S with the coefficients Gi deter-
mines a nonlinear connection N, whose dual coefficients are
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M
(1)

i
j =

∂Gi

∂y(k)j
, M

(2)

i
j =

1
2

(
SM

(1)

i
j + M

(1)

i
mM

(1)

m
j

)
, ...,

(2.8) M
(k)

i
j =

1
k

(
S M

(k−1)

i
j + M

(1)

i
m M

(k−1)

m
j

)
.

3. As a first application we solve the problem of prolongation of order k of a
Riemann space Rn = (M, g).

The problem is to determine a Riemannian metric G on E = OsckM de-
pending only on the given metric g on the base manifold M .

We shall give here, without demonstrations, the solution of this old and
difficult problem.

Let gij(x) be the local components of the given Riemannian metric g of the
space Rn and γi

jh(x) be its Christoffel symbols.
Theorem 3.1. There exist the nonlinear connections N on E determined only
by the given Riemannian structure g. One of them has the dual coefficients

(3.1)





M
(1)

i
j = γi

jm(x)y(1)
m,

M
(2)

i
j = 1

2

(
ΓM

(1)

i
j + M

(1)

i
mM

(1)

m
j

)
,

......... .............................................

M
(k)

i
j = 1

k

(
Γ M

(k−1)

i
j + M

(1)

i
m M

(k−1)

m
j

)
,

where Γ is the operator

(3.2) Γ = y(1)i ∂

∂xi
+ ... + ky(k)i ∂

∂y(k−1)
.

This nonlinear connection N , depending only on g, will be called canonical.
Let us consider the dual basis (2.6) adapted to the canonical nonlinear con-

nection N and the tensor field G on E:

(3.3) G = gij(x)dxi ⊗ dxj + gij(x)δy(1)i ⊗ δy(1)j + ... + gij(x)δy(k)i ⊗ δy(k)j .

We can formulate the following important result:
Theorem 3.2. The pair ProlkRn = (OsckM, G) is a Riemann space of dimen-
sion (k + 1)n, whose metric G depends only on the given Riemannian metric g
of the space Rn = (M, g).

With this Theorem the problem of prolongation to OsckM of the Riemannian
space Rn is solved.

An important remark: If we represent the Liouville vector fields
1

Γ, ...,
k

Γ in the
adapted basis (2.5) of the canonical nonlinear connection N , we get, for instance

k

Γ= z(1)i δ

δy(1)i
+ ... + kz(k)i δ

δy(k)i
.

In this case z(1)i, ..., z(k)i are d-vector fields. They have the expressions
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z(1)i = y(1)i, 2z(2)i = 2y(2)i + M
(1)

i
my(1)m,

(3.4) kz(k)i = ky(k)i + (k − 1)M
(1)

i
my(k−1)m + ... + M

(k−1)

i
my(1)m.

Therefore, the following functions

(3.5) L(x, y(1), ..., y(k)) = gij(x)z(k)iz(k)j

is an important Lagrangian of order k, which depends on the Riemannian struc-
ture g, only.

Therefore, the geometry of the space ProlkRk can be identified to the ge-
ometry of the higher order Lagrange spaces L(k)n = (M, L), in which the fun-
damental function is given by (3.5).

Of course, we can formulate the same problem for the prolongation of order
k of the Finsler spaces Fn or for the Lagrange space Ln.

4. A second application can be made in the problem of the geometrization
of the variational calculus concerning the functionals of the form:

(4.1) I(c) =
∫ 1

0

L

(
x,

dx

dt
, ...,

1
k!

dkx

dtk

)
dt,

where L : OsckM → R is a differentiable Lagrangian of order k.
Remarking that

(4.2)
0

Ei (L)
def
=

∂L

∂xi
− d

dt

∂L

∂y(1)i
+ ... + (−1)k 1

k!
dk

dtk
∂L

∂y(k)i

is a d-covector field along the curve c : [0, 1] → M we prove that the Euler-
Lagrange equations derived from (4.1) are given by

(4.2)′
0

Ei (L) = 0, y(1)i =
dxi

dt
, ..., y(k)i =

1
k!

dkxi

dtk
.

Now, we can prove:
Lemma 4.1. For any differentiable Lagrangian L(x, y(1), ..., y(k)) and for any
function φ(t), along a smooth curve c we have

(4.3)
0

Ei (φL) = φ
0

Ei (L) +
dφ

dt

1

Ei (L) + ... +
dkφ

dtk
k

Ei (L),

where
0

Ei (L) is the d-covector field (4.2) and
1

Ei (L), ...,
k

Ei (L) are d-covector
fields which depend on the Lagrangian L only.

The d-covectors
1

Ei (L), ...,
k

Ei (L) are called the Craig-Synge covectors.
An important result is expressed by:

Theorem 4.1. If the Lagrangian L(x, y(1), ..., y(k)) is regular, then the equations
k−1

E i (L) = 0 determines a k-spray whose coefficients depend on the Lagrangian
L only.
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Now let us consider the Lie derivation operators with respect to the Liouville
vector fields

(4.4) I1 = £Γ1 , ..., I k = £ k

Γ
.

We call energy of order k of the Lagrangian L(x, y(1), ..., y(k)) with respect
to a smooth curve c the scalar field

(4.5) Ek
c (L) = Ik(L)− 1

2!
dI(k−1)(L)

dt
+ ... + (−1)(k−1) 1

k!
d(k−1)I1(L)

dt(k−1)
− L.

M. de Leon, D.Krupka et alt, [2], prove the following theorems:
Theorem 4.2. For any differentiable Lagrangian L(x, y(1), ..., y(k)) along a
smooth curve c : [0, 1] → (xi(t)) ∈ M we have

(4.6)
dEk

c (L)
dt

= − 0

Ei (L)
dxi

dt
.

Theorem 4.3. For any differentiable Lagrangian L(x, y(1), ..., y(k)) the energy of
order k, Ek

c (L), is conserved along of every solution curve c of the Euler-Lagrange

equation
0

Ei (L) = 0.
There are the energies of order k−1, ..., 1. They are used in a Nöther theorem

concerning the higher order Lagrangians, [2].

5. In the category of the geometries of superior order there are these called
by us the geometries of the higher order Lagrange spaces, [2].

Let us consider the manifold Ẽ = ˜OsckM formed by all points (x, y(1), ..., y(k)) ∈
E for which y(1) 6= 0.

Thus, we can define a Lagrange space of order k, as a pair L(k)n = (M,L),
where M is a real n-dimensional C∞-manifold and L(x, y(1), ..., y(k)) is a regular
Lagrangian on Ẽ for which the d-tensor field

(5.1) gij =
1
2

∂2L

∂y(k)i∂y(k)j

has a constant signature.
L is called the fundamental function of the space L(k)n and gij its fundamen-

tal tensor field.
The condition of regularity is expressed by

(5.1)′ rank ‖ gij ‖= n onẼ.

An example of Lagrange space of order k is given by the space L(k)n endowed
with the fundamental function L from (3.5)

Its fundamental tensor field is just the metric tensor gij(x) of the Riemannian
space Rn = (M, g).

More general, the Lagrangian

L(x, y(1), ..., y(k)) = gij(x)z(k)iz(k)j+
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(5.2) +ai(x, y(1), ..., y(k−1))z(k)i + b(x, y(1), ..., y(k−1)),

where the first term is from (3.5) and ai(x, y(1), ..., y(k−1)) is a covector field with
the property ∂ai

∂y(k)j = 0 and b(x, y(1), ..., y(k−1)) is a scalar field with the same
property ∂b

∂y(k)i = 0, determines a space L(k)n.
The Lagrangian (5.2) is a direct extenssion to OsckM of that from the clas-

sical electrodynamics, [1,2,3].
The geometry of a space L(k)n = (M, L) is based on the canonical k-spray

S, determined by the fundamental function L. It is given by theorem 4.1.
Namely, we have:

Theorem 5.1. In a Lagrange space of order k, L(k)n = (M, L) there exist the
k-sprays which depend only by the fundamental function L. One of them has the
coefficients:

(5.3) (k + 1)Gi =
1
2
gij

{
Γ

(
∂L

∂y(k)j

)
− ∂L

∂y(k−1)j

}

where Γ is the operator (3.2).
The k-spray S with the coefficients in (5.3) is called canonical
Using this k-spray, by means of the theorem 2.1, we determine the canonical

nonlinear connection N of the space L(k)n.
Therefore, we can prove:

Theorem 5.2. 1). There exist N-linear connections D on OsckM , which depend
by the fundamental function L only and have the properties

gij|m = 0, gij

(α)

| m= 0, (α = 1, ..., k).

2). There exists only one metrical N-connection D in L(k)n for which h− and

vα - torsions vanish. Its coefficients CΓ(N) =
(

Li
jk, C

(α)

i
jk

)
are given by

(5.4) Lm
ij =

1
2
gms

(
δgis

δxj
+

δgjs

δxl
− δgij

δxs

)
,

C
(α)

m
ij =

1
2
gms

(
δgis

δy(α)j
+

δgjs

δy(α)i
− δgij

δy(α)s

)
, (α = 1, ..., k).

So, CΓ(N), with the coefficients (5.4) is the canonical metrical N-linear con-
nection of the Lagrange space of order k, L(k)n.

The main geometrical properties of the space L(k)n can be derived from
the canonical k-spray, canonical nonlinear connection N and from the canonical
metrical N -linear connection, CΓ(N).

Finally, we remark that a good geometrical model for the higher order La-
grange space L(k)n is a (k − 1)n-almost contact Riemannian space H(k−1)n =
(OsckM,G, F, α, a, η(α)a) intrinsicly associated to L(k)n, [2]. This space is used
in the study of the problem of generalization of physical fields which depend on
the higher order velocities.
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