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Abstract

We study axiom-preserving isotopic liftings of the symplectic geometry which
permit the representation of nonhamiltonian vector fields in the inertial frame
of the observer without the need of Darboux’s reduction to a Hamiltonian form
in frames which are no longer inertial and not realizable in experiments.
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1 Introduction

Despite momentous advances, the symplectic geometry still remains with fundamental
open problems particularly motivated by physical needs.

This is due to the fact that the symplectic geometry (see, e.g., ref.s[1,7] for tech-
nical presentations and ref.[10], Sect.2.3, for a review and literature) was historically
build on systems entirely representable with a Hamiltonian [10]; these systems were
originally called exterior systems [10, 11], are today called (locally) Hamiltonian vector
fields, and represent a finite number of isolated point-like particles moving in vacuum
under action-at-a-distance, potential interactions.

Physical systems of current interests are instead given by the more general interior
systems [10,11], which are given by a finite set of extended particles moving within
physical media. Unlike the former, the latter systems require 2n first-order differential
equations which are arbitrarily nonlinear in the velocities, integro-differential and
variationally nonselfadjoint.

As an example, missiles in atmosphere have nowadays reached such speeds to
experience resistive forces proportional up to the tenth power of the speed; their equa-
tions of motion are characterized by ordinary differential equations representing the
trajectory of the center-of-mass x(t) plus corrective terms due to the shape of the satel-
lite usually given by surface integrals, thus being in that sense ′′integro-differential′′;
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and, finally, they are ′′variationally nonselfadjoint′′ in the sense of violating the inte-
grability conditions for the existence of a potential, as well as, more generally, of a
Hamiltonian [10].

It is evident that interior systems are outside the representational capabilities
of the symplectic geometry on a number of mathematical and physical grounds. In
particular, they are nonhamiltonian, both locally or globally.

Mathematically, the topology of the symplectic geometry can only represent local-
differential systems, thus requiring a suitable integro-differential broadening.

Even after approximating nonlocal-integral terms via power series expansions in
the valocities, thus regaining the local-differential character, the symplectic geometry
remains afflicted by the following problematic aspects of physical character related to
Darboux’s theorem [3].

As it is well known (see, e.g., [1,7,10]) Darboux’s Theorem essentially states that,
when a (local-differential and well behaved) systems 2n first-order ordinary differential
equations in the vector field form X(b) is not Hamiltonian in the 2n-differential local
coordinates b = {x, p} of the cotangent bundle (phase space), there always exist a
new coordinate system b′(b) in which the system is Hamiltonian.

With the understanding that the mathematical correctness of Darboux’s Theorem
is beyond and possible doubt, and the theorem is now well established in the history
of geometry, the physical problematic aspects are due to the fact that Darboux’s
transformations.

(1.1) b = {x, p} → b′(b) = {x′(x, p), p′(x, p)},

are necessarily (noncanonical and nonlinear). This implies the inapplicability to a Dar-
boux’s frame b′ of contemporary relativities, such as Galilei’s relativity and Einstein’s
special relativity, because the latter only apply to inertial frames, while Darboux’s
frames b′, being the nonlinear images of the inertial ones, are highly noninertial.

Even ignoring the abandonment of conventional relativities, Darboux’s frames are
not realizable in actual experiments. As an example, if the coordinates x are those
of the experimenter, their Darboux’s images are expressions, say, of the type x′ =
α exp(βx × p), where α and β are suitable constants. Nonlinear expressions of the
latter type are manifestly not realizable in an actual experiment, thus restricting
Darboux’s theorem to the sole mathematical significance.

This establishes the physical need of achieving a generalization/covering of the
symplectic geometry which is ′′directly universal′′ for interior systems, that is, capa-
ble of representing all well behaved systems of the class considered (′′universality′′),
directly in the inertial frame of the observer (′′direct universality′′), without any use
of the transformation theory.

Note that all studies of direct universality are necessarily local as well as in fixed
local coordinates, features which are tacitly assumed hereon.

A first form of direct universality of the conventional symplectic geometry was
apparently reached for the first time in monograph [11]. Suppose that a given vector
field Ξ(b), is non Hamiltonian in b, i.e., there exist no function H(b) such that Ξ(b) ω =
dH(b), where ω is the exact, nondegenerate, canonical, symplectic two-form [1,7,10].
Then, it was proved in [11] that, under certain continuity and regularity conditions,
there always exists a general, exact, nondegenerate symplectic two-form Ω(b) such
that the following identity holds Ξ(b) Ω(b) = dH(b). In the latter case the system is
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derivable from a first-order Pfaffian action, the underlying equations are Birkhoff’s
equations [2] and Ξ(b) is called a (locally) Bikhoffian vector field [11].

Note that the coordinates of the experimenters are preserved in the above direct
universality, and the representation of nonhamiltonian systems is achieved via the use
of the most general possible exact symplectic form Ω(b), rather than the canonical
one ω.

Subsequent studies indicated that the above direct universality is still afflicted by
problematic aspects, again, of physical nature. In fact, the quantization of interior
systems via their Birkoffian representation (or, equivalently, the lifting of the sym-
plectic quantization via the general, rather than the canonical, two-form), exhibits
insurmountable difficulties in the physical interpretation of the emerging operator
formalism (see [16], App.2.B).

At any rate, being based on the conventional symplectic geometry, the Birkoffian
mechanics is strictly local-differential and, thus generally inapplicable to the nonlocal-
integral interior systems.

The latter problems forced this author to seek yet another generalization of the
symplectic geometry, this time, achieving direct universality for interior systems via
the sole use of the canonical two-form.

Even though not necessarily unique, effective methods for the study of this problem
are given by the so-called isotopies, which were first introduced in ref. [9] of 1978 in
the form here need, and which are today defined as maps of linear, local-differential
and Hamiltonian systems into their most general possible nonlinear, nonlocal-integral
and nonhamiltonian form, yet capable of restoring linearity, locality and canonicity
in certain generalized spaces over generalized fields.

The isotopies of the symplectic geometry, or isosymplectic geometry for short, were
submitted, apparently for the first time, by the author in memoir [13] of 1988 and
subsequently studied in various works (see monograph [15] for a recent account).

This first formulation of the isosymplectic geometry was based on the isotopic
degress of freedom of the product, based on the lifting of the 2n-dimensional trivial
unit of the symplectic geometry, I = diag.(1, 1, ..., 1), into a nondegenerate, real-
valued and symmetric matrix Î(1) = T̂−1

(1) whose elements have a well behaved but

otherwise arbitrary functional dependence. The lifting of the unit I → Î then implies
the corresponding lifting of one-forms

θ = p× dx → θ̂ = p×̂dx = piT̂
i
(1)jdxj , i, j = 1, 2, ..., n,

with corresponding liftings of the canonical two-form

ω = dθ =
1
2
ωµνdbµ ∧ dbν → ω̂ = dθ̂ =

1
2
ωµαT̂α

(2)νdbα ∧ dbν , µ, ν, 1, 2, ..., 2n,

where T̂(2) is a new matrix derivable from T̂(1) via certain simple algebra [15].
The above isotopies permitted the first alternative formulation of Darboux’s theo-

rem for the representation of nonhamiltonian systems in the reference of their exper-
imental observation and via the use of the canonical symplectic structure. However,
the formalism was still afflicted by insufficiencies due to the change of the unit in the
transition from one- to two-forms [15].

In this note we study a resolution of the latter, seemingly final difficulty as per-
mitted by the isotopies of the differential calculus or isodifferential calculus for short,
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submitted by the author at the International Workshop on Differential Geometry and
Lie Algebras, held at the Aristotle University in Thessaloniki in December 1994, and
then published in ref.s [19].

More specifically, this note is devoted to the reformulation of the isosymplectic
geometry via the isodifferential calculus for the representation of interior systems in
which the coordinates of the observer b = (x, p), the canonical symplectic structure
and the generalized unit are kept unchanged. As we shall see, the emerging broadening
of the conventional formulation of the symplectic geometry results to have a novel
integro-differential topology, thus being naturally able to represent interior systems.

To render this note self-sufficient we shall briefly review in Sect.2 the main as-
pects of the isotopic methods, and then pass in Sect.3 to the new formulation of the
isosymplectic geometry.

Our entire presentation is, not only local, but in the fixed local coordinates x of
the observer without use of the transformation theory. To avoid misrepresentations,
the study of global, coordinate-free formulations is recommended only after achieving
the desired direct universality in the inertial frame of the observer.

As we shall see, the isotopic formulation of the symplectic geometry is such that
the abstract formulations of the conventional and symplectic geometries coincide. We
merely have two different realizations of the same abstract axioms: the conventional
symplectic version [1,7,10], and the broader isotopic one.

It should be stressed that this note has been written by a theoretical physicist
and, in any case, the studies are in their first infancy, thus requiring comprehensive
mathematical reformulations by interested mathematicians.

2 Elements of isotopic methods

The fundamental isotopies from which all others can be uniquely derived are those
of the unit [9], i.e., the liftings of the n-dimensional unit I = diag.(1, 1, 1, ...) of the
Euclidean geometry (in the same dimension) into real-valued and symmetric n × n
matrices Î = (Îi

j) = Ît whose elements Îi
j have an unrestricted functional depen-

dence in coordinates x, velocities v = dx
dt , accelerations a = dv

dt , local density µ, local
temperature τ , and any needed characteristics of the interior problem,

(2.1) I → Î = Î(x, v, a, µ, τ, ...) = Ît.

The above liftings were classified by Kadeisvili [5] into: Class I (generalized units
that are nondegenerate, Hermitian and positive-definite, characterizing the isotopies
properly speaking); Class II (the same as Class I although Î is negative-definite,
characterizing the so-called isodualities; Class III (the union of Class I and II); Class
IV (Class III plus the zeros of the generalized unit, Î = 0); and Class V (Class IV plus
unrestricted generalized units, e.g., realized via discontinuous functions, distributions,
lattices, etc).

All isotopic structures also admit the same classification which will be omitted for
brevity. In this note we shall study isotopies of Classes I and II, at times treated in
a unified way via those of Class III whenever no ambiguity arises. The isotopies of
Classes IV and V are vastly unexplored at this writing.
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The isotopies of the unit evidently imply corresponding compatible isotopies with
the totality of conventional mathematical methods underlying the symplectic geome-
try. Regrettably, we cannot provide here a review of the isotopic methods and refer
the reader to the recent treatment [19].

We merely recall that a field F (n,+,×) of real, complex of quaternionic numbers
with element n, sum + and multiplication ×, is lifted under isotopies in the isofield
F̂ (n̂, +, ×̂) of the isonumbers n̂ = n × Î with conventional sum + and isoproduct
×̂ = ×T̂×. Under the condition Î = T̂−1, Î is then the correct left and right unit of
F̂ . In this case F̂ verifies all conventional axioms of a field (even though Î is outside
the original F ) and the listing F → F̂ is isotopic.

Similarly, a metric space S(x, g, R) with local chart x and metric g(x) over
thereals R(n, +,×) must be lifted, for evident reasons of compatibility, into the
isospace Ŝ(x̂, ĝ, R̂) of isocoordinates x̂ = x (in their contravariant form) and isometric
ĝ = T̂ (x, ẋ, ẍ, ...)× g(x) over the isofield R̂.

The ordinary differential calculus must also be lifted under isotopies into the isod-
ifferential calculus which is characterized by the isodifferentials

(2.2) d̂x̂k = Îk
i (x, ...)dxi, d̂x̂k = T̂ i

k(x, ...)dxi.

and isoderivatives

(2.3) f̂ ′(q̂k) =
∂̂f̂(x̂)

∂̂x̂k
|x̂k=q̂k= T̂ i

k

∂f(x)
∂xi

|x̂k=q̂= Limd̂x̂k→0̂k

f̂(q̂k + d̂x̂k)− f̂(q̂k)

d̂xk

with properties

d̂f̂(x̂)|contrav. =
∂̂f̂

∂̂x̂k
d̂x̂k = T̂ i

k

∂f

∂xi
Îk
j dxj =

∂f

∂xk
dxk =

∂f

∂xi
T̂ j

i dxj ,

d̂f(x)|covar. =
∂̂f̂

∂̂x̂k

d̂x̂k = Îk
i

∂f

∂xi
T̂ j

kdxj =
∂f

∂xk
dxk =

∂f

∂xj
Îi
jdxi,

∂̂2̂f̂(x̂)

∂̂xk2̂
= T̂ i

kT̂ j
k

∂2f(x)
∂xi∂xj

,
∂̂2̂f̂(x̂)

∂̂xk
2̂

= Îk
i Îk

j

∂2f(x)
∂xi∂xj

(no sums on k)

(2.4)
∂̂x̂i

∂̂x̂j
= δi

j ,
∂̂x̂i

∂̂x̂j

= δj
i ,

∂̂x̂i

∂̂x̂j
= T̂ j

i ,
∂̂x̂i

∂̂x̂j

= Îi
j .

The notion of isocontinuity on an isospace was first studied by Kadeisvili [5] and
resulted to be easily reducible to that of conventional continuity for Class III isotopies
because the isomodulus |̂f̂(x̂)̂| of a function f̂(x̂) on the isospace Ê(x̂, δ̂, R) over the
isofield R̂(n̂, +, ×̂) is given by the conventional modulus
| f̂(x̂) | multiplied by the a well behaved isounit Î.

The notion topology of n-dimensional isomanifold was first studied by Tsagas and
Sourlas [20] and it is today called the Tsagas-Sourlas isotopology.

The isotopies imply simple, yet nontrivial generalizations of all conventional math-
ematical structures, with no exception known to this author. This implies also a com-
patible lifting of functional analysis whose study was initiated by Kadeisvili in ref.[5]
under the name of functional isoanalysis (see [15] for brevity).
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3 Isosymplectic geometry

. We are now equipped to study the isotopies of the symplectic geometry, or isosym-
plectic geometry [13] for short, as characterized by the isodifferential calculus of the
preceding section.

Unless otherwise stated, our formulation is local and in the fixed coordinates of the
observer. All quantities are assumed to satisfy the needed continuity conditions, e.g.,
of being of class Ĉ∞ and all neighborhoods of a point are assumed to be star-shaped
or have an equivalent topology. For the conventional symplectic geometry we shall use
the local formulation of ref.[7]. We shall first study the isosymplectic geometry of Class
I representing matter and then study its antiautomorphic image under isoduality for
the characterized of antimatter.

Let M̂(Ê) = M̂(Ê(δ̂, R̂)) be an n-dimensional Tsagas-Sourlas isomanifold [20]
on the isoeuclidean space Ê(x̂, δ̂, R̂) over the isoreals R̂ = R̂(n̂,+, ×̂) with n × n-
dimensional isounit Î = (Îi

j), i, j = 1, 2, ..., n, of Kadeisvili Class I and local chart
x̂ = {x̂k}. A tangent isovector X̂(m̂) at a point m̂ ∈ M̂(Ê) is an isofunction defined
in the neighborhood N̂(m̂) of m̂ with values in R̂ satisfying the isolinearity conditions

X̂m(α̂×̂f̂ + β̂×̂g) = α̂×̂X̂m̂(f̂) + β̂×̂X̂m̂(ĝ),

(3.1) X̂m̂(f̂×̂ĝ) = f̂(m̂)×̂X̂m̂(ĝ) + ĝ(m̂)×̂X̂m(f̂),

for all f̂ , ĝ ∈ M̂(Ê) and α̂, β̂ ∈ R̂, where ×̂ is the isomultiplication in R̂ and the use
of the symbolˆmeans that the quantities are defined on isospaces.

The collection of all tangent isovectors at m̂ is called the tangent isospace and
denoted TM̂(Ê). The tangent isobundle is the 2n-dimensional union of all possible
tangent isospaces when equipped with an isotopic structure (see below).

The cotangent isobundle T ?M̂(Ê) is the 2n-dimensional dual of the tangent isobun-
dle with local coordinates b̂ = {b̂µ} = {x̂k, p̂k}, µ = 1, 2, ..., 2n. Since p̂ is indepen-
dent of x̂, the isounits of the respective differentials are generally different, i.e., we can
have d̂x = Îdx and d̂p = Ŵdp, Î 6= Ŵ , in which case the total isounit of T ?M̂(Ê)
is the 2n-dimensional Cartesian product Î2 = Î × Ŵ .

For reasons which will be clarified later on, in this note we assume the following
particular form of the isounit of the cotangent isobundle

(3.2) Î2 = (Î2
µ

ν̂) =
(

În×n 0n×n

0n×n T̂n×n

)
= T̂−1

2 = (T̂2µ
ν)−1 Î = T̂−1,

where Î is the isounit of the coordinates d̂x = Îdx, and T̂ is the isounit of the
momenta, d̂p = T̂ p = Î−1dp. In different terms, we select the particular case in which
Ŵ = Î−1.

An isobasis of T ?M̂(Ê) is, up to equivalence, the (ordered) set of isoderivatives
∂̂ = { ∂̂

∂̂b̂µ
} = {T̂2µ

ν ∂
∂bν }. A generic elements X̂ ∈ T ?M̂(Ê), called vector isofield, can

then be written X̂ = X̂µ(m̂) ∂̂
∂̂b̂µ

= X̂µT̂2µ
ν ∂

∂bµ .

The fundamental one-isoform on T ?M̂(Ê) is given in the local chart b̂ by

(3.3) θ̂ = R̂◦µ(b̂)d̂b̂µ = R̂◦µ(b)Îµ
2 νdb̂ν = p̂kd̂x̂k = p̂k Îk

i dx̂i, R̂◦ = {p̂, 0̂}.
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The above expression, which can be written θ̂ = pd̂x = piÎ
i
jdxj to emphasize the

differential origin of the isotopies, should be compared with the originally proposed
one-isoform θ̂ = p×̂dx = pkT̂ k

i dxi [13] obtained via the isotopic degrees of freedom of
the product. The preference of the isodifferential calculus over the isomultiplication
is then evident for a geometric unity of the conventional and isotopic formulations.

The space T ?M̂(Ê), when equipped with the above one-form, is an isobundle
denoted T ?

1 M̂(Ê). The isoexact, nowhere degenerate, isocanonical isosymplectic two-
isoform is given by

ω̂ = d̂θ̂ =
1
2
d̂(R̂◦µd̂b̂µ) =

1
2
ωµν d̂b̂µ ∧ d̂b̂ν =

(3.4) = d̂x̂k ∧ d̂p̂k = Îk
i dx̂i ∧ T̂ j

kdp̂j ≡ dx̂k ∧ dp̂k.

The isomanifold T ?M̂(Ê), when equipped with the above two-isoform, is called
isosymplectic isomanifold in isocanonical realization and denoted T ?

2 M̂(Ê). The
isosymplectic geometry is the geometry of the isosymplectic isomanifolds.

The last identity in (3.4) show that the two-isoform ω̂ formally coincides with
the conventional symplectic canonical two-form ω, and this illustrates the selection of
isounit (3.2). The abstract identity of the symplectic and isosymplectic geometries is
then evident. However, one should remember that: the underlying metric is isotopic;
p̂k = T̂k

ipi, where pi is the variable of the conventional canonical realization of the
symplectic geometry; and identity ω̂ ≡ ω no longer holds for the more general isounit
Î2 = Î × Ŵ , Î 6= Ŵ−1.

Note that the isosymplectic geometry has the Tsagas-Sourlas Integro - differential
topology and, as such, it can characterize interior systems when all nonlocal- integral
terms are embedded in the isounit.

A vector isofield X̂(m̂) defined on the neighborhood N̂(m̂) of a point m̂ ∈ T ?
2 M̂(Ê)

with local coordinates b̂ is called (locally) isohamiltonian when there exists an iso-
function Ĥ on N̂(m̂) over R̂ such that

X̂ ω̂ = d̂Ĥ, i.e.,

(3.5) ωµνX̂ν(m̂)d̂b̂µ = d̂Ĥ(m̂) =
∂̂Ĥ

∂̂b̂µ
d̂b̂µ.

We are now equipped to present the main result of this note, the isotopic alterna-
tive to Darboux’s Theorem for the representation of nonlinear, nonlocal-integral and
nonhamiltonian interior systems within the fixed coordinates of their experimental
observation, which can be formulated as follows.
Theorem 1.Direct Universality of the Isosymplectic Geometry for Inte-
rior Systems:Under sufficient continuity and regularity conditions, all possible vec-
tor fields which are not (locally) Hamiltonian in the given coordinates are always
isohamiltonian in the same coordinates, that is, there exists a neighborhood N(m̂) of
a point m̂ of their variable b̂ = (x̂, p̂) under which Eq.s (3.5) hold.
Proof. Let X̂µ(b̂) be a vector field which is nonhamiltonian in the chart b̂, and consider
the decomposition
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(3.6) X̂(b) = Γ̂µ
α(b)X̂α

0 (b),

where the 2n× 2n matrix (Γ̂µ
α) is nowhere degenerate and X̂α

0 is the maximal, local-
differential and Hamiltonian sub-vector field, i.e., there exists a function H(b) and a
neighborhood N(m) of a point m of b = (x, p) such that

(3.7) ωαβX̂β
0 (m)dbα = dH(m) = (

∂H

∂bα
)d̂b̂α,

and all nonlocal-integral and nonhamiltonian terms are embedded in Γ̂. Then, there
always exists an isotopy such that

ωµνX̂ν(m̂)d̂b̂µ = ωµαΓ̂α
β(m̂)X̂0

β(m̂)d̂b̂µ =

(3.8) = d̂Ĥ(m̂) =
∂̂Ĥ

∂̂b̂µ
d̂b̂µ = T̂µ

β ∂H

∂bβ
d̂bµ.

In fact, the script X̂µ is only a unified formulation in 2n dimension of two separate
each in n-dimension. Therefore, the quantify Γ̂ has the structure

(3.9) Γ̂ =
(

Ân×n 0n×n

0n×n B̂n×n

)
.

The identification

(3.10) Î =
(

B̂−1
n×n 0n×n

0n×n Â−1
n×n

)
,

then implies

(3.11) Îµ
αωµν Γ̂ν

ρ ≡ ωαρ,

and identities (3.8) always exist. q.e.d.
Corollary 1.A: For all Newtonian systems we have Â = B̂−1, i.e., the 2n-
dimensional isounit of the cotangent isobundle has the structure (3.2).
Proof. All Newtonian systems in the 2n-dimensional, first-order, vector field form
can be written in disjoint n-component

(3.12)
(

dx/dt
dp/dt

)
=

(
p/m

FSA + FNSA

)
= X̂(b) = (X̂µ(b)),

where SA(NSA) stands for variational selfadjointness (nonselfadjointness), i.e., the
integrability conditions for the existence (lack of existence) of a Hamiltonian. Thus
FSA = −∂H/∂x, with H = p2/2m + V (x), while there is no such Hamiltonian for
FNSA.

Then, isohamiltonian representation (3.8) explicitly reads
(

0 −1
1 0

)(
p/m

FSA + FNSA

)
=

(
0 −1
1 0

)(
A 0
0 B

)(
p/m
FSA

)
=
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(3.13) =
( −B FSA

A p/m

)
=

(
∂̂H/∂̂x

∂Ĥ/∂̂p

)
=

(
B ∂H/∂x
A ∂H/∂p

)
.

From which we have the general solution.

(3.14) T̂ = B = 1 + FNSA/FSA = A−1 = Î−1,

where the last identity follows from the fact that, since ∂H/∂p = p/m, A remains
arbitrary and can be therefore assumed to be A = B−1. q.e.d.

It is now important to verify that the above isotopies do indeed preserve all remain-
ing axiomatic properties of the symplectic geometry. For this it is sufficient to prove
the preservation under isotopies of the Poincaré Lemma and of Darboux’s Theorem
[1,7,10].

To prove the preservation of the Poincaré Lemma one can easily construct isoforms
Φ̂p of arbitrary order p. The proof of the following property is a simple isotopy of the
conventional proof (see, e.g. [7]) via the use of the isodifferential calculus.
Lemma 1 (Isopoincaré Lemma): Under the assumed smoothness and regularity
conditions, isoexact p-isoforms are isoclosed, i.e.,

(3.15) d̂Φ̂p = d̂(d̂φ̂p−1) ≡ 0.

The nontriviality of the above result is illustrated by the following
Corollary 1.A: Isoexact p-isoform are not necessarily closed, i.e., their projection in
the original tangent bundle does not necessarily verify the Poincare Lemma.

By comparison, we should mention that the original formulation of the isopoincar’e
lemma [13,15], that via the isotopic degress of the product did verify the Poincaré
lemma in both the conventional and isotopic bundle.

To prove the preservation of the Darboux’s Theorem, consider the general one-
isoform in the local chart b̂

(3.16) Θ̂(b̂) = R̂µ(b̂)d̂b̂µ = R̂µ(b)Îµ
2 ν(t, b, db/dt, ...)dbν ,

where

(3.17) R̂ = {P̂ (x̂, p̂), Q̂(x̂, p̂)}.

The general isosymplectic isoexact two-isoform in the same chart is then given by

Ω̂(b̂) =
1
2
d̂(R̂µ(b̂)d̂b̂µ) =

1
2
Ω̂µν(t̂, b̂, d̂b̂/d̂t̂, ...)d̂b̂µ ∧ d̂b̂ν ,

(3.18) Ω̂µν =
∂̂R̂ν

∂̂b̂µ
− ∂̂R̂µ

∂̂b̂ν
= T̂2µ

α ∂R̂µ

∂b̂α
− T̂α

2ν

∂R̂µ

∂b̂α
.

One can see that, while at the canonical level the exact two-form ω and its isotopic
extension ω̂ formally coincide, this is no longer the case for exact, but arbitrary two
forms Ω and Ω̂ in the same local chart.

Note that the isoform Ω̂ is isoexact, Ω̂ = d̂Θ, and therefore isoclosed, d̂Ω̂ ≡ 0
(Lemma 1), in isospace over the isofield R̂. However, if the same isoform Ω̂ is projected
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in ordinary space and called Ω, it is no longer necessarily exact, Ω 6= dθ and, therefore,
it is not generally closed, dΩ 6= 0.

Recall that the Poincaré Lemma dΩ = d(dΘ) = 0 for the case of the two-form Ω
provide the necessary and sufficient conditions for the tensor Ωµν = [(Ω−1

α ]µν to be
Lie [11]. It is easy to prove that this basic property persist under isotopy, although
it characterizes a generalization of Lie’s theory proposed in [9] and today known as
the Lie-Santilli Theory (see, e.q., [6,22] and references quoted therein). We therefore
have the following
Theorem 2. (General Lie-Santilli Brackets): Let

Ω(b̂) = d̂Θ̂ = d̂(R̂µd̂b̂µ) = Ω̂µν d̂b̂µ ∧ d̂b̂ν

be a general exact two-isoform. Then the brackets among sufficiently smooth and reg-
ular isofunctions Â(b̂) and B̂(b̂) on T ?

2 M(Ê)

[Â, B̂]isot. =
∂̂Â

∂̂b̂µ
Ω̂µν ∂̂B̂

∂̂b̂ν
,

(3.19) Ωµν =




(
∂̂R̂α

∂̂b̂β
− ∂̂R̂β

∂̂b̂α

)−1



µν

,

satisfy the Lie-Santilli axioms [9,6,22] in isospace (but not necessarily the same axioms
when projected in ordinary spaces).

The following additional property completes the axiom-preserving character of the
isotopies of the symplectic geometry.
Theorem 3. (Isodarboux Theorem): A 2n-dimensional cotangent isobundle T ?

2 M̂(Ê)
equipped with a nowhere degenerate, exact, Ĉ∞ two-isoform Ω̂ in the local chart b̂ is an
isosymplectic manifold if and only if there exist coordinate transformations b̂ → b̂′(b̂)
under which Ω̂ reduces to the isocanonical two-isoform ω̂, i.e.,

(3.20)
∂̂b̂µ

∂̂b̂′α
Ω̂µν(b̂(b̂′))

∂̂b̂ν

∂̂b̂′β
= ωαβ .

Proof. Suppose that the transformation b̂ → b̂′(b) occurs via the following interme-
diate transform b̂ → b̂′′(b̂) → b̂′(b′′(b)). Then there always exists a transform b̂ → b̂′′

such that

(3.21) (∂̂b̂ρ/∂̂b̂′′σ)(b̂′′) = Îρ
σ(b̂(b̂′′)),

under which the general isosymplectic tensor Ω̂µν reduces to the Birkhoffian form
when recompute in the b̂ chart

(3.22)
∂̂b̂µ

∂̂b̂′′α
Ω̂µν(b̂(b̂′′))

∂̂b̂ν

∂̂b̂′′β
|b̂′′=

(
∂R̂ν

∂b̂α
− ∂R̂µ

∂b̂ν

)
|b̂′′= Ωαβ |b̂′′ .

The existence of a second transform b̂′′ → b̂′ reducing Ωαβ to ωαβ is then known
to exist (see, e.g., [11]). This proves the necessity of the isodarboux transform. The
sufficiency is proved as in the conventional case [7]. q.e.d.
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The nonlinear, nonlocal and noncanonical character of the isotopies is evident from
the preceding analysis. It is important to point out that linearity is reconstructed in
isospace and called isolinearity, as shown in Eq.(3.1). Locality is equally reconstructed
in isospace, and called isolocality, because one- and two-isoforms are based on the local
isodifferentials d̂x̂ and d̂p̂. Similarly, canonicity is reconstructed in isospace, and called
isocanonicity, because the canonical form pkdxk is preserved by the isotopic form
p̂kd̂x̂k in isospace. The nonlinear, nonlocal and noncanonical character of isotopic
theories solely emerge when they are projected in the original spaces.

The isotopies of the remaining aspects of the symplectic geometry (Lie derivative,
global treatment, symplectic group, etc.) can be constructed along the preceding lines
and are omitted for brevity.

On closing we should mention that the preceding formulation of the isosymplectic
geometry is solely restricted for the representation of matter. The characterization of
antimatter is made via the antiautomorphic isodual map Î2 → Îd

2 = −Î. This results
in the isodual isosymplectic geometry which is characterized by isodual coordinates
b̂d, isodual isodifferentials d̂db̂d, isodual one-isoforms θ̂d(b̂)d, isodual two-isoforms ω̂d,
isodual cotangent isobundle T ?M̂d(Êd), and similar isodualities whose explicit con-
struction id left to the interested reader for brevity.

It is evident that the isotopies and isodualities of the symplectic geometry imply
corresponding liftings of classical mechanics, called by the author isohamiltonian me-
chanics and additional liftings of the symplectic quantization and related quantum
mechanics called hadronic mechanics. For the latter aspects and related applications
in classical and quantum mechanics, we refer the interested reader to monography
[16].
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