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Abstract

We announce a quotient construction of new families of compact, irreducible,
inhomogeneous, Einstein 7-manifolds of positive scalar curvature with arbitrary
second Betti number. For infinitely many (a,b)∈(Z∗)k⊕(Z∗)k we obtain a compact
3-Sasakian 7-manifold S(a,b) with b2(S(a,b))=k. The manifold S(a,b) has two more
compact positive scalar curvature Einstein spaces (orbifolds) naturally associ-
ated to it: (1) the twistor space Z(a,b) which is a Q-Fano 3-fold with a complex
contact structure and (2) the self-dual Einstein orbifold O(a,b). We show that
b2(S(a,b))=b2(O(a,b))=b2(Z(a,b))−1=k. These appear to be the first examples of such
objects with arbitrarily large total Betti number.
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1 Introduction

Amongst all Riemannian geometries the class of Einstein metrics stands out as per-
haps the most natural and interesting [Bes]. Even so there are still many open ques-
tions about the relationship between the topology of a compact manifold and the
existence of Einstein metrics. One such question concerns the existence of Einstein
manifolds of positive scalar curvature on manifolds with large total Betti number. In
the case of Einstein manifolds of negative scalar curvature, such examples are plen-
tiful. The celebrated theorem of Aubin and Yau says that a Kähler manifold with
c1 negative definite always admits a Kähler-Einstein metric. For example, there are
compact complex surfaces of general type which have c1 negative and arbitrarily high
second Betti number. It is well known that Yau’s proof of the Calabi conjecture does
not apply when c1 > 0, and there appear to be no known examples of compact Ein-
stein manifolds (in any dimension) of positive scalar curvature with an arbitrarily
large total Betti number. Such examples are of interest in view of a remarkable the-
orem of Gromov [Gro] which implies that if a positive Einstein manifold admits a
metric whose sectional curvatures are bounded below by a negative constant then
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the Betti numbers must be bounded. This, combined with results described herein,
implies that given a number κ < 0 there are an infinite number of positive Einstein
manifolds that do not admit metrics with sectional curvatures bounded below by κ.

The technique that we use to construct our examples is the 3-Sasakian reduction
procedure [BGM2] starting from the standard 3-Sasakian sphere (S4n−1, g). Thus,
the positive Einstein manifolds that we describe are 3-Sasakian. Our construction is
described in the next section and several corollaries are given. A brief outline of the
proof is given in section 3 and full details are in [BGMR]. Finally, in section 4 we give
some consequencess concerning related geometries. In particular, we announce the
existence of Q-factorial Fano 3-folds with arbitrarily large second Betti number, as
well as self-dual Einstein orbifolds with arbitrarily large second Betti number. These
results are of interest in view of the following known Betti number bounds. Mori
and Mukai [MM] showed that smooth Fano 3-folds must have b2 ≤ 10, and LeBrun
[Le,LeSal] showed that the second Betti number of any quaternionic Kähler (self-dual
Einstein in dimension 4) manifold is different from zero in only one case.

2 The Construction and Results

We begin with the quaternionic vector space Hk+2 and the unit sphere S4k+7 given
in quaternionic coordinates u = (u1, ..., uk+2) ∈ Hk+2 by

S4k+7 = {u ∈ Hk+2 |
k+2∑
α=1

uαuα = 1},

where u denotes the quaternionic conjugate. Let us choose a purely imaginary direc-
tion, say i, in the unit quaternions, and consider the complete intersection of quadrics
in S4k+7 given by

N(a,b) =
{

(u1, ..., uk+2) ∈ S4k+7 | ujiuj + ajuk+1iuk+1 + bjuk+2iuk+2 = 0,

∀j = 1, ..., k
}

,

where aj , bj are nonvanishing integers for all j. Here a,b denote vectors in Zk with
components aj , bj , respectively. If for all i, j = 1, · · · , k the 2 × 2 minor determi-

nants det
(

ai bi

aj bj

)
are nonvanishing, then N(a,b) is a smooth compact manifold of

dimension k + 7. Henceforth, we shall assume this to be the case.
Consider the k-torus action on S4k+7 defined by

2.1 ϕ(τ1,....,τk)(u1, ..., uk, uk+1, uk+2) =
(
τ1u1, ..., τkuk,

k∏

j=1

τ
aj

j uk+1,

k∏

j=1

τ
bj

j uk+2

)

for τj ∈ S1. This action restricts to a locally free action on N(a,b). Furthermore, if
gcd(aj , bj) = 1 for all j = 1, · · · , k the action is free on N(a,b). Henceforth, we shall
also assume this to be the case. Thus, the quotient S(a,b) of N(a,b) by the action
2.1 is a smooth compact manifold of dimension 7.
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Now consider the canonical metric gcan on S4k+7 and restrict this metric to a
metric ĝ on N(a,b). The k-torus action given in 2.1 is an action by isometries of ĝ.
So there is a metric g(a,b) on S(a,b) such that the projection π : N(a,b)−−→S(a,b)
is a Riemannian submersion. Our main result is:
Theorem A: Let k be a positive integer, and let (a,b) ∈ (Z∗)k ⊕ (Z∗)k whose com-
ponents (ai, bi) are pairs of relatively prime integers for i = 1, · · · , k that satisfy the
condition that if for some pair i, j ai = ±aj or bi = ±bj then we must have bi 6= ±bj

or ai 6= ±aj , respectively. Then the Riemannian manifolds
(S(a,b), g(a,b)

)
admit

a 3-Sasakian structure and have second Betti number b2(S(a,b)) = k. In particular,
there exist simply connected compact Einstein 7-manifolds of positive scalar curvature
with arbitrary second Betti number.

There are several important corollaries of Theorem A. The first follows immedi-
ately from Theorem A and a Theorem 2A and 2B of Gromov [Gro].
Corollary B: There are infinitely many compact simply-connected Einstein 7-manifolds
of positive scalar curvature, namely the S(a,b) of Theorem A, that do not admit met-
rics of nonnegative sectional curvature. Furthermore, for any negative real number κ
there are infinitely many 3-Sasakian manifolds S(a,b) which do not admit metrics
whose sectional curvatures are all greater than or equal to κ.

The question whether or not there exists compact Riemannian manifolds of “non-
negative Ricci curvature” which do not admit metrics of nonnegative sectional curva-
ture was problem 5 of Yau’s famous problem section of the 1979-80 Princeton Seminar
[Y]. This question was answered affirmatively in 1989 by Sha and Yang [SY], but to the
best of the authors’ knowledge our construction gives the first examples for Einstein
manifolds of positive scalar curvature.

Our next corollary is a partial classification result. It follows immediately from
Theorem A and results of [GS].
Corollary C: In dimension seven there exist 3–Sasakian manifolds with every allow-
able rational homology type.

It is clear that our examples do not satisfy the necessary conditions that guarentee
many of the well-known finiteness results (cf. [Che]). However, one can contrast the
examples given here which do not admit metrics of positive sectional curvature with
our previous examples [BGM2,BGM3] as well as the Einstein manifolds of [Wa]. In
those examples one has positive Einstein manifolds with b2 = 1, and with infinitely
many distinct homotopy types. However, many of those examples admit metrics with
positive sectional curvature. Furthermore, the manifolds in [Wa] are diffeomorphic
to the homogeneous Aloff-Wallach manifolds of positive sectional curvature. It was
also shown in [BGM2,BGM4] that most of our previous examples are not homotopy
equivalent to any homogeneous spaces. Regarding homogeneity it is not difficult to
see that any compact homogeneous manifold must satisfy b2 ≤ 1

2dim. Thus, we have
Corollary D: If k > 3 the 3-Sasakian manifolds S(a,b) are not homotopy equivalent
to any homogeneous space.

3 Idea of proof

The proof of Theorem A uses the 3-Sasakian reduction procedure [BGM2]. The mani-
fold N(a,b) is precisely the zero set of a 3-Sasakian moment map µ : S4k+7−−→t∗k⊗R3
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corresponding to the k-torus action 2.1. So by the reduction theorem [BGM2] the quo-
tient S(a,b) = µ−1(0)/T k is a 3-Sasakian 7-manifold, and hence, is Einstein of pos-
itive scalar curvature. The 3-Sasakian manifolds described in [BGM2,BGM3,BGM4]
correspond to the case k = 1.

The crucial point is to show that b2(S(a,b)) = k. This is done by constructing
a stratification of S(a,b) related to the stratification by orbit types of its isometry
group. The maximal torus T k+2 of the group Sp(k + 2) of 3-Sasakian isometries
of S4k+2 centralizes the k-torus T k described in 2.1. Thus, the 3-Sasakian manifold
S(a,b) has a T 2 as 3-Sasakian isometries. This together with the Sp(1) isometries of
any 3-Sasakian manifold gives a five dimensional isometry group T 2×Sp(1). One can
then analyze the fixed point sets under T 2 × Sp(1) and its subgroups. This together
with known results about cohomogeneity two manifolds [Bre] are used to show that
the image of the natural quotient projection is a closed (k+2)-gon in R2. The generic
stratum consists of either T 2×S3 or T k ×SO(3) over the interior of the (k + 2)-gon.
There are two other strata, one lying over the edges of the (k + 2)-gon and the other
over the vertices. The first of these has codimension one and is the disjoint union
of k + 2 copies of the product of circles with lens spaces over an interval. The other
stratum, which is of codimension two, consists of the disjoint union of k + 2 copies
of lens spaces (not necessarily the same). One then uses a Leray spectral sequence
together with the fact that odd Betti numbers vanish below the middle dimension on
any 3-Sasakian manifold [GS] to give the desired result.

4 Relationship with Other Geometries

It is known [BGM1,BGM2] that every 3-Sasakian manifold has two distinct homothety
classes of Einstein metrics only one of which is 3-Sasakian. Furthermore, in dimension
7 both of these metrics have weak G2 holonomy [GS,FKMS]. Thus, Theorem A implies
Corollary F1: There exist 7–manifolds with arbitrary second Betti number having
metrics of weak G2 holonomy.

In [BG] it was shown that the twistor space of any 3-Sasakian manifold has the
structure of a Q-factorial Fano variety. Thus, results of [BG] and Theorem A give:
Corollary F2: There exist Q-factorial Fano 3-folds X with b2(X) = l for any positive
integer l. Furthermore, X has both a complex contact structure and a Kähler-Einstein
metric.

As mentioned in the introduction this result contrasts sharply with the smooth case
where Mori and Mukai [MM] tell us that b2 ≤ 10. There is a well-known relationship
[BGM1,BG] between 3-Sasakian geometry on the one hand and both quaternionic
Kähler geometry of positive scalar curvature and Fano contact geometry on the other
(Here l = k + 1 for the l in Corollary F and k in Theorem A). But in general
this relationship involves Riemannian metrics with orbifold singularities for both the
quaternionic Kähler and Fano geometries. It is the existence of these singularities that
allow the violation of finiteness, as well as the violation of the Betti number bound. In
the smooth case LeBrun’s b2 ≤ 1 result for quaternionic Kähler manifolds M is proved
by using a theorem of Wísniewski [Wi] on the twistor space Z of M which is a Fano
manifold with a complex contact structure. The existence of such a contact structure
implies that the index of the anti-canonical divisor be large and Wísniewski severely
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limits the possibilities. However, Wísniewski’s theorem fails in the orbifold category
since both the contact divisor and the anticanonical divisor are now Q-divisors, and
the singularity index can be arbitrarily high.

By an analysis similar to that described in section 3 one can obtain quaternionic
Kähler orbifolds O of positive scalar curvature with arbitrary second Betti number.
In dimension four, these spaces are compact, self-dual, Einstein orbifolds. Thus we
have
Theorem G: Let O(a,b) be the compact, self-dual, Einstein orbifold associated to
the 7-dimensional 3-Sasakian manifold S(a,b) given in Theorem B. Then

b2(O(a,b)) = b2(S(a,b)) = k.

Hence, there are compact, self-dual, Einstein orbifolds of positive scalar curvature with
arbitrary second Betti number.

Again we mention the constrast with LeBrun’s result in the smooth case. The
orbifolds O(a,b) were first studied in [GN] and later in [BGM1]. They give a gen-
eralization of the self-dual Einstein metrics that can be introduced on the weighted
complex projective plane [GL,BGM2]. A result analogous to Corollary B also holds
for the orbifolds O(a,b).
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