Caracterizations of the Nonlinear Connection in the Higher Order Geometry

Ioan Bucataru

Abstract

In the paper [8] a nonlinear connection on k-osculator bundle is characterised by a system of functions defined on each domain of local chart, which verify a special formula.

Starting with this result, to a nonlinear connection on the k-osculator bundle was associated a special map, called connection map [2].

The aim of this paper is to present the notion of connection map, independently of the choice of a nonlinear connection. The kernel of the connection map is a nonlinear connection. In this way we obtain a characterization for the nonlinear connection using only the k-tangent structure on the k-osculator bundle

In the last part of this paper we present the notion of horizontal lift, independently of the choice of a nonlinear connection and connection map. Using this map we obtain a characterization for a connection map and a nonlinear connection. The nonlinear connection appears as the image of the horizontal lift. The connection map is defined using the inverse map of the vertical lift.

AMS subject classification: 53C60

Key words: nonlinear connection, connection map, horizontal lift

1 Introduction

Let M be a real, smooth manifold of dimension n and (Osc^kM, π^k, M) its k-osculator bundle. Then Osc^kM is a real, smooth manifold of dimension n(k+1). We set $E = Osc^kM$.

Let (x^i) be the local coordinates in a local chart $U \subset M$. The local coordinates on $(\pi^k)^{-1}(U) \subset Osc^kM$ will be denoted by $(x^i, y^{(1)i}, \dots, y^{(k)i})$.

A change of coordinates $(x, y^{(1)}, ..., y^{(k)}) \to (\widetilde{x}, \widetilde{y}^{(1)}, ..., \widetilde{y}^{(k)})$ on E is given by:

Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 13-22 © Balkan Society of Geometers, Geometry Balkan Press

(1.1)
$$\begin{cases} \widetilde{x}^{i} = \widetilde{x}^{i}(x^{1}, x^{2}, \dots, x^{n}); \operatorname{rang} \left\| \frac{\partial \widetilde{x}^{i}}{\partial x^{j}} \right\| = n \\ \widetilde{y}^{(1)i} = \frac{\partial \widetilde{x}^{i}}{\partial x^{j}} y^{(1)j} \\ 2\widetilde{y}^{(2)i} = \frac{\partial \widetilde{y}^{(1)i}}{\partial x^{j}} y^{(1)j} + 2 \frac{\partial \widetilde{y}^{(1)i}}{\partial y^{(1)j}} y^{(2)j} \\ \dots \\ k\widetilde{y}^{(k)i} = \frac{\partial \widetilde{y}^{(k-1)i}}{\partial x^{j}} y^{(1)j} + 2 \frac{\partial \widetilde{y}^{(k-1)i}}{\partial y^{(1)j}} y^{(2)j} + \dots + k \frac{\partial \widetilde{y}^{(k-1)i}}{\partial y^{(k-1)j}} y^{(k)j}. \end{cases}$$

Under a change of coordinates (1.1) on E, for each $u \in E$, the natural basis $\left\{\frac{\partial}{\partial x^i}\Big|_u, \frac{\partial}{\partial y^{(1)i}}\Big|_u, \dots, \frac{\partial}{\partial y^{(k)i}}\Big|_u\right\}$ changes as follows

$$(1.2) \begin{cases} \frac{\partial}{\partial \widetilde{x}^{i}} |_{u} = \frac{\partial x^{j}}{\partial \widetilde{x}^{i}}(u) \frac{\partial}{\partial x^{j}} |_{u} + \frac{\partial y^{(1)j}}{\partial \widetilde{x}^{i}}(u) \frac{\partial}{\partial y^{(1)j}} |_{u} + \dots + \frac{\partial y^{(k)j}}{\partial \widetilde{x}^{i}}(u) \frac{\partial}{\partial y^{(k)j}} |_{u} \\ \frac{\partial}{\partial \widetilde{y}^{(1)i}} |_{u} = \frac{\partial y^{(1)j}}{\partial \widetilde{y}^{(1)i}}(u) \frac{\partial}{\partial y^{(1)j}} |_{u} + \dots + \frac{\partial y^{(k)j}}{\partial \widetilde{y}^{(1)i}}(u) \frac{\partial}{\partial y^{(k)j}} |_{u} \\ \dots \\ \frac{\partial}{\partial \widetilde{y}^{(k)i}} |_{u} = \frac{\partial y^{(k)j}}{\partial \widetilde{y}^{(k)i}}(u) \frac{\partial}{\partial y^{(k)j}} |_{u} . \end{cases}$$

For $\alpha \in \{1, 2, ..., k-1\}$ we denote $\pi_{\alpha}^{k} : E \to Osc^{\alpha}M$ the canonical submersion which is expressed in the local chart as follows

$$\pi_{\alpha}^{k}:(x,y^{(1)},\ldots,y^{(k)})\mapsto(x,y^{(1)},\ldots,y^{(\alpha)}).$$

As $(\pi^k)_*: (TE, \tau_E, E) \to (TM, \tau, M)$ is a π^k epimorphism of vector bundles, it results that its kernel is a vector subbundle of the bundle (TE, τ_E, E) . This will be denoted by V_1E and will be called the *vertical subbundle* of the TE. The fibres of V_1E determine an integrable distribution $V_1: u \in E \mapsto V_1(u) \subset T_uE$ which has the dimension kn, called *vertical distribution*.

In the same manner, for each submersion $\pi_{\alpha}^{k}: E \to Osc^{\alpha}M$ we obtain a vector subbundle of TE denoted by $V_{\alpha+1}E = Ker(\pi_{\alpha}^{k})_{*}$. The fibres of $V_{\alpha+1}E$ determine an integrable distribution $V_{\alpha+1}: u \in E \mapsto V_{\alpha+1}(u) \subset T_{u}E$, of dimension $(k-\alpha)n$.

In this way we obtain k-vertical distributions V_1, V_2, \ldots, V_k of dimensions $kn, (k-1)n, \ldots, n$ respectively, such that $\forall u \in E, \quad V_k(u) \subset V_{k-1}(u) \subset \cdots \subset V_1(u)$.

For each $u \in E$ we consider the linear map $J_u : T_u E \to T_u E$ defined on natural basis by (1.3)

$$J_u\left(\frac{\partial}{\partial x^i}\mid_u\right) = \frac{\partial}{\partial y^{(1)i}}\mid_u, \dots, J_u\left(\frac{\partial}{\partial y^{(k-1)i}}\mid_u\right) = \frac{\partial}{\partial y^{(k)i}}\mid_u, J_u\left(\frac{\partial}{\partial y^{(k)i}}\mid_u\right) = 0$$

and extended by linearity.

Proposition 1.1.

- 1. For each $u \in E$ the map J_u is well defined.
- 2. For $\alpha \in \{1, 2, ..., k-1\}$ we have

(1.4)
$$\begin{cases} J_u^{k-\alpha} V_{k-\alpha}(u) = V_{\alpha}(u), & \forall u \in E \\ J_u^{k+1} = 0 \end{cases}.$$

The maps J_u , $u \in E$ determine a morphism of vector bundles $J: (TE, \tau_E, E) \to (TE, \tau_E, E)$ and an $\mathcal{F}(E)$ linear map $J: \chi(E) \to \chi(E)$. The map J is called the k-tangent structure of the k-osculator bundle.

$\mathbf{2}$ The nonlinear connection associated to a connection map

We denote by $(TM^{(k)}, \tau^{(k)}, M)$ the Whitney sum of the tangent bundle (TM, τ, M) on itself of k times.

Definition 2.1. We call *connection map* on the k-osculator bundle E a π^k morphism of vector bundles

$$K = (\overset{(1)}{K}, \overset{(2)}{K}, \dots, \overset{(k)}{K}) : (TE, \tau_E, E) \to (TM^{(k)}, \tau^{(k)}, M)$$

which satisfies

(2.1)
$$\begin{cases} K \circ J^{\alpha} = K^{(k-\alpha)}, \quad \forall \alpha = \overline{1, k-1} \\ K \circ J^{k} = (\pi^{k})_{*} \end{cases}.$$

Proposition 2.1. For a connection map $K = (K, K, \dots, K)^{(k)}$ we have the following relations

(2.2)
$$\begin{cases} K = K \circ J, \quad \forall \alpha = \overline{1, k - 1} \\ (\pi^k)_* = K \circ J^\alpha \quad \forall \alpha = \overline{1, k} \end{cases}.$$

Proof.

$$\overset{(\alpha)}{K} = \overset{(k)}{K} \circ J^{k-\alpha} = \overset{(k)}{K} \circ J^{k-\alpha-1} \circ J = \overset{(\alpha+1)}{K} \circ J$$

$$(\pi^k)_* = \overset{(k)}{K} \circ J^k = \overset{(k)}{K} \circ J^{k-1} \circ J = \overset{(1)}{K} \circ J$$

Remark 2.1. The kernel of the connection map N = KerK is a vector subbundle of the bundle (TE, τ_E, E) . Its fibres determine a distribution $N: u \in E \mapsto N(u) \subset E_u$ of dimension n, called the horizontal distribution associated to the connection map K.

Next, we shall prove that a connection map determines a nonlinear connection on k-osculator bundle.

For each $u \in E$, the map $K_u : T_u E \to \underbrace{T_{\pi^k(u)} M \times \cdots \times T_{\pi^k(u)} M}_{k \ times}$ is linear. We denote by $M^i_j(u), \ldots, M^i_j(u)$ the coordinate functions, defined on every domain of

local charts, for the vectors $\overset{(1)}{K_u} \frac{\partial}{\partial x^j} |_u, \ldots, \text{ and } \overset{(k)}{K_u} \frac{\partial}{\partial x^j} |_u$ respectively, in the natural basis $\frac{\partial}{\partial x^i} |_{\pi^k(u)}$ of $T_{\pi^k(u)}M$. Therefore

$$(2.3) K_u \frac{\partial}{\partial x^j} \mid_{u} = (M_j^i(u) \frac{\partial}{\partial x^i} \mid_{\pi^k(u)}, \dots, M_j^i(u) \frac{\partial}{\partial x^i} \mid_{\pi^k(u)}).$$

Taking account of Proposition 2.1 and formula (2.3), we obtain the following formulae

$$\begin{cases}
K_{u} \frac{\partial}{\partial y^{(1)j}} \mid_{u} = \left(\frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}, M_{j}^{i}(u) \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}, \dots, M_{(k-1)j}^{i}(u) \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}\right) \\
K_{u} \frac{\partial}{\partial y^{(2)j}} \mid_{u} = \left(0, \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}, M_{j}^{i}(u) \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}, \dots, M_{(k-2)j}^{i}(u) \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}\right) \\
\dots \\
K_{u} \frac{\partial}{\partial y^{(k-1)j}} \mid_{u} = \left(0, \dots, 0, \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}, M_{j}^{i}(u) \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}\right) \\
K_{u} \frac{\partial}{\partial y^{(k)j}} \mid_{u} = \left(0, \dots, 0, \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)}\right).
\end{cases}$$

Theorem 2.1. Under a change of coordinates (1.1) on E, the set of functions $(M_{(\alpha)}^i)_{\alpha=\overline{1,k}}$ is changing according to the following rules

$$(2.5) \begin{cases} M_{j}^{m} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} = \widetilde{M_{m}^{i}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} + \frac{\partial \widetilde{y}^{(1)i}}{\partial x^{j}} \\ M_{j}^{m} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} = \widetilde{M_{m}^{i}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} + \widetilde{M_{m}^{i}} \frac{\partial \widetilde{y}^{(1)m}}{\partial x^{j}} + \frac{\partial \widetilde{y}^{(2)i}}{\partial x^{j}} \\ \dots \\ M_{j}^{m} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} = \widetilde{M_{m}^{i}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} + \widetilde{M_{m}^{i}} \frac{\partial \widetilde{y}^{(1)m}}{\partial x^{j}} + \dots + \widetilde{M_{m}^{i}} \frac{\partial \widetilde{y}^{(k-1)m}}{\partial x^{j}} + \frac{\partial \widetilde{y}^{(k)i}}{\partial x^{j}}. \end{cases}$$

Proof. For $(U, \phi = (x^i, y^{(1)i}, \dots, y^{(k)i}))$ and $(V, \psi = (\widetilde{x}^i, \widetilde{y}^{(1)i}, \dots, \widetilde{y}^{(k)i}))$ two local charts in $u \in U \cap V$, we have

$$K_{u} \frac{\partial}{\partial \widetilde{x}^{j}} \mid_{u} = \left(\underbrace{\widetilde{M}_{j}^{i}(u)}_{(1)} \frac{\partial}{\partial \widetilde{x}^{i}} \mid_{\pi^{k}(u)}, \dots, \underbrace{\widetilde{M}_{j}^{i}(u)}_{(k)} \frac{\partial}{\partial \widetilde{x}^{i}} \mid_{\pi^{k}(u)} \right) = K_{u} \frac{\partial}{\partial x^{j}} \mid_{u}.$$

According to (1.2),

$$\begin{split} K_u \frac{\partial}{\partial \widetilde{x}^i} \mid_{u} &= K_u (\frac{\partial x^m}{\partial \widetilde{x}^i}(u) \frac{\partial}{\partial x^m} \mid_{u} + \frac{\partial y^{(1)m}}{\partial \widetilde{x}^i}(u) \frac{\partial}{\partial y^{(1)m}} \mid_{u} + \dots + \\ &+ \frac{\partial y^{(k)m}}{\partial \widetilde{x}^i}(u) \frac{\partial}{\partial y^{(k)m}} \mid_{u}) = \frac{\partial x^m}{\partial \widetilde{x}^i}(u) K_u \frac{\partial}{\partial x^m} \mid_{u} + \frac{\partial y^{(1)m}}{\partial \widetilde{x}^i}(u) K_u \frac{\partial}{\partial y^{(1)m}} \mid_{u} + \dots + \\ &+ \frac{\partial y^{(k)m}}{\partial \widetilde{x}^i}(u) K_u \frac{\partial}{\partial y^{(k)m}} \mid_{u} = \frac{\partial x^m}{\partial \widetilde{x}^i} (M_m^j(u) \frac{\partial}{\partial x^j} \mid_{\pi^k(u)}, \dots, M_m^j(u) \frac{\partial}{\partial x^j} \mid_{\pi^k(u)}) + \\ &+ \frac{\partial y^{(1)m}}{\partial \widetilde{x}^i} (\frac{\partial}{\partial x^m} \mid_{\pi^k(u)}, M_m^j(u) \frac{\partial}{\partial x^j} \mid_{\pi^k(u)}, \dots, M_m^j(u) \frac{\partial}{\partial x^j} \mid_{\pi^k(u)}) + \dots + \\ &+ \frac{\partial y^{(k-1)m}}{\partial \widetilde{x}^i} (0, \dots, 0, \frac{\partial}{\partial x^m} \mid_{\pi^k(u)}, M_m^j(u) \frac{\partial}{\partial x^j} \mid_{\pi^k(u)}) + \frac{\partial y^{(k)m}}{\partial \widetilde{x}^i} (0, \dots, 0, \frac{\partial}{\partial x^m} \mid_{\pi^k(u)}). \end{split}$$

On this way we obtain

$$\begin{cases} \widetilde{M_{i}^{j}}(u) \frac{\partial}{\partial \widetilde{x}^{j}} \mid_{\pi^{k}(u)} = \frac{\partial x^{m}}{\partial \widetilde{x}^{i}} M_{m}^{j}(u) \frac{\partial}{\partial x^{j}} \mid_{\pi^{k}(u)} + \frac{\partial y^{(1)j}}{\partial \widetilde{x}^{i}} \frac{\partial}{\partial x^{j}} \mid_{(\pi^{k}(u))} \\ \cdots \\ \widetilde{M_{i}^{j}}(u) \frac{\partial}{\partial \widetilde{x}^{j}} \mid_{\pi^{k}(u)} = \frac{\partial x^{m}}{\partial \widetilde{x}^{i}} M_{m}^{j}(u) \frac{\partial}{\partial x^{j}} \mid_{\pi^{k}(u)} + \frac{\partial y^{(1)m}}{\partial \widetilde{x}^{i}} M_{m}^{j}(u) \frac{\partial}{\partial x^{j}} \mid_{\pi^{k}(u)}) + \\ + \cdots + \frac{\partial y^{(k)j}}{\partial \widetilde{x}^{i}} \frac{\partial}{\partial \widetilde{x}^{j}} \mid_{\pi^{k}(u)}. \end{cases}$$

and using $\frac{\partial}{\partial \widetilde{x}^j}|_{\pi^k(u)} = \frac{\partial x^s}{\partial \widetilde{x}^j} \frac{\partial}{\partial x^s}|_{\pi^k(u)}$ it results (2.5).

Next, on every domain of local chart on E we consider the set of functions (N_i^i,\ldots,N_j^i) defined by

(2.6)
$$\begin{cases} N_{j}^{i} = M_{j}^{i} \\ N_{j}^{i} = M_{j}^{i} - N_{m}^{i} M_{j}^{m} \\ \dots \\ N_{j}^{i} = M_{j}^{i} - N_{m}^{i} M_{j}^{m} \\ \dots \\ N_{j}^{i} = M_{j}^{i} - N_{m}^{i} M_{j}^{m} - \dots - N_{m}^{i} M_{m}^{m} \end{cases}$$

We use the following notations

$$\begin{cases}
\frac{\delta}{\delta x^{i}} \mid_{u} = \frac{\partial}{\partial x^{i}} \mid_{u} - N_{i}^{j}(u) \frac{\partial}{\partial y^{(1)j}} \mid_{u} - \dots - N_{i}^{j}(u) \frac{\partial}{\partial y^{(k)j}} \mid_{u} \\
\frac{\delta}{\delta y^{(1)i}} \mid_{u} = J_{u} \left(\frac{\delta}{\delta x^{i}} \mid_{u} \right), \dots, \frac{\delta}{\delta y^{(k-1)i}} \mid_{u} = J_{u} \left(\frac{\delta}{\delta y^{(k-2)i}} \mid_{u} \right)
\end{cases}$$

Theorem 2.2. The vector fields

$$\frac{\delta}{\delta x^i}, \frac{\delta}{\delta y^{(1)i}}, ..., \frac{\delta}{\delta y^{(k-1)i}}, \frac{\partial}{\partial y^{(k)i}}$$

are d-vector fields, that is under a change of coordinates (1.1) these are changing by the following rules

(2.8)
$$\begin{cases} \frac{\delta}{\delta \tilde{x}^{i}} = \frac{\partial x^{j}}{\partial \tilde{x}^{i}} \frac{\delta}{\delta x^{j}}, \\ \frac{\delta}{\delta \tilde{y}^{(\alpha)i}} = \frac{\partial x^{j}}{\partial \tilde{x}^{i}} \frac{\delta}{\delta y^{(\alpha)j}} (\alpha = \overline{1, k - 1}), \\ \frac{\partial}{\partial \tilde{y}^{(k)i}} = \frac{\partial x^{j}}{\partial \tilde{x}^{i}} \frac{\partial}{\partial y^{(k)j}}. \end{cases}$$

Proof. Under a change of coordinates on E, the set of functions (N_j^i, \ldots, N_j^i) changes as follows

$$(2.9) \begin{cases} \widetilde{N_{i1}^{im}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} = N_{i1}^{jm} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} - \frac{\partial \widetilde{y}^{(1)i}}{\partial x^{j}} \\ \widetilde{N_{i1}^{im}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} = N_{i1}^{jm} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} + N_{i1}^{jm} \frac{\partial \widetilde{y}^{(1)i}}{\partial x^{m}} - \frac{\partial \widetilde{y}^{(2)i}}{\partial x^{j}} \\ \cdots \\ \widetilde{N_{im}^{im}} \frac{\partial \widetilde{x}^{m}}{\partial x^{j}} = N_{ik}^{jm} \frac{\partial \widetilde{x}^{i}}{\partial x^{m}} + N_{ik-1}^{jm} \frac{\partial \widetilde{y}^{(1)i}}{\partial x^{m}} + \cdots + N_{i1}^{jm} \frac{\partial \widetilde{y}^{(k-1)i}}{\partial x^{m}} - \frac{\partial \widetilde{y}^{(k)i}}{\partial x^{j}}. \end{cases}$$

Using (2.9) and (1.2) it results that under a change of coordinates (1.1) on E, (2.8) is true. The vectors $\frac{\delta}{\delta x^i} \mid_u, \frac{\delta}{\delta y^{(1)i}} \mid_u, ..., \frac{\delta}{\delta y^{(k-1)i}} \mid_u, \frac{\partial}{\partial y^{(k)i}} \mid_u$ are linearly independent on $T_u E$, $\forall u \in E$.

Proposition 2.2. We have the following formulae

(2.10)
$$\begin{cases} (\pi^{k})_{*,u} \left(\frac{\delta}{\delta x^{i}} \mid_{u} \right) = \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)} \\ K_{u} \left(\frac{\delta}{\delta y^{(\alpha)i}} \mid_{u} \right) = \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)} \forall \alpha = \overline{1, k-1} \\ K_{u} \left(\frac{\partial}{\partial y^{(k)i}} \mid_{u} \right) = \frac{\partial}{\partial x^{i}} \mid_{\pi^{k}(u)} . \end{cases}$$

Proof.

$$(\pi^k)_{*,u} \left(\frac{\delta}{\delta x^i} \mid_u \right) = (\pi^k)_{*,u} \left(\frac{\partial}{\partial x^i} \mid_u - N_i^j(u) \frac{\partial}{\partial y^{(1)j}} \mid_u - \dots - N_i^j(u) \frac{\partial}{\partial y^{(k)j}} \mid_u \right) =$$

$$= (\pi^k)_{*,u} \left(\frac{\partial}{\partial x^i} \mid_u \right) = \frac{\partial}{\partial x^i} \mid_{\pi^k(u)} .$$

The other formulae are proved by using (2.2) and (2.7).

Theorem 2.3. For a connection map $K = (K, K, \dots, K) : (TE, \tau_E, E) \to (TM^{(k)}, \tau^{(k)}, M)$, its kernel N = KerK is a nonlinear connection on k-osculator bundle.

Proof. To prove this theorem it is sufficient to show the following decomposition in the Whitney sum

$$(2.11) TE = N \oplus V_1.$$

Firstly, we prove that $\left\{\frac{\delta}{\delta x^i} \mid_u\right\}_{i=\overline{1,n}}$ is a basis for $KerK_u = N(u)$. Since $\left\{\frac{\delta}{\delta x^i} \mid_u\right\}_{i=\overline{1,n}}$ are n linearly independent vectors and the dimension of N(u) is n, we need to prove that $K_u\left(\frac{\delta}{\delta x^i} \mid_u\right) = 0$. We have the following sequence of equalities

$$\begin{split} K_{u}(\frac{\delta}{\delta x^{i}}\mid_{u}) &= K_{u}(\frac{\partial}{\partial x^{i}}\mid_{u} - N_{i}^{j}(u)\frac{\partial}{\partial y^{(1)j}}\mid_{u} - \dots - N_{i}^{j}(u)\frac{\partial}{\partial y^{(k)j}}\mid_{u}) = \\ &= K_{u}(\frac{\partial}{\partial x^{i}}\mid_{u}) - N_{i}^{j}(u)K_{u}(\frac{\partial}{\partial y^{(1)j}}\mid_{u}) - \dots - N_{i}^{j}(u)K_{u}(\frac{\partial}{\partial y^{(k)j}}\mid_{u}) = \\ &(M_{i}^{j}(u)\frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}, \dots, M_{i}^{j}(u)\frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}) - N_{i}^{j}(u)(\frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}, M_{j}^{m}(u)\frac{\partial}{\partial x^{m}}\mid_{\pi^{k}(u)}, \dots, M_{i}^{m}(u)\frac{\partial}{\partial x^{m}}\mid_{\pi^{k}(u)}) - N_{i}^{j}(u)(0, \frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}, M_{j}^{m}(u)\frac{\partial}{\partial x^{m}}\mid_{\pi^{k}(u)}, \dots, \\ &(M_{i}^{j}(u)\frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}) - N_{i}^{j}(u)(0, \frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}, M_{j}^{m}(u)\frac{\partial}{\partial x^{m}}\mid_{\pi^{k}(u)}, \dots, \\ &(M_{i}^{j}(u)\frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}) - \dots - N_{i}^{j}(u)(0, \dots, 0, \frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}, M_{j}^{m}(u)\frac{\partial}{\partial x^{m}}\mid_{\pi^{k}(u)}) - \\ &- N_{i}^{j}(u)(0, \dots, 0, \frac{\partial}{\partial x^{i}}\mid_{\pi^{k}(u)}). \end{split}$$

Using (2.6) one obtains $K_u\left(\frac{\delta}{\delta x^i}|_u\right)=0$. Finally, we have to prove that $\forall u\in E,$ $N(u)\cap V_1(u)=\{0\}$. Let $X_u\in N(u)\cap V_1(u)$. Because $X_u\in N(u)$ it results $K_uX_u=0$ and because $X_u\in V_1(u)$ we have $(\pi^k)_{*,u}X_u=0$. If X_u is expressed in the basis (2.7) by

$$X_u = \stackrel{(0)}{X^i} \frac{\delta}{\delta x^i} + \stackrel{(1)}{X^i} \frac{\delta}{\delta y^{(1)i}} + \ldots + \stackrel{(k)}{X^i} \frac{\partial}{\partial y^{(k)i}}$$

it follows that

$$K_u X_u = (X^i \frac{\partial}{\partial x^i}, X^i \frac{\partial}{\partial x^i}, \dots, X^i \frac{\partial}{\partial x^i}) = 0$$

and

$$(\pi^k)_{*,u} X_u = \stackrel{(0)}{X^i} \frac{\partial}{\partial x^i} = 0 \Longrightarrow \stackrel{(0)}{X^i} = \stackrel{(1)}{X^i} = \cdots = \stackrel{(k)}{X^i} = 0.$$

We call the functions (N_j^i, \dots, N_j^i) the *coefficients* of the nonlinear connection N.

Next, we prove the existence of connection map.

Theorem 2.4. If the manifold M is smooth, then there exists a connection map on the k-osculator bundle of the manifold M.

Proof. In the paper [2] we have proved that every nonlinear connection N on the k-osculator bundle determines a connection map. Because on Osc^kM there exist nonlinear connections, the proof is finished.

We denote $N_0 = N, N_1 = J(N_0), \dots, N_{k-1} = J(N_{k-2})$. The following decomposition in the Whitney sum is true

$$(2.12) TE = N_0 \oplus N_1 \oplus \cdots \oplus N_{k-1} \oplus V_k.$$

The distributions $N_{\alpha}: u \in E \mapsto N_{\alpha}(u) \subset T_uE$ are of dimensions n. Generally these are not integrable.

Concluding, the existence of the nonlinear connection N on the k-osculator bundle E is characterized by a special π^k morphism of vector bundles K such that $N = Ker\ K$.

3 Characterizations of the connection map with the lifts.

Let $(V_k E, \tau_E \mid_{V_k E}, E)$ be a vector bundle over E, whose fibres are $V_k(u), u \in E$. For each $u \in E$, we denote by $(l_{v_k})_{\pi^k(u),u} : T_{\pi^k(u)}M \to V_k(u)$ the linear map defined by: $(l_{v_k})_{\pi^k(u),u} \left(\frac{\partial}{\partial x^i}\mid_{\pi^k(u)}\right) = \frac{\partial}{\partial y^{(k)i}}\mid_u$ and extended by linearity.

The map $(l_{v_k})_{\pi^k(u),u}$ is a linear isomorphism for $\forall u \in E$. It is called the *vertical lift*.

Definition 3.1. The horizontal lift is defined as a linear map $(l_h)_{\pi^k(u),u}: T_{\pi^k(u)}M \to T_uE$ which satisfies

$$(3.1) (l_{v_k})_{\pi^k(u),u} = J_u^k \circ (l_h)_{\pi^k(u),u}.$$

We use the notation $N(u) = (l_h)_{\pi^k(u),u}(T_{\pi^k(u)}M)$.

Remark. The map $(l_h)_{\pi^k(u),u}:T_{\pi^k(u)}M\to N(u)$ is a linear isomorphism of vector spaces.

Proposition 3.1. Every connection map K on the k-osculator bundle E determines a horizontal lift.

Proof. The map $\pi_{*,u}^k \mid_{Ker \ K_u} : Ker \ K_u \to T_{\pi^k(u)} M$ is an isomorphism of vector spaces. We denote by $(l_h)_{\pi^k(u),u} : T_{\pi^k(u)} M \to Ker \ K_u$ its inverse map. We have $\pi_{*,u}^k \circ (l_h)_{\pi^k(u),u} = id_{T_{\pi^k(u)}} M$. Firstly, we prove $K_u \circ (l_v)_{\pi^k(u),u} = id_{T_{\pi^k(u)}} M$. Using that $(l_{v_k})_{\pi^k(u),u} \left(\frac{\partial}{\partial x^i} \mid_{\pi^k(u)}\right) = \frac{\partial}{\partial y^{(k)i}} \mid_u$ and $K_u \circ (l_v)_{\pi^k(u),u} = id_{T_{\pi^k(u)}} M$. Using that $(l_{v_k})_{\pi^k(u),u} \left(\frac{\partial}{\partial x^i} \mid_{\pi^k(u)}\right) = \frac{\partial}{\partial y^{(k)i}} \mid_u$ and $K_u \circ (l_v)_{\pi^k(u),u} = \frac{\partial}{\partial x^i} \mid_{\pi^k(u)}$ we obtain the previous formula. The proof of proposition is finished by the following sequence of implications: $\pi_{*,u}^k = K_u \circ J_u^k \Rightarrow K_u \circ J_u^k \circ (l_h)_{\pi^k(u),u} = K_u \circ (l_{v_k})_{\pi^k(u),u} \Rightarrow$ the map l_h verify (3.1).

Proposition 3.2. Every horizontal lift determines a connection map on k-osculator hundle

Proof. Let $(l_h)_{\pi^k(u),u}: T_{\pi^k(u)}M \to T_uE$ be a map which satisfy (3.1).

Let K_u : $V_k(u) \to T_{\pi^k(u)}$ be the inverse map of the vertical lift and $K_u = (K_u)^{(k)} \circ J_u^{k-1}, \ldots K_u^{(k)} \circ J_u, K_u^{(k)}$. For proving that the map K is a connection map it is sufficient to show that $K_u \circ J_u^k = \pi_{*,u}^k$. From (3.1), compound at left by K_u we have $K_u \circ J_u^k \circ (l_h)_{\pi^k(u),u} = K_u \circ (l_v)_{\pi^k(u),u} = id_{T_{\pi^k(u)}M}$. Since $(l_h)_{\pi^k(u),u}$ is a linear isomorphism it results that $K_u \circ J_u^k$ is its inverse and $K_u \circ J_u^k = \pi_{*,u}^k$.

For $\alpha \in \{1, \ldots, k-1\}$ and $u \in E$ we denote $(l_{v_{\alpha}})_{\pi^{k}(u), u} : T_{\pi^{k}(u)}M \to T_{u}E$ the map defined by $(l_{v_{\alpha}})_{\pi^{k}(u), u} = J_{u}^{\alpha} \circ (l_{h})_{\pi^{k}(u), u}$. If we use the notations $N_{\alpha}(u) = (l_{v_{\alpha}})_{\pi^{k}(u), u}(T_{\pi^{k}(u)}M)$ we obtain that $(l_{v_{\alpha}})_{\pi^{k}(u), u}$ are linear isomorphisms.

Corollary 3.1. The following formulae are true

$$\overset{(\alpha)}{K_u} \circ (l_{v_\alpha})_{\pi^k(u),u} = id_{T_{\pi^k(u)}M} \ \, \forall \alpha \in \{1,2,\ldots\} \, and \, u \in E.$$

Proof. We have $(l_{v_k})_{\pi^k(u),u} = J_u^k \circ (l_h)_{\pi^k(u),u} = J^{k-\alpha} \circ J_u^{\alpha} \circ (l_h)_{\pi^k(u),u} = J_u^{k-\alpha} \circ (l_{v_\alpha})_{\pi^k(u),u}$. Compound at left to K_u in the formula $(l_{v_k})_{\pi^k(u),u} = J_u^{k-\alpha} \circ (l_{v_\alpha})_{\pi^k(u),u}$ and using $K_u \circ (l_{v_k})_{\pi^k(u),u} = id_{T_{\pi^k(u)}M}$ and from (2.1) it results $K_u \circ (l_{v_\alpha})_{\pi^k(u),u} = id_{T_{\pi^k(u)}M}$ $\forall \alpha \in \{1, 2, \ldots\}$.

Acknowledgements. A version of this paper was presented at the First Conference of Balkan Society of Geometers, Politehnica University of Bucharest, September 23-27, 1996.

References

- [1] M.Anastasiei and I.Bucataru, A notable submersion in the higher order geometry (to appear).
- [2] I.Bucataru, Connection map in the higher order geometry, An. Ştiinţ. Univ. "Al.I.Cuza" Iaşi, vol.XLII (1996), 255-260.
- [3] P.Dombrowski, On the geometry of the tangent bundles, Jour. reine und angew. Math., 210(1962), 73-88.
- [4] O.Kowalski, Curvature of the Riemannian metric on the tangent bundles of a Riemannian manifold, Jour. reine und angew., Math., 250 (1971), 124-129.
- [5] R.Miron and M.Anastasiei, *The geometry of Lagrange Spaces. Theory and Applications*, Kluwer Academic Publishers FTPH no. 59 (1994).
- [6] R.Miron and M.Anastasiei, Vector bundles. Lagrange spaces. Aplications in relativity, Acad. Română, Bucureşti, 1987.
- [7] R.Miron and Gh.Atanasiu, Lagrange Geometry of Second Order, Pergamon Math.Comput.Modeling vol.20, no.4/5(1994), 41-56, Pergamon Press.
- [8] R.Miron and Gh.Atanasiu, Differential geometry of the k-osculator bundle, Rev.Roumaine Math.Pures Appl. vol.XLI, nr. 3-4, 1996, 205-236.
- [9] R.Miron and Gh.Atanasiu, Prolongation of the Riemannian, Finslerian and Lagrangian structure, (to appear).
- [10] R.Miron and Gh.Atanasiu, Higher order Lagrange spaces, (to appear).

"Octav Mayer" Institute of Matematics Iaşi Branch of the Romanian Academy 6600, Iaşi, Romania