Caracterizations of the Nonlinear Connection in the
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Abstract

In the paper [8] a nonlinear connection on k-osculator bundle is characterised
by a system of functions defined on each domain of local chart, which verify a
special formula.

Starting with this result, to a nonlinear connection on the k-osculator bundle
was associated a special map, called connection map [2].

The aim of this paper is to present the notion of connection map, indepen-
dently of the choice of a nonlinear connection. The kernel of the connection
map is a nonlinear connection. In this way we obtain a characterization for
the nonlinear connection using only the k-tangent structure on the k-osculator
bundle.

In the last part of this paper we present the notion of horizontal lift, inde-
pendently of the choice of a nonlinear connection and connection map. Using
this map we obtain a characterization for a connection map and a nonlinear
connection. The nonlinear connection appears as the image of the horizontal
lift. The connection map is defined using the inverse map of the vertical lift.
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1 Introduction

Let M be a real, smooth manifold of dimension n and (Osck M, 7% M) its k-osculator
bundle. Then Osck M is a real, smooth manifold of dimension n(k + 1). We set F =
Osck M.

Let (z') be the local coordinates in a local chart U C M. The local coordinates
on (7*¥)~1(U) € Osck M will be denoted by (xf,yM)7, ...y,

A change of coordinates (z,y"),....,y®)) = (z,5,..., 7)) on E is given by:
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Under a change of coordinates (1.1) on E, for each u € E, the natural basis

0 0 0
{ﬁ ‘UW |U7W u} changes as follows
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o7 v~ o e I tga gy et g (gt I
o oy o oy(ki o
(1.2) 8@(1)1 ‘u— 8g(1)z (U) 8y(1)j |u +...+ —ag(l)z (U) 8y(k)j |u
o y(k)i o
g = ggmmr Wgymg lu-
\ 0y Y Y
For a € {1,2,...,k — 1} we denote 7* : E — Osc®M the canonical submersion

which is expressed in the local chart as follows
7T§Z : ($7y(1)7 A 7y(k)) '_) ($7y(1)7 et 7y(a))'

As (7%), : (TE, 75, E) — (I'M,7,M) is a 7% epimorphism of vector bundles, it
results that its kernel is a vector subbundle of the bundle (TE, g, E). This will be
denoted by V} E and will be called the vertical subbundle of the TE. The fibres of
Vi1 E determine an integrable distribution V; : uw € E — Vi (u) C Ty E which has the
dimension kn, called vertical distribution.

In the same manner, for each submersion 7¥ : E — Osc®M we obtain a vector
subbundle of TE denoted by V, 411 E = Ker(n¥),. The fibres of V, 1 E determine an
integrable distribution Vo411 :u € E — Vo1 (u) C Ty E, of dimension (k — a)n.

In this way we obtain k-vertical distributions Vy, V..., Vi of dimensions kn, (k—
1)n,...,n respectively, such that Vu € E, Vji(u) C Vi—1(u) C --- C Vi(u).

For each uw € E we consider the linear map J, : T, F — T, E defined on natural
basis by
(1.3)

0 0 0 0 0
3o (g 1) = g oo (s ) = g o (s o) =0

and extended by linearity.

Proposition 1.1.
1. For each u € E the map J, is well defined.
2. For a € {1,2,...,k — 1} we have
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k—a u) = u U
(1.4) {Ju Vica(u) = Va(u), VuekE

JE1 =0
u
The maps J,, u € E determine a morphism of vector bundles

J:(TE, 75, E) = (TE,7g, E) and an F(E) linear map J : x(E) — x(E).
The map J is called the k—tangent structure of the k—osculator bundle.

2 The nonlinear connection associated to a connec-
tion map

We denote by (TM®), 7() M) the Whitney sum of the tangent bundle (T'M, 7, M)

on itself of k times.

Definition 2.1. We call connection map on the k-osculator bundle £ a ¥ morphism
of vector bundles

(1) (2) (k)
K=(K,K,...,K): (TE, 5, E) » (TM™, 7 M)

which satisfies

(k) (k—a) -
KoJ®= K , Ya=T1k—1

(k) " i
K oJ* = (x*),

(2.1)

(1) (2 (k)
Proposition 2.1. For a connection map K = (K, K, ..., K) we have the following

relations

W="K" o) Va=TF 1
= oJ, a =1, -
(2.2) ) (@) o

(7") =K oJ* VYa =1k
Proof.

(a) (k) b (k) b1 (a+1)
K=K oJ' =K oJ"" % "oJ= K oJ

(k) (k) 1)
(71-]“)* =K oJk =K oJk1 oJ =K oJ

Remark 2.1. The kernel of the connection map N = KerK is a vector subbundle of
the bundle (T'E, g, E). Its fibres determine a distribution N : v € E — N(u) C E,
of dimension n, called the horizontal distribution associated to the connection map
K.

Next, we shall prove that a connection map determines a nonlinear connection on
k osculator bundle.

For each u € E, the map Ky : TyE — TrryM x -+ X Trx()M is linear. We

k times

denote by MY(u),..., M’(u) the coordinate functions, defined on every domain of
& (k)
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1) 9 (k)
local charts, for the vectors K, =— |4, .., and K, — |, respectively, in the natural
5 oxJ oxJ
basis Eye | x% (u) Of T ()M . Therefore
0 i 0 i 0
(2.3) Ku@ u= ({\1/)[;(“)@ ‘ﬂk(u)w'w%j(u)ﬁ |k (u))-

Taking account of Proposition 2.1 and formula (2.3), we obtain the following for-
mulae

( a 6 ; l
uggmi v~ (g7 Ie o MW g a0 M G) 55 lwvw)
0 o ; l
U 9y(2)i ‘u:( o' ‘ﬂ'k(u)7.z\{](,ll)a 5 ‘ﬂ'k(u)a ’k%)J(l)a - ‘ﬂk(u))
(24)
9 d
Kua (k—1)j |U_ (0, 78 i ‘ﬂ'k’(u) ]\{;( )a i ‘ﬂ-k(u))
0 d
K”a (k)j = (0, Oz |k ()

Theorem 2.1. Under a change of coordinates (1.1) on E, the set of functions
(M;)a:ﬁ is changing according to the following rules
(a) :

( u Ot e oz™m a:[j(l)z'
(1)j ox™m n m ™ Oxd oxi
w2 O A
(2'5) (z)j ox™m n ™ Oxd o™ Oxd oxJ
oFi o —— ogm — gytk-m k)i
m = M? ¢ - ¢ - — .
\ (]}c{] ox™ %m oxi  w-pn™ Oxi + +(]\1{m oxJ oxI

Proof. For (U,¢ = (z',yV7,...,y™) and (V,¢ = @, 707, ..., 5%7)) two local
charts in u € U NV, we have

0 — 0 — B 0
Ku@ |u: ({\1{](“)@ \ﬂk(u),...,Mj(u)—. k(u)) =K |u

According to (1.2)
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0 ox™ 0 dyHm 0
o7 | (Ga W agm v =gz g mm lu + F
y(kIm 0 _ Oz 0 dyHm 0
gz W gy W) = g WG b+ g WK g e

gy km 0 oz™ oD TN
- Ku u— . J i xR (w)s - J A |k (u
+ a’fz (u) ay(k)m ‘ 61_2 (%m(u) a.Tj | ( ); ’ %m(u) a.Tj ‘ ( ))+
dym 9 PN ;
o7 (arm ‘77 (u);%m(u)% ‘ﬂk( JERN 7(3%)771( )a j |7r (u))+ +
ay(kfl)m b ; b ay(k)m b
+ o7 (0 """ * Hpm |wk(u)7%m(u)@ |7r’“(u)) Ozt (0 U ggm |7r (u))

On this way we obtain

( — 9 ™ ) o 6y(1)j o
J)-L | = I ()= .
MW gz e = g MmWggs et g5 g7 ot
J . — J _ J _
%i (U) o7 ‘ﬂ"“(u)_ o7 %m(u) B |7r’“(u) + o7 (k]%]m(u) B ‘ﬂ"“(u))"‘
oyki 9
\ Tt o g T
ox® 0

and using % |k (w) it results (2.5).

u) = @% |7r’“(u)

Next, on every domain of local chart on F we consider the set of functions

N: = M
m?w? '
N = M- N M
(2.6) B R
i __ i i m o i m
Ni=Mi— N iLM™— ...~ Ny M™
w! ! ey ™ ™"

We use the following notations

5.8 D PN

— |y= — |y —N? () ——— |, — () ———

)

) ) ) )
W ‘u: Ju (W u) 7"'7W ‘u: Ju (W
Theorem 2.2. The vector fields

5§ 9 5 d
St Sy(i’ T Gylk—1)i gy (k)i

are d-vector fields, that is under a change of coordinates (1.1) these are changing by
the following rules
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(0 90 5
6x'  OF' §ad’
) oz §
(2 8) 6:[7(a)z aft 6y(a)] (Oé 7k )7
o o 0

Proof. Under a change of coordinates on F, the set of functions (N

],...,N?) changes

J

(1) (k)
as follows
(7 9" m o oy
W™ oxi T 0y fxm oxJ
oz oz’ oy gy
(2-9) (],Xm oxJ (],XJ oxm —|—(]1\)f] drm o
]fvzv.a%m _ ox' ., Oy I agtk-ni  gghyi
L ™ Oz _(k)j ox™m (k—l)j oxrm (1)j oxrm O

Using (2.9) and (1.2) it results that under a change of coordinates (1.1) on E, (2.8) is
0

St ‘“’W Jus Sy (=107 s Ay

true. The vectors

on T,E,Vu € E.
Proposition 2.2. We have the following formulae

(. ) 0
(7T )*,U St ‘U = bzt |7r’“(u)

(@) 0 0 -
(210) Kau <W u) = % |ﬂ.k(u) Ya = ]_,k -1

) (D 9
K \ gy v) = gt oo

OE |, are linearly independent

Proof.

0 0 ; 0 ; 0
k _ k _arJ _ _ arl —
(7T )*ﬂb ((5IEZ U) - (71' )*ﬂl (6%2 |u (]1\)[1 (U’) ay(l)j |u s (]’Xl (U’) 6y(’“)j |u> -

0 0
= (n* — = = |z .
- (71' )*,U <8w’ U> o1 |7r (u)

The other formulae are proved by using (2.2) and (2.7).
. (1) (2) (k)
Theorem 2.3. For a connectionmap K = (K, K ,..., K) : (TE, 75, E) = (TM®) () M),
its kernel N = KerK is a nonlinear connection on k-osculator bundle.
Proof. To prove this theorem it is sufficient to show the following decomposition in

the Whitney sum

(2.11) TE=Na&W.
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) )
Firstly, we prove that { — u} is a basis for KerK, = N(u). Since { — |u}
ozt i:L_n oxt i:l,_n

are n linearly independent vectors and the dimension of N(u) is n, we need to prove

)
that K, (— u) = 0. We have the following sequence of equalities

ozt
1) 0 . 0 ; 0
u(émz | ) (6'51 | (]Xz (’U,) 8y(1)] ‘ (]Xz (U)ay(k)] ‘ )
_ w0 j 0 j 0 _
= Ku(@ lu) — EZXZ (U)Ku(m ) = — ({Xl (U)KU(W lu) =

8 PO, ; d my,y 0
(%;(U)@ \ﬁk(u):---,%]‘(“)@ |k (u)) *Nj(u)(@ |k () s M (U)am—m | (u) s

P

9 i 9 8
M m(u)am—m |7rk(u)) 7Nj(u)(07% ‘ﬁk(u)7{\4j (U)al‘—m ‘ﬂ"“(u)a'-'a

e-1)? )

. 0 . m
M Z(U)@ lak(w) =+ — N Z(U)(O:---,O,@ |W’“(U)7Mj (“)%—m |k () ) —

(n-2’ -1’

: 0
_(]’Xj(u)((L.. .70, W |ﬂ.k(u))

Using (2.6) one obtains K, g |« | = 0. Finally, we have to prove that Yu € E,
./L-l

N(u)NVi(u) = {0}. Let X,, € N(u)NVi(u). Because X,, € N(u) it results K, X,, =0
and because X, € Vi (u) we have (7¥). , X, = 0. If X,, is expressed in the basis (2.7)
by

© 5 O 4 (k)
_vi Y i i
Xy =X 6azi+ X —5y(1)" +...+ X —ay(k)i
it follows that
M 5 @ 5 *) 5
KX, = (X' = xi 2 xi 2=
( oxt oxrt’ a:r’)
and
© 5 0 () (k)
(") u Xy =X — =0 =X'=X'=... =X'= 0.
’ ox!
We call the functions (N%,..., N%) the coefficients of the nonlinear connection N.
B (k)

Next, we prove the existence of connection map.
Theorem 2.4. If the manifold M is smooth, then there exists a connection map on
the k-osculator bundle of the manifold M.
Proof. In the paper [2] we have proved that every nonlinear connection N on the
k osculator bundle determines a connection map. Because on Osc¥M there exist
nonlinear connections, the proof is finished.

We denote Ny = N, Ny = J(Ny), -, Ng_1 = J(Ng_2). The following decomposi-
tion in the Whitney sum is true

(2.12) TE=Nyg® N, D B Np_1 b V.
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The distributions N, : u € E — N,(u) C T,E are of dimensions n. Generally these
are not integrable.

Concluding, the existence of the nonlinear connection N on the k-osculator bundle
E is characterized by a special 7F morphism of vector bundles K such that N =
Ker K.

3 Characterizations of the connection map with the
lifts.

Let (Vi E, 7Tk |v, k, E) be a vector bundle over E, whose fibres are Vi (u), u € E.

For each u € E, we denote by (ly,)xr(u)u @ TukyM — Vi(u) the linear map

0 0 . .

defined by: (lv, ) r* (u),u (W |ﬂ.k(u)> = W |, and extended by linearity.

The map (ly, ) r+(u),« 18 a linear isomorphism for Vu € E. Tt is called the vertical
lift.
Definition 3.1. The horizontal lift is defined as a linear map () (4)
T, F which satisfies

: Tﬂ.k(u)M -

,u

(31) (lvk)wk(u),u = Jqlf ° (lh)w’“(u),tr
We use the notation N(u) = (In)xk (u),u(Trk () M)-

Remark. The map (In) % (u),u @ Trk(uyM — N(u) is a linear isomorphism of vector

spaces.

Proposition 3.1. Every connection map K on the k—-osculator bundle E determines

a horizontal lift.

Proof. The map wf’u |Ker k,: Ker K, — Tﬂ.k(u)M is an isomorphism of vector

spaces. We denote by (Ip)rx(u),u @ Tak(wyM — Ker K, its inverse map. We have
(k)

Wf,u o (lh)ﬂ.k(u)yu = idTﬂk(“)M' Firstly, we prove K, O(lvk)w’“(u),u = Z'dka(u)M. Using
0] 0 (k) 0 0]
that (lvk)ﬂ"“(u),u % ﬂ.k:(u)> = W |u and Ku W |u = % |ﬂ.k(u) we

obtain the previous formula. The proof of proposition is finished by the following

(k) (k) (k)
sequence of implications: 7% , =K, oJf =Ky oJF o (In)zr(u),u =Ku (Lo ) rk (u),0 =

the map [, verify (3.1).
Proposition 3.2. Fvery horizontal lift determines a connection map on k-osculator
bundle.
Proof. Let (In)xt(u),u : Trk(wyM — TuE be a map which satisfy (3.1).
(k) (k)
Let Ky: Vi(u) — Trr(y) be the inverse map of the vertical lift and K, = (K,
(k) (k)
oJk-1 ... K, oJ,, K,). For proving that the map K is a connection map it is sufficient

(k) (k) (k)
to show that K, oJF =« . From (3.1), compound at left by K, we have K, oJ} o
(k)
(Un)wr (), =8 o(log) nk (u)u = idka(u)M. Since (In)zk(y),u 18 @ linear isomorphism it
(k) (k)

results that K, oJ* is its inverse and K, oJ} = 7*

*,U "
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For a € {1,...,k — 1} and u € E we denote (lu,)rru)u : Tat(M — TuE
the map defined by (v, )% (u).u = Ji © (In)x*(u).u- If we use the notations N, (u) =
(Lo ) ¥ (u),u Tk (w) M) we obtain that (I, )rk (4, are linear isomorphisms.
Corollary 3.1. The following formulae are true

(@)
K, O(lva)wk(u)m = idTﬂk(H)M Va € {1, 2,.. } andu € E.

Proof. We have (lvk)n’“(u),u = J{f o (lh)ﬂ'k(u),u = Jko JS o (lh)n’“(u),u = Jllffa o

(k)
(Lo, ) #¥ (u),u- Compound at left to K, in the formula (ly, )x* ()0 = Jk=ao (Lo ) w¥ (u).u
(k) (o)

and using Ky o(ly, )k (u)u = idr v and from (2.1) it results Ky o(ly, )k (u),u =
idka(u)M Ya € {]., 2,.. }
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