
Conne
tions on Embedded ManifoldsJ. Cnops
Abstra
tIn this paper we 
onsider 
lassi
al notions of di�erential geometry, su
h asCli�ord and spinor bundles, together with their 
onne
tions, from the point ofview of their embeddings in (pseudo-)Eu
lidean spa
e. It turns out that the useof an embedding allows for fairly simple expression of these notions.Mathemati
s Subje
t Classi�
ation: 53C07, 53C40Keywords: 
onne
tions on bundles, embedded manifolds.1 Introdu
tionHistori
ally speaking, the notion of manifold originally meant what we now would 
alla submanifold of Eu
lidean spa
e, and, more spe
i�
ally, a surfa
e in three-dimensionalspa
e. It is in this 
ontext that most notions (su
h as tangent ve
tors, 
urvature) wereoriginally de�ned, and where they have a meaning whi
h is fairly easy to grasp. Mu
hmore re
ently, it was shown by the famous theorems of Nash and Clarke (see [7℄ and[2℄) respe
tively, that up to a minor 
ontinuity 
ondition, any metri
 manifold 
an beembedded isometri
ally in a (pseudo-)Eu
lidean spa
e of suÆ
iently big dimension.We 
an then embed the tangent and Cli�ord bundles in the 
orresponding entitiesof the embedding spa
e, whi
h makes it possible to des
ribe 
onne
tions in a quitenatural way.In this text we then 
onsider manifolds whose Spin stru
ture 
an itself be embed-ded in the Spin stru
ture of the embedding spa
e (it seems to be an open questionwhether any Spin manifold allows for su
h an embedding). Again, the spinor bundle,and the relevant 
onne
tions obtain an easy form.While this approa
h may not appeal to some be
ause of the introdu
tion of super-
uous entities 
onne
ted with the embedding spa
e, the method has the advantage ofbeing quite transparent. As an example, it turned out to be very easy to determinethe eigen se
tions, rather than only the spe
trum, of the spinor Dira
 operators for thesphere and for Poin
ar�e spa
e, as will be shown in a forth
oming arti
le ([3℄). In therest of this se
tion we give the ne
essary 
onventions and notations used throughoutthis paper.Orthogonal spa
es and Cli�ord algebras. An orthogonal spa
e V is a (�nitedimensional) ve
tor spa
e with a symmetri
 s
alar produ
t. With Rp;q is meant theBalkan Journal of Geometry and Its Appli
ations, Vol.2, No.2, 1997, pp. 23-34
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24 J.Cnopsn-dimensional ve
tor spa
e over R, where n = p+ q, whi
h 
onsists of all n-tuples ofreal numbers x = (x1; : : : ; xn) with the s
alar produ
t(1) B(x; y) = � pXi=1 xiyi + nXi=p+1 xiyi:The Cli�ord algebra over V is denoted by C̀ (V ). It is the free algebra generated byV modulo the relation(2) ~x2 = �B(~x; ~x):This implies (by the polarisation formula) that orthogonal ve
tors anti
ommute, whileparallel ve
tors 
ommute.For the Cli�ord algebra over the standard orthogonal spa
e Rp;q we shall use theshort notation C̀ p;q instead of C̀ (Rp;q). Taking the standard basis e1; : : : ; en of Rp;qwe see that the basis ve
tors anti
ommute. A
tually equation (2) is equivalent to therelation(3) eiej + ejei = �2B(ei; ej):A basis of C̀ p;q is given by ordered produ
ts of di�erent basis ve
tors. We shall usetwo shorthand notations for su
h a produ
t:et1 : : : etk = et1:::tk = eft1;:::;tkg; t1 < : : : < tk:Sin
e all produ
ts of generators 
an be written (up to sign) in the form eA, whereA is a subset of f1; : : : ; ng, these eA's form a basis of the Cli�ord algebra, and thedimension of C̀ p;q over R is equal to 2n. The set f1; : : : ; ng will in the sequel bewritten as n for short.Elements of C̀ p;q are 
alled Cli�ord numbers. Three (anti)automorphisms will beused (here ~x is an arbitrary ve
tor, and a and b are arbitrary Cli�ord numbers):(i) The main antiautomorphism is de�ned by�~x = �~x (ab) = �b�a:(ii) The reversion is de�ned by~x� = ~x (ab)� = b�a�:(iii) The main automorphism is de�ned by~x0 = �~x (ab)0 = a0b0:These (anti)morphisms will mainly be applied to produ
ts of ve
tors. Expli
itly oneobtains for a produ
t of k ve
tors:(~x1 : : : ~xk) = (�~xk) : : : (�~x1)(~x1 : : : ~xk)� = ~xk : : : ~x1(~x1 : : : ~xk) 0 = (�~x1) : : : (�~xk):



Conne
tions on Embedded Manifolds 25If A has k elements, then eA is 
alled a k-ve
tor. Likewise any linear 
ombination ofk-ve
tors is 
alled a k-ve
tor, and the ve
tor spa
e of k-ve
tors is written as C̀ kp;q ; ak-ve
tor whi
h 
an be written as the produ
t of k ve
tors is 
alled a k-blade. In lessthan four dimensions every k-ve
tor is a k-blade, but for n � 4, e1e2 + e3e4 is not ak-blade.Obviously C̀ p;q is the dire
t sum of all C̀ kp;q for k � n, and the proje
tion of aCli�ord number a onto C̀ kp;q will be written as [a℄k. Instead of 1-ve
tors the termve
tors is used, and ve
tors are identi�ed with elements of Rp;q . Also the term bive
-tors is used for 2-ve
tors, while the elements of C̀ np;q are 
alled pseudo-s
alars. Then-ve
tor en is 
alled the pseudo-unit. Noti
e that the produ
t of the n basis ve
torsin a di�erent order always is en, at least up to sign: a
tually en de�nes an orientationof Rp;q . The wedge produ
t on the Cli�ord algebra is de�ned by~x ^ ~y = ~x~y + B(~x; ~y);and 
an be extended using asso
iativity. In general, for two Cli�ord numbers a andb, [a℄k ^ [b℄` = [ab℄k+`. In a similar way there is a dot produ
t de�ned by[a℄k � [b℄` = � [ab℄jk�`j if k and ` are stri
tly positive0 if k` = 0:Let a = [~x1 : : : ~xk ℄k be a k-blade. Then a is invertible (i.e. �aa 6= 0; for any k-blade bwe have that �bb is real) if and only if V = spanfx1; : : : ; xkg is a k-dimensional ve
torspa
e, su
h that the restri
tion of B to V is non-degenerate. The orthogonal proje
tionof a Cli�ord number 
 onto C̀ (V ) is given by a�1(a�
)+[
℄0. The 
onvention a�[
℄0 = 0is quite unpra
ti
al for our purposes, but it is quite general.Spin and Pin groups. For any a in the Cli�ord algebra su
h that aa0 = �1 it is
lear that a0�1 exists, and so the the de�nition of the linear transformation on theCli�ord algebra �(a) : C̀ p;q ! C̀ p;q~x ! �(a)~x = a~xa0�1is well de�ned. The Pin group is now de�ned as the group of su
h elements whi
hleave the underlying ve
tor spa
e invariant:Pin(p; q) = fa 2 C̀ p;q : aa0 = �1 and 8~x 2 Rp;q : �(a)~x 2 Rp;qg :� obviously provides a group morphism of Pin(p; q) to a subgroup of GL(Rp;q). It
an be proved that, for every element a of the Pin group, �(a) (when restri
ted toRp;q), is an element of the orthogonal group O(p; q). Moreover Pin(p; q) is a double
overing of O(p; q), the kernel of � : Pin(p; q) ! O(p; q) being f�1; 1g, and Pin(p; q)is generated as a group by the ve
tors ~x for whi
h ~x~x0 = �1.In a similar way we have the Spin group, Spin(p; q) whi
h 
onsists of the produ
tsof even numbers of unit ve
tors and as su
h gives a double 
overing of SO(p; q).The Lie algebra of the Pin group (whi
h is also the Lie algebra of the Spin group,and hen
e isomorphi
 to so(p; q)) is the spa
e C̀ 2p;q of bive
tors, with the Lie bra
ket[a; b℄ = ab�ba. Starting from the representation � of Pin(p; q) on the Cli�ord algebra,we arrive at the derived representation d� given by



26 J.Cnopsd�(b)a = ba� ab;for an arbitrary bive
tor b and a Cli�ord number a.Submanifolds. LetM be anm-dimensional submanifold ofRp;q , let a be an arbitrarypoint of M . There is a natural identi�
ation of an element of the tangent spa
e TaMwith a ve
tor ofRp;q as follows:anyX 2 TaM will be identi�ed with (a; ~x) 2M�Rp;qif and only if, for any C1 fun
tion f on M , and any C1 extension F of f in aneighbourhood (in Rp;q) of a we have that(4) DXf = �tF (a+ t~x)jt=0:In the sequel we write (a; ~x), or simply ~x instead of X ; any manipulation (mul-tipli
ation, derivation et
.) is implied to a
t on the se
ond entry. So, for example(a; ~x) + (a; ~y) = (a; ~x + ~y). Formally, the tangent bundle is embedded this way inRp;q � Rp;q ; less formally of 
ourse the tangent spa
e TaM is 
onsidered as a sub-spa
e of Rp;q.A metri
 manifold (M; g) with signature (r; s) (the metri
 g 
an be Riemannianor pseudo-Riemannian) is 
alled isometri
ally embedded if and only ifg((a; ~x); (a; ~y)) = B(~x; ~y);where B(�; �) is the s
alar produ
t of Rp;q . For an isometri
ally embedded manifold,the Cli�ord bundle 
an be embedded in Rp;q � C̀ p;q in a way quite similar to theone used for the tangent bundle. Considering TaM as a subspa
e of Rp;q , we seethat, be
ause g is non-degenerate, the restri
tion of B to TaM is also non-degenerate.Hen
e it makes sense to 
onstru
t the Cli�ord algebra C̀ (TaM), whi
h naturally isa subalgebra of C̀ p;q . The Cli�ord bundle, denoted by C̀ (M) is the submanifold ofRp;q � C̀ p;q 
onsisting of those elements (a; b) for whi
h a 2M and b 2 C̀ (TaM).A se
tion of the Cli�ord bundle is a C1, Cli�ord algebra valued fun
tion f onM ,su
h that for ea
h a 2M , (a; f(a)) is in the Cli�ord bundle C̀ (M). Su
h a se
tion willalso be 
alled a (tangent) Cli�ord �eld. Be
ause of the identi�
ation of the Cli�ordalgebra with the exterior algebra, a tangent Cli�ord �eld 
an be identi�ed with adi�erential form.In ea
h Cli�ord algebra C̀ (TaM), there are two 
andidate pseudo-units. The 
hoi
ebetween them de�nes the orientation of TaM . We say that M is orientable if su
h a
hoi
e 
an be made in a 
ontinuous way. More formally, M is orientable if there is aCli�ord �eld eM , whi
h in ea
h point is a unit m-ve
tor (i.e. eM (a)eM (a) = �1). IfM is orientable, there are two of these �elds. After 
hoosing one, M is oriented, andeM is 
alled the pseudo-unit �eld. A tangent Cli�ord �eld 
an be 
hara
terised by thefa
t that f = e�1M (M � f) + [f ℄0:Noti
e that a ve
tor valued tangent Cli�ord �eld 
an be identi�ed with a se
tion ofthe tangent bundle.2 Exterior derivatives and 
urvatureLet f be a tangent Cli�ord �eld. Sin
e, with the embedding above, f is a fun
tion withvalues in a ve
tor spa
e (the Cli�ord algebra C̀ p;q) it is possible to take derivatives of



Conne
tions on Embedded Manifolds 27f in the 
lassi
al sense. It is not ne
essarily true that DXf is a tangent Cli�ord �eld.Hen
e, for these �elds, we introdu
e the exterior derivative rXf by(5) rXf(a) = PaDXf(a);where Pa is the proje
tion operator onto the Cli�ord algebra generated by SaM .Noti
e that rX [f(a)℄k = e�1M (a)(eM (a) � [DXf(a)℄k);for k > 0, while rX [f(a)℄0 = [DXf(a)℄0. Noti
e that derivation, and hen
e also exte-rior derivation preserves homogeneity: [DXf(a)℄k = DX [f(a)℄k, and also [rXf(a)℄k =rX [f(a)℄k. We shall shortly prove that r is the 
lassi
al torsion-free Koszul 
onne
-tion on the Cli�ord bundle. Before that we introdu
e the notion of parallel transport.Let f be a tangent �eld de�ned on a 
urve 
, with image going from x to y on M . Ifr�t
f = 0, then it is said that f(x) is parallel transported to f(y).Some 
aution is needed as the proje
tion operator is not distributive with respe
tto Cli�ord multipli
ation: in general it is not true that Pa(��) = Pa(�)Pa(�) (this ise.g. false when � = � is a non-isotropi
 ve
tor orthogonal to SaM). It is true howeverthat(6) Pa(��) = Pa(�)Pa(�)if either � or � are tangent to SaM .2.1 The relation between D and rThe 
hange of the pseudo-unit �eld gives a measure for the 
urvature of the manifold,i.e. the way in whi
h M lo
ally is di�erent from an m-dimensional pseudo-Eu
lideanspa
e. Sin
e the pseudonorm eM (x)eM (x) = (�1)p is 
onstant, for any tangent ve
tor~x, D~xeM is orthogonal to eM itself, and r~xeM = 0. Moreover, the pseudo-unit alwaysis an element of the Pin group.The derivatives of the pseudo-unit are important enough to merit a separate no-tation. We de�ne bX by(7) DXeM = bXeM (x);and, if a 
oordinate system is given, bi by DieM (x) = bi(x)eM (x). Sin
e the pseudo-unit always is an element of the Pin group, bX and bi are elements of the Lie algebraof the Pin group, i.e. they are bive
tor valued fun
tions on M . Noti
e however thatthey are not tangent Cli�ord �elds, unless they are zero.Moreover � = e2M = �1 is 
onstant, and so 0 = DX� = bXe2M + eMbXeM ,whi
h implies that bXeM = �eMbX . This is only possible if bX is the produ
t of ave
tor orthogonal to eM and a ve
tor parallel to it, or a sum of su
h produ
ts. As a
onsequen
e, if ~v 2 TxM , then d�(bX)~v is orthogonal to eM . This follows in a fairlystraightforward way from the rule ~x~y~z � ~z~x~y = �B(~y; ~z)~x + B(~x; ~z)~y.The bive
tor bX leads to an eÆ
ient des
ription of the di�eren
e between DXand rX . We start with a tangent ve
tor �eld ~f . DX ~f 
an be split into a part(DX ~f)k tangent to M and a part (DX ~f)? orthogonal to M , both ve
tor val-ued. Noti
e that ~feM + (�1)meM ~f = 0, (DX ~f)keM + (�1)meM (DX ~f)k = 0 and



28 J.Cnops(DX ~f)?eM + (�1)meM (DX ~f)? = 2(DX ~f)?eM . Taking the derivative of the �rstequation gives0 = (DX ~f)eM + ~fbXeM + (�1)mbXeM ~f + (�1)meMDX ~f= 2(DX ~f)?eM � d�(bX)f:Sin
e rX ~f = DX ~f � (DX ~f)? this results in rX ~f = DX ~f � d� � bX2 � ~f . From theprodu
t rule (6) it then follows that this relation holds for any Cli�ord valued tangent�eld, and we 
an use it to de�ne r for general C̀ p;q valued fun
tions(8) rXf = DXf � d��bX2 � f:Noti
e that the fa
t that d�(bX)~f is orthogonal to eM provides an independent proofthat bX is the produ
t of an orthogonal and a tangent ve
tor, or a sum of su
hprodu
ts.2.2 The 
urvature tensorThe 
urvature tensor is given, for two parallel ve
tor �elds, byR(X;Y ) = rXrY �rYrX �r[X;Y ℄:The geometri
al interpretation is the following: let f be a tangent �eld, and take a
losed loop 
 with size � in the X and Y dire
tions (noti
e the presen
e of the termin [X;Y ℄, whi
h assures that the loop will be 
losed), starting in x. f(x), paralleltransported along 
 will result in a new tangent ve
tor, say �f(x), and the di�eren
ebetween f(x) and �f(x) will be �R(X;Y )f(x), up to higher order terms in �. Obviously� is an orthogonal transformation, and as a di�erential of orthogonal transformationsR(X;Y ) must be an antisymmetri
 transformation. We prove this more formally interms of the derivatives of the pseudo-unit �eld.Theorem 2.1. The 
urvature is given byR(X;Y ) = d�(bXbY � bY bX);where bXbY � bY bX is a tangent bive
tor.Proof. The proof 
onsists simply of inserting (8) into the de�nition of R(X;Y )f , andthen simplifying. First 
al
ulater[X;Y ℄f = DXDY f �DYDXf � (1=2)d�(b[X;Y ℄)f;where b[X;Y ℄eM = (DXDY �DYDX)eM= DX(bY eM )�DY (bXeM )= (DXbY )eM + bY bXeM � (DY bX)eM + bXbY eM :Then subtra
t this from



Conne
tions on Embedded Manifolds 29rXrY f = DXDY f � (1=2)d�(bX)DY f�(1=2)DX(d�(bY )f) + (1=4)d�(bX)d�(bY )f= DXDY f � (1=2)d�(bX)DY f � (1=2)d�(DXbY )f�(1=2)d�(bY )DXf + (1=4)d�(bX)d�(bY )f;and subtra
t the similar equation with X and Y inter
hanged. This givesR(X;Y )f = 12(d�(DY bX)f � d�(DXbY )f + d�(b[X;Y ℄)f+14(d�(bX)d�(bY )� d�(bX)d�(bY ))f= �14(d�(bX)d�(bY )� d�(bY )d�(bX))f= �14(d�(bXbY � bY bX))f;where the last line follows from the relation d�(a)d�(b) � d�(b)d�(a) = d�(ab � ba)whi
h is valid for all bive
tors a and b, as is easily proved by writing out d� inmultipli
ation form, or alternatively 
an be seen using the fa
t that d� is a derivedrepresentation and therefore preserves the bra
ket. It is obvious from the de�nitionthat if f is tangent then R(X;Y )f must be tangent, and so bXbY � bY bX is itselftangent.Finally we prove that the 
onne
tion de�ned above is the 
lassi
al Levi-Civita
onne
tion (i.e. that 
onne
tion whi
h parallel transports ve
tors to ve
tors with thesame norm, and whi
h is torsion-free) on the tangent bundle, and therefore indepen-dent of the embedding 
hosen. Noti
e that for a ve
tor �eld ~f and a 
urve 
, theequation r�t
 ~f = 0 implies ��t
 ~f is orthogonal to ~f , and hen
e that the norm of ~fis 
onstant, and we only have to prove that r is torsion-free. Re
all that the torsionof a 
onne
tion is given by(9) T (X;Y ) = rXY �rYX � [X;Y ℄:Assume now lo
al 
oordinates are given in an open set U of M . We 
an assumethat there is a 
hart  : V ! W , where V and W are open in Rp;q , U = M \W , (V \ Rr;ss) = U , and that  is non-singular on V , i.e. that the 
hart 
an beextended to a neighbourhood of V in Rp;q. We then have the 
oordinate ve
tor �eldsEif = �i( �1 Æf), whi
h, a

ording to the embedding (4) 
an be identi�ed in a pointa with elements of Rp;q �Rp;q byEi(a) = (a; �i ):Proving that T = 0, is equivalent with proving that T (Ei; Ej) = 0 for any i and j. Butsin
e they are 
oordinate ve
tor �elds [Ei; Ej ℄ = 0, and a

ording to the de�nition ofr we have that riEj = P (�i�j ), where P is orthogonal proje
tion onto the tangentspa
e. Sin
e �i�j = �j�i , this proves that riEj = rjEi, and so the exteriorderivative is torsion-free.



30 J.Cnops3 Embedded Spin stru
turesFor the Cli�ord bundle it was suÆ
ient to have an isometri
 embedding in some(pseudo-)Eu
lidean spa
e. If we want to introdu
e Spin stru
tures however, we shallneed a mu
h stronger 
ondition.De�nition 3.1. A set of C1 ve
tor valued fun
tions ~n1; : : : ; ~nn�m on M is 
alled aglobal trivialisation of the normal bundle if and only if in every point a of M and forevery i and j(i) ~ni(a) is orthogonal to TaM(ii) ~ni(a) � ~nj(a) = �Æij .The term global trivialisation reminds of the fa
t that the ve
tor �elds~n1; : : : ; ~nn�m de�nes a 
ontinuously varying basis of the orthogonal 
omplement ofTaM in Rp;q . We assume that M (or rather the embedding of M in Rp;q allows aglobal trivialisation of the normal bundle. We shall 
hoose a referen
e point ~N onM ,and identify the spa
e Rr;s (re
all that (r; s) is the signature of the metri
 onM withT ~NM . Then we 
an de�ne a Spin stru
ture on M .De�nition 3.2. A Spin stru
ture � onM is a submanifold ofRp;q�Spin(p; q) de�nedby the following 
ondition: a point (a; �) 2 Rp;q � Spin(p; q) is in � if and only if(i) a 2M .(ii) The orthogonal tranformation �(�) maps TaM onto T ~NM , and moreover mapsea
h ~ni(a) to ~ni( ~N).Noti
e that there is a left a
tion of Spin(r; s) on �. Indeed, if � is an element ofSpin(r; s), and (a; �) is in �, then 
learly (a; ��) 2 �. Moreover ea
h �bre �a =f(a; �) 2 �g is equivalent to Spin(r; s), sin
e (a; �) 2 � and (a; �) 2 � implies thatthere is a � 2 Spin(r; s) su
h that � = ��. It turns out that � is a so-
alled pri
ipalSpin(r; s)-bundle over M (see e.g. [5℄ for more information on this notion).It is immediately 
lear that every orientable hypersurfa
e (i.e. a submanifold wheren�m = 1) has a Spin stru
ture, sin
e the orientation 
an be equalled to the 
hoi
e of anormal ve
tor. There is a general de�nition of Spin stru
tures on manifolds, whi
h doesnot make use of the embedding. Not every manifold has a Spin stru
ture in this sense;a manifold whi
h has is 
alled a Spin manifold. It seems not to be known whetherea
h Spin manifold allows for an isometri
 embedding with a global trivialisation, itis however 
ertain that a Spin manifold 
an have an isometri
 embedding whi
h doesnot allow for an embedding of the Spin stru
ture.As an example we have the 
ir
le S1. With its traditional embedding in R2, it isa hypersurfa
e, and hen
e has the obvious Spin stru
ture. There is however a se
ondSpin stru
ture whi
h 
annot be realised in R2, but whi
h 
an be realised in R3. We
hoose an orthonormal basis e1, e2, e3 of R3, and the parametrisation of S1 given by�(�), where � = 
os �e1+sin �e2, and �� < � � �. Noti
e that Spin(1) = f1;�1g. Thereferen
e point ~N is 
hosen to be e1, so �( ~N) = 0, the following pi
ture is obtained:(1) The Spin stru
ture of S1 as a hypersurfa
e is given by ~n1(�) = � (and, in R3,~n2(�) = e3). Then ~n1( ~N) = e1 and the Spin �bre in an arbitrary point � is givenby
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tions on Embedded Manifolds 31�� = ���
os �(�)2 � e12 sin �(�)2 �� :Noti
e that this Spin stru
ture is 
onne
ted: going round the 
ir
le on
e 
hangesthe sign of the Spin element.(2) A se
ond Spin stru
ture given by ~n1(�) = � 
os �+e3 sin � and ~n2(�) = �� sin �+e3 
os �. Then ~n1( ~N) = e1 and ~n2( ~N) = e3. The Spin �bres in this 
ase are givenby �� = ���
os �2 � e13 sin �2��
os �2 � e12 sin �2�� :This Spin stru
ture is not 
onne
ted: it is homeomorphi
 to S1 � Spin(1).Using the Spin stru
ture we 
an give an important alternative 
hara
terisationof the Cli�ord �bres: (a; b) is an element of the Cli�ord �bre C̀ a if and only if�b�� 2 C̀ ~N = C̀ r;s for any (a; �) in �a. As the mapping �(�) is a dire
t orthogonaltransformation on Rp;q, and moreover the ve
tors ~ni(a) have the same orientation astheir image under �(�), ~ni( ~N), this means that the mapping �(�) restri
ted to TaMis a dire
t orthogonal transformation onto T ~NM , and so that �(�)eM (a) = eM ( ~N).4 Spinor bundlesAssume that M has a Spin stru
ture �, with referen
e point ~N . We then 
an de�nean embedded spinor bundle S in Rp;q � C̀ p;q as the submanifold 
onsisting of pairs(a;  ) for whi
h(i) a 2M .(ii) For any (a; �) 2 �a, � 2 C̀ r;s.As usual, Sa = f(a; �) 2 Sg is 
alled the spinor �bre in a, and spinor se
tions arede�ned in a way similar to that for se
tions of the Cli�ord bundles. Spinor se
tionswill also be 
alled spinor �elds.It is 
lassi
al to de�ne the spinor bundle using an irredu
ible representation of theCli�ord algebra C̀ r;s. Let A be su
h a representation. In the 
ustomary de�nition,
ondition (ii) has the form � 2 A. However, it is known that A is isomorphi
 to aminimal left ideal of C̀ r;s, so that our de�nition en
ompasses the 
lassi
al one. Theminimal left ideal 
an be written in the form C̀ r;sJ , where J is a primitive idempo-tent. When one wants to use irredu
ible representations of C̀ r;s, one 
an restri
t theattention to spinor �elds (as we have de�ned them) whi
h satisfy the extra 
ondition J =  .Noti
e that, in a 
ertain sense, the Cli�ord algebra C̀ a is in the tra
e 
lass of thespinor �bre. Indeed, (a; b) 2 C̀ a if and only if b =  �� for some (a;  ) and (a; �) bothin Sa. Again we 
an de�ne a 
onne
tion for spinor se
tions. Let  be a spinor se
tionand X be a tangent ve
tor in TaM . Then we de�ne the 
onne
tion 6r by6rX = Sa(�X );



32 J.Cnopswhere Sa is orthogonal proje
tion onto the spinor �bre Sa. Again the bive
tor valuedfun
tion X ! bX plays an important rôle in a more expli
it expression for the 
on-ne
tion. However, there is a 
ertain arbitrariness in the trivialisation of the normalbundle, unless we are dealing with a hypersurfa
e.Theorem 4.1. The 
onne
tion 6r is given by6rX = �X � 12(bX + eX) :Here bX is the bive
tor given by (7), and eX is a bive
tor in the Cli�ord algebragenerated by the normal �bre, i.e. in the Cli�ord algebra generated by ~n1; : : : ; ~nm�n.Proof. Fix a point a, and take a se
tion � of the Spin bundle in a neighbourhood ofa. Then � is a C̀ r;s valued fun
tion near a, andDX(� ) = (DX�) + �(DX ):This is also C̀ r;s valued, and so ��1DX(� ) is a lo
al spinor se
tion, i.e. its partorthogonal to the spinor �bre is zero:0 = (��1(DX�) )? + (DX )?:Now (DX )? = DX � 6rX , and we shall prove that (��1(DX�) )? = (1=2)(bX +eX) , where eX is fully orthogonal to the tangent spa
e. First noti
e that (��1(DX�) )? =(��1(DX�))? , by (6). We shall put ��1(DX�) = 
X . This is a bive
tor, be
ause �is in the Spin group, and we split it up into
X = (
X)k + (
X )t + 12eX ;where (
X)k is in the tangent Cli�ord algebra,(
X)t is a sum of produ
ts of ve
tors,one parallel and one orthogonal to C̀ a, and eX is fully orthogonal to C̀ a. We set outto prove that (
X )t is (1=2)bX . Noti
e that both (
X )k and eX 
ommute with thepseudo-unit �eld eM , while (
X)t anti
ommutes with it.Starting point is that �eM��1 = eM ( ~N) is 
onstant. Hen
e0 = (DX�)eM��1 + �(DXeM )��1 + �eM (DX��1)= �
XeM��1 + �(bXeM )��1 � �eM
X��1= � [2(
X)teM + bXeM ℄��1:This 
ompletes the proof.It 
an be easily seen that, while bX is determined by eM , 
X is 
ompletely deter-mined by the trivialisation of the normal bundle, ~n1; : : : ; ~nn�m. Indeed, eX is in thenormal se
tion, and for all i we have that �~ni��1 = ~ni( ~N). Therefore the derivativeis zero, and 0 = DX(�~ni��1)= �
X~ni��1 + �(DX~ni��1 � �~ni
X��1):Now (
X)k 
ommutes with ~ni, and so, using the dot produ
t notation,
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tions on Embedded Manifolds 33DX~ni = (bX + eX) � ~ni:These equations are suÆ
ient to determine eX .There is a 
ertain arbitrariness in the trivialisation of the normal bundle, whi
his expressed by the extra term eX in the expression of the 
onne
tion, unless we aredealing with a hypersurfa
e. In this 
ase eX must of ne
essity be zero, be
ause thenormal se
tion is one-dimensional, and the expression for the 
onne
tion be
omes6rX = �X � 12bX :A
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