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Abstract

In this paper we consider classical notions of differential geometry, such as
Clifford and spinor bundles, together with their connections, from the point of
view of their embeddings in (pseudo-)Euclidean space. It turns out that the use
of an embedding allows for fairly simple expression of these notions.
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1 Introduction

Historically speaking, the notion of manifold originally meant what we now would call
a submanifold of Fuclidean space, and, more specifically, a surface in three-dimensional
space. It is in this context that most notions (such as tangent vectors, curvature) were
originally defined, and where they have a meaning which is fairly easy to grasp. Much
more recently, it was shown by the famous theorems of Nash and Clarke (see [7] and
[2]) respectively, that up to a minor continuity condition, any metric manifold can be
embedded isometrically in a (pseudo-)Euclidean space of sufficiently big dimension.
We can then embed the tangent and Clifford bundles in the corresponding entities
of the embedding space, which makes it possible to describe connections in a quite
natural way.

In this text we then consider manifolds whose Spin structure can itself be embed-
ded in the Spin structure of the embedding space (it seems to be an open question
whether any Spin manifold allows for such an embedding). Again, the spinor bundle,
and the relevant connections obtain an easy form.

Whiile this approach may not appeal to some because of the introduction of super-
fluous entities connected with the embedding space, the method has the advantage of
being quite transparent. As an example, it turned out to be very easy to determine
the eigen sections, rather than only the spectrum, of the spinor Dirac operators for the
sphere and for Poincaré space, as will be shown in a forthcoming article ([3]). In the
rest of this section we give the necessary conventions and notations used throughout
this paper.

Orthogonal spaces and Clifford algebras. An orthogonal space V is a (finite
dimensional) vector space with a symmetric scalar product. With R”? is meant the
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n-dimensional vector space over R, where n = p + ¢, which consists of all n-tuples of

real numbers x = (x1,..., ;) with the scalar product
p n

(1) B(z,y) = — Zrzyz + Z ZilYi-
i=1 i=p+1

The Clifford algebra over V is denoted by C/(V). It is the free algebra generated by
V modulo the relation

2) # = —B(Z, 7).

This implies (by the polarisation formula) that orthogonal vectors anticommute, while
parallel vectors commute.

For the Clifford algebra over the standard orthogonal space RP'? we shall use the
short notation (¢, , instead of C/(R”'?). Taking the standard basis ey, ..., e, of RP"*
we see that the basis vectors anticommute. Actually equation (2) is equivalent to the
relation

(3) €i€j + €j€; = *28(61',6]‘).

A basis of Cf, 4 is given by ordered products of different basis vectors. We shall use
two shorthand notations for such a product:

€ty - - Bty = €ty 1y :€{t1’___7tk}7 t < ...<{tg.

Since all products of generators can be written (up to sign) in the form e, where
A is a subset of {1,...,n}, these e4’s form a basis of the Clifford algebra, and the
dimension of (¢, , over R is equal to 2". The set {1,...,n} will in the sequel be
written as n for short.

Elements of (¢, , are called Clifford numbers. Three (anti)automorphisms will be

used (here 7 is an arbitrary vector, and a and b are arbitrary Clifford numbers):

(i) The main antiautomorphism is defined by

—Z (ab) = ba.

81
I

(ii) The reversion is defined by

%

Z (ab)* =b*a™.
(iii) The main automorphism is defined by
7 =-7 (ab)' = a'b'.

These (anti)morphisms will mainly be applied to products of vectors. Explicitly one
obtains for a product of k£ vectors:

(#1...3) = (=@%)...(—21)
(fl -'k)* Ty ... T
(@1... %) = (=%)...(=7%)
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If A has k elements, then e4 is called a k-vector. Likewise any linear combination of
k-vectors is called a k-vector, and the vector space of k-vectors is written as CZ’;’Q; a
k-vector which can be written as the product of k vectors is called a k-blade. In less
than four dimensions every k-vector is a k-blade, but for n > 4, ejeq + e3zeq is not a
k-blade.

Obviously (¥, , is the direct sum of all CZ’;’Q for £ < n, and the projection of a

Clifford number a onto C@fm will be written as [a];. Instead of 1-vectors the term
vectors is used, and vectors are identified with elements of R”'?. Also the term bivec-
tors is used for 2-vectors, while the elements of C€Z7q are called pseudo-scalars. The
n-vector ey is called the pseudo-unit. Notice that the product of the n basis vectors

in a different order always is en, at least up to sign: actually ep defines an orientation
of RP*?. The wedge product on the Clifford algebra is defined by

FAG =)+ B(& §),

and can be extended using associativity. In general, for two Clifford numbers a and
b, [a]x A [b]e = [ab]g+¢. In a similar way there is a dot product defined by

[a]k - [b]e = [ab]x—¢ if k and £ are strictly positive
R k= 0.

Let a = [#1 ... Zk]x be a k-blade. Then a is invertible (i.e. aa # 0; for any k-blade b
we have that bb is real) if and only if V = span{z;,..., 2} is a k-dimensional vector
space, such that the restriction of B to V' is non-degenerate. The orthogonal projection
of a Clifford number ¢ onto C/(V') is given by a~!(a-c)+[c]o. The convention a-[c]y = 0
is quite unpractical for our purposes, but it is quite general.

Spin and Pin groups. For any a in the Clifford algebra such that aa’ = +1 it is
clear that a'~! exists, and so the the definition of the linear transformation on the
Clifford algebra

x(a) : Clpy — Clpy

7 = x(a) = aZad !
is well defined. The Pin group is now defined as the group of such elements which
leave the underlying vector space invariant:

Pin(p,q) = {a € ll, 4 : aa' = £1 and V7 € RP”? : x(a)Z € R"7}.

X obviously provides a group morphism of Pin(p,q) to a subgroup of GL(R??). It
can be proved that, for every element a of the Pin group, x(a) (when restricted to
RPY), is an element of the orthogonal group O(p, q). Moreover Pin(p, ¢) is a double
covering of O(p, q), the kernel of x : Pin(p, q) — O(p, q) being {—1,1}, and Pin(p, q)
is generated as a group by the vectors Z for which ZZ' = +1.

In a similar way we have the Spin group, Spin(p, ¢) which consists of the products
of even numbers of unit vectors and as such gives a double covering of SO(p, q).

The Lie algebra of the Pin group (which is also the Lie algebra of the Spin group,
and hence isomorphic to so(p, q)) is the space C@i’q of bivectors, with the Lie bracket
[a,b] = ab— ba. Starting from the representation x of Pin(p, ¢) on the Clifford algebra,
we arrive at the derived representation dy given by
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dx(b)a = ba — ab,

for an arbitrary bivector b and a Clifford number a.

Submanifolds. Let M be an m-dimensional submanifold of RP?, let a be an arbitrary
point of M. There is a natural identification of an element of the tangent space T, M
with a vector of RP? as follows:any X € T, M will be identified with (a,#) € M x R4
if and only if, for any C*° function f on M, and any C* extension F of f in a
neighbourhood (in R?'?) of a we have that

(4) Dx f = 0;F(a+tZ)|=0-

In the sequel we write (a,Z), or simply Z instead of X; any manipulation (mul-
tiplication, derivation etc.) is implied to act on the second entry. So, for example
(a,%) + (a,%) = (a,% + 7). Formally, the tangent bundle is embedded this way in
RP? x RPY; less formally of course the tangent space T, M is considered as a sub-
space of R,

A metric manifold (M, g) with signature (r,s) (the metric g can be Riemannian
or pseudo-Riemannian) is called isometrically embedded if and only if

9((a, %), (a,9)) = B(Z, 1),

where B(-,-) is the scalar product of RP*?. For an isometrically embedded manifold,
the Clifford bundle can be embedded in R”? x (¥, , in a way quite similar to the
one used for the tangent bundle. Considering T,M as a subspace of RP?, we see
that, because g is non-degenerate, the restriction of B to T, M is also non-degenerate.
Hence it makes sense to construct the Clifford algebra C/(T, M), which naturally is
a subalgebra of (¢, . The Clifford bundle, denoted by C/(M) is the submanifold of
RP? x (1, , consisting of those elements (a, b) for which @ € M and b € (T, M).

A section of the Clifford bundle is a C*°, Clifford algebra valued function f on M,
such that for each a € M, (a, f(a)) is in the Clifford bundle C/(M). Such a section will
also be called a (tangent) Clifford field. Because of the identification of the Clifford
algebra with the exterior algebra, a tangent Clifford field can be identified with a
differential form.

In each Clifford algebra C¢(T, M), there are two candidate pseudo-units. The choice
between them defines the orientation of T, M. We say that M is orientable if such a
choice can be made in a continuous way. More formally, M is orientable if there is a
Clifford field ejs, which in each point is a unit m-vector (i.e. ep(a)eprs(a) = £1). If
M is orientable, there are two of these fields. After choosing one, M is oriented, and
ey is called the pseudo-unit field. A tangent Clifford field can be characterised by the
fact that

f=en Gy )+ [flo

Notice that a vector valued tangent Clifford field can be identified with a section of
the tangent bundle.
2 Exterior derivatives and curvature

Let f be a tangent Clifford field. Since, with the embedding above, f is a function with
values in a vector space (the Clifford algebra ¢, ,) it is possible to take derivatives of
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f in the classical sense. It is not necessarily true that Dx f is a tangent Clifford field.
Hence, for these fields, we introduce the exterior derivative V x f by

(5) Vx f(a) = P, Dx f(a),

where P, is the projection operator onto the Clifford algebra generated by S,M.
Notice that

Vx[f(@)k = €37 (a)(enr(a) - [Dx f(a)lk),

for k > 0, while Vx[f(a)]o = [Dx f(a)]o. Notice that derivation, and hence also exte-
rior derivation preserves homogeneity: [Dx f(a)]r = Dx[f(a)]k, and also [V x f(a)]x =
V x[f(a)]x. We shall shortly prove that V is the classical torsion-free Koszul connec-
tion on the Clifford bundle. Before that we introduce the notion of parallel transport.
Let f be a tangent field defined on a curve y, with image going from z to y on M. If
Va,f =0, then it is said that f(z) is parallel transported to f(y).

Some caution is needed as the projection operator is not distributive with respect
to Clifford multiplication: in general it is not true that P,(Au) = P,(A)P,(u) (this is
e.g. false when \ = p is a non-isotropic vector orthogonal to S, M). Tt is true however
that

(6) Pa()‘u) = Pa()‘)Pa (M)

if either A or p are tangent to S, M.

2.1 The relation between D and V

The change of the pseudo-unit field gives a measure for the curvature of the manifold,
i.e. the way in which M locally is different from an m-dimensional pseudo-Euclidean
space. Since the pseudonorm ey (z)en () = (—1)P is constant, for any tangent vector
Z, Dzep is orthogonal to ey itself, and Vzey = 0. Moreover, the pseudo-unit always
is an element of the Pin group.

The derivatives of the pseudo-unit are important enough to merit a separate no-
tation. We define bx by

(7) Dxen = bxem(),

and, if a coordinate system is given, b; by D;epr(z) = b;(x)enr(x). Since the pseudo-
unit always is an element of the Pin group, bx and b; are elements of the Lie algebra
of the Pin group, i.e. they are bivector valued functions on M. Notice however that
they are not tangent Clifford fields, unless they are zero.

Moreover 1 = e?w = =1 is constant, and so 0 = Dxn = bxeﬁ/[ + embxens,
which implies that bxeys = —epbx. This is only possible if bx is the product of a
vector orthogonal to ey and a vector parallel to it, or a sum of such products. As a
consequence, if ¥ € T, M, then dx(bx)¥ is orthogonal to eps. This follows in a fairly
straightforward way from the rule 2z — ZZy = —B(¥, 2)¥ + B(%, 2)7.

The bivector bx leads to an efficient description of the difference between Dx
and Vx. We start with a tangent vector field f DXf can be split into a part

= =

(Dx f)) tangent to M and a part (Dxf), orthogonal to M, both vector val-

—

ued. Notice that fep + (=1)™epn f = 0, (DXf_)HeM + (=1)"em(Dx f) = 0 and



28 J.Cnops
(Dx_]?)leM + (—1)m€M(Dxf_3l = 2(DXf_3LeM- Takmg the derivative of the first
equation gives

0 = (Dxfem + foxenm + (=1)"bxemf + (—1)™enDx f

= 2(Dxf)iem —dx(bx)f.

Since fo: Dxf— (DX]?)L this results in VXf*: DXf— dx (bTX) f From the
product rule (6) it then follows that this relation holds for any Clifford valued tangent
field, and we can use it to define V for general (/,, , valued functions

Q Vas=Dxf ()1

-

Notice that the fact that dy(bx)f is orthogonal to ey provides an independent proof
that bx is the product of an orthogonal and a tangent vector, or a sum of such
products.

2.2 The curvature tensor

The curvature tensor is given, for two parallel vector fields, by
R(X,Y) =VxVy = VyVx - Vixy|

The geometrical interpretation is the following: let f be a tangent field, and take a
closed loop 7 with size € in the X and Y directions (notice the presence of the term
in [X,Y], which assures that the loop will be closed), starting in z. f(z), parallel
transported along v will result in a new tangent vector, say I'f(z), and the difference
between f(x) and I'f(z) will be eR(X,Y") f(x), up to higher order terms in €. Obviously
I is an orthogonal transformation, and as a differential of orthogonal transformations
R(X,Y) must be an antisymmetric transformation. We prove this more formally in
terms of the derivatives of the pseudo-unit field.

Theorem 2.1. The curvature is given by

R(X, Y) = d)((bxby - bybx),

where bxby — bybx is a tangent bivector.
Proof. The proof consists simply of inserting (8) into the definition of R(X,Y’)f, and
then simplifying. First calculate

Vix,yif = DxDyf - DyDxf —(1/2)dx(bx,v)f,

where

bix,yiem = (DxDy — DyDx)en
Dx (byem) — Dy (bxem)
= (Dxby)eM-l-bbeeM—(Dybx)@M-‘rbxbyeM.

Then subtract this from
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VxVyf DxDy f—(1/2)dx(bx)Dy f

—(1/2)Dx(dx(by)f) + (1/4)dx(bx)dx(by) f
= DxDyf — (1/2)dx(bx)Dy f — (1/2)dx(Dxby)f
—(1/2)dx(by)Dx f + (1/4)dx(bx )dx(by) f,

and subtract the similar equation with X and Y interchanged. This gives

R(X,Y)f = 5(dx(Dybx)f —dx(Dxby)f +dx(bxy))f
(dx(bx)dx(by) — dx(bx)dx(by)) f
(dx(bx)dx(by) — dx(by )dx(bx)) f

= —;(dx(bxby = bybx))f,

1
2
+

e S i

where the last line follows from the relation dy(a)dx(b) — dx(b)dx(a) = dx(ab — ba)
which is valid for all bivectors a and b, as is easily proved by writing out dy in
multiplication form, or alternatively can be seen using the fact that dy is a derived
representation and therefore preserves the bracket. It is obvious from the definition
that if f is tangent then R(X,Y)f must be tangent, and so bxby — bybx is itself
tangent. |

Finally we prove that the connection defined above is the classical Levi-Civita
connection (i.e. that connection which parallel transports vectors to vectors with the
same norm, and which is torsion-free) on the tangent bundle, and therefore indepen-
dent of the embedding chosen. Notice that for a vector field f and a curve v, the
equation ngfz 0 implies agmf-’is orthogonal to f and hence that the norm of f
is constant, and we only have to prove that V is torsion-free. Recall that the torsion
of a connection is given by

(9) T(X,Y)=VxY — VyX — [X,Y].

Assume now local coordinates are given in an open set U of M. We can assume
that there is a chart ¢ : V. — W, where V and W are open in R?? U = M NW,
(VN R"s) = U, and that ¢ is non-singular on V, i.e. that the chart can be
extended to a neighbourhood of V' in RP*?. We then have the coordinate vector fields
E;f = 0;(¢"! o f), which, according to the embedding (4) can be identified in a point
a with elements of R”°? x RP? by

Ei(a) = (a,0i).

Proving that T' = 0, is equivalent with proving that T'(E;, E;) = 0 for any i and j. But
since they are coordinate vector fields [E;, E;] = 0, and according to the definition of
V we have that V;E; = P(0;0;1), where P is orthogonal projection onto the tangent
space. Since 0;0;¢ = 0;0;4, this proves that V;E; = V;FE;, and so the exterior
derivative is torsion-free.
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3 Embedded Spin structures

For the Clifford bundle it was sufficient to have an isometric embedding in some
(pseudo-)Euclidean space. If we want to introduce Spin structures however, we shall
need a much stronger condition.

Definition 3.1. A set of C'°° vector valued functions #iq,...,7,_, on M is called a
global trivialisation of the normal bundle if and only if in every point a of M and for
every ¢ and j

(i) 7;(a) is orthogonal to T, M

The term global trivialisation reminds of the fact that the vector fields

fi1,...,Mn—m defines a continuously varying basis of the orthogonal complement of
T, M in RP%. We assume that M (or rather the embedding of M in RP'? allows a
global trivialisation of the normal bundle. We shall choose a reference point N on M,
and identify the space R™* (recall that (7, s) is the signature of the metric on M with
T M. Then we can define a Spin structure on M.

Definition 3.2. A Spin structure X on M is a submanifold of R?*? x Spin(p, q) defined
by the following condition: a point (a,c) € RP? x Spin(p, ¢) is in ¥ if and only if

(i) a € M.

(ii) The orthogonal tranformation x(o) maps 7, M onto Ty M, and moreover maps
each 7i;(a) to 7;(N).

Notice that there is a left action of Spin(r,s) on X. Indeed, if 7 is an element of
Spin(r, s), and (a,c) is in X, then clearly (a,70) € X. Moreover each fibre ¥, =
{(a,0) € L} is equivalent to Spin(r,s), since (a,0) € ¥ and (a,u) € T implies that
there is a 7 € Spin(r, s) such that u = 7o. It turns out that ¥ is a so-called pricipal
Spin(r, s)-bundle over M (see e.g. [5] for more information on this notion).

It is immediately clear that every orientable hypersurface (i.e. a submanifold where
n—m = 1) has a Spin structure, since the orientation can be equalled to the choice of a
normal vector. There is a general definition of Spin structures on manifolds, which does
not make use of the embedding. Not every manifold has a Spin structure in this sense;
a manifold which has is called a Spin manifold. It seems not to be known whether
each Spin manifold allows for an isometric embedding with a global trivialisation, it
is however certain that a Spin manifold can have an isometric embedding which does
not allow for an embedding of the Spin structure.

As an example we have the circle S'. With its traditional embedding in R?, it is
a hypersurface, and hence has the obvious Spin structure. There is however a second
Spin structure which cannot be realised in R?, but which can be realised in R®. We
choose an orthonormal basis e, s, e of R®, and the parametrisation of S’ given by
6(&), where £ = cosfle; +sinfes, and —m < 6 < 7. Notice that Spin(1) = {1, —1}. The
reference point N is chosen to be e, so 9(1\7) = 0, the following picture is obtained:

(1) The Spin structure of S' as a hypersurface is given by 7, (€) = ¢ (and, in R,
ii5(€) = es). Then 77, (N) = e; and the Spin fibre in an arbitrary point ¢ is given
by
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= (o029 -0 %9) )

Notice that this Spin structure is connected: going round the circle once changes
the sign of the Spin element.

(2) A second Spin structure given by 7, (§) = £ cos@+e3sinf and 75 (§) = —£sin O+

— —

ez cosf. Then 7i; (N) = e; and 72 (V) = e3. The Spin fibres in this case are given

by
0 ) 0 .0
Ye = {:I: <cos 5~ €13 sin 5) <cos 5~ €12 sin 5) } .

This Spin structure is not connected: it is homeomorphic to S! x Spin(1).

Using the Spin structure we can give an important alternative characterisation
of the Clifford fibres: (a,b) is an element of the Clifford fibre (¢, if and only if
obo € Uy = U, s for any (a,0) in ¥,. As the mapping x(o) is a direct orthogonal
transformation on RP*? and moreover the vectors 7i;(a) have the same orientation as
their image under x(c), i#;(IN), this means that the mapping x (o) restricted to T, M
is a direct orthogonal transformation onto T M, and so that x(o)en (a) = en (N).

4 Spinor bundles

Assume that M has a Spin structure ¥, with reference point N. We then can define
an embedded spinor bundle S in R”? x (¥, , as the submanifold consisting of pairs
(a, ) for which

(i) a € M.
(ii) For any (a,0) € £, o¢p € L, 5.

As usual, S, = {(a,0) € S} is called the spinor fibre in a, and spinor sections are
defined in a way similar to that for sections of the Clifford bundles. Spinor sections
will also be called spinor fields.

It is classical to define the spinor bundle using an irreducible representation of the
Clifford algebra (/. ;. Let A be such a representation. In the customary definition,
condition (ii) has the form oy € A. However, it is known that A is isomorphic to a
minimal left ideal of (¥, s, so that our definition encompasses the classical one. The
minimal left ideal can be written in the form (¢, ;J, where J is a primitive idempo-
tent. When one wants to use irreducible representations of (¥, s, one can restrict the
attention to spinor fields (as we have defined them) which satisfy the extra condition
v = 1.

Notice that, in a certain sense, the Clifford algebra C/, is in the trace class of the
spinor fibre. Indeed, (a,b) € (¢, if and only if b = ¢ ¢ for some (a,) and (a, ¢) both
in S,. Again we can define a connection for spinor sections. Let 1) be a spinor section
and X be a tangent vector in T, M. Then we define the connection ¥ by

¥ x¢ = Sa(0x¢),
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where S, is orthogonal projection onto the spinor fibre S,. Again the bivector valued
function X — bx plays an important réle in a more explicit expression for the con-
nection. However, there is a certain arbitrariness in the trivialisation of the normal
bundle, unless we are dealing with a hypersurface.

Theorem 4.1. The connection ¥ is given by

¥ xt=0xy — %(bx +ex)y.

Here bx is the bivector given by (7), and ex is a bivector in the Clifford algebra
generated by the normal fibre, i.e. in the Clifford algebra generated by 7y, ... Mym—p.
Proof. Fix a point a, and take a section ¢ of the Spin bundle in a neighbourhood of
a. Then o9 is a (¥, s valued function near a, and

Dx (o) = (Dxo)Y + o(Dx1).

This is also (¢, s valued, and so 0 1Dx(0¢) is a local spinor section, i.e. its part
orthogonal to the spinor fibre is zero:

0= (0" (Dxo)Y)L + (Dx¥)..

Now (Dx)1 = Dxt— X x, and we shall prove that (6} (Dxo)y), = (1/2)(bx +

ex )1, where e is fully orthogonal to the tangent space. First notice that (6~ ' (Dx o)), =
(67" (Dx0o)) 19, by (6). We shall put 0~ '(Dxo) = cx. This is a bivector, because o

is in the Spin group, and we split it up into

1
cx = (C)()H +(cx)e + 56)(,

where (cx)) is in the tangent Clifford algebra,(cx); is a sum of products of vectors,
one parallel and one orthogonal to f,, and ey is fully orthogonal to C/,. We set out
to prove that (cx); is (1/2)bx. Notice that both (cx )| and ex commute with the
pseudo-unit field eps, while (¢x): anticommutes with it.

Starting point is that oeyo = epr(IN) is constant. Hence

0 = (Dxo)eyo '+o(Dxey)o ' +oey(Dxo?)
= O'CXeMtfil + O'(bxeM)0'71 - U@MCX0'71

= 0o [Q(Cx)teM + bxeM] o L.

This completes the proof. [ |

It can be easily seen that, while bx is determined by eys, cx is completely deter-
mined by the trivialisation of the normal bundle, 7y, ..., 7, . Indeed, ex is in the
normal section, and for all i we have that oii;0 ! = 7i;(N). Therefore the derivative
is zero, and

0 = Dx(oitjo?)

= O'C)(’ﬁ:i0'71 + O'(Dxﬁz’0'71 — UﬁiCXail).

Now (cx )| commutes with 7i;, and so, using the dot product notation,
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Dxii; = (bX -|-€)() 114

These equations are sufficient to determine ex.

There is a certain arbitrariness in the trivialisation of the normal bundle, which
is expressed by the extra term ex in the expression of the connection, unless we are
dealing with a hypersurface. In this case ex must of necessity be zero, because the
normal section is one-dimensional, and the expression for the connection becomes

¥ x1=0xy — %bxw-
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