Metrizability of Affine Connections

Lajos Tamássy

Abstract

An affine connection Γ on a vector bundle $\eta = (E, \pi, M, V)$ of a rank r is called Riemann metrizable if there exists on M a Riemann metric which preserves the scalar product of vector fields parallel displaced according to Γ . Γ determines a connection G in a bundle, where M is fibered by the manifold of the ellipsoids of $R^r = \pi^{-1}, x \in M$. We prove that Γ is Riemann metrizable iff G is integrable.

An analogous result is deduced in the case, where η is replaced by a Finsler vector bundle, Γ means a Finsler connection, and the metric is a Finsler metric.

Mathematics Subject Classification: 53B15, 53B40, 53C07, 53C60. Key words: Riemann metrizability of affine connections, Finsler metrizability of affine connections.

1 Introduction

We consider a vector bundle $\eta = (E, \pi, M, V)$ over the *n*-dimensional base manifold M with an *r*-dimensional real vector space V as typical fiber, where E is the total space and $\pi : E \to M$ is the projection operator. An affine connection H_{η} in η is given by a special splitting $T_{z}E = V_{z}E \oplus H_{z}E$, $z \in E$ and it is determined locally by the connection coefficients $\Gamma_{\beta}{}^{\alpha}{}_{i}(x)$; $\alpha, \beta, \ldots = 1, \ldots, r$; $i, j, \ldots = 1, \ldots, n$, where $x \in M$ has the local coordinates x^{i} . H_{η} or Γ is called *Riemann metrizable* if there exists a Euclidean scalar product \langle , \rangle in each fiber $\pi^{-1}(x)$, i.e. a symmetrical bilinear form g(x), in local coordinates $\langle \xi, \zeta \rangle = g_{\alpha\beta}(x)\xi^{\alpha}(x)\zeta^{\beta}(x)$, such that the length of the parallel translated $\|_{\Gamma}P_{C}\xi_{0}\|_{g}$ of a vector $\xi_{0} \in \pi^{-1}(x_{0})$ along any curve $C(t) \subset M$, $C(t_{0}) = x_{0}$ is constant, i.e. if the connection Γ is compatible with the Riemannian metric $g. g(x_{0})$ is equivalent with an ellipsoid $\mathcal{E}(\S_{1}) : \}_{\alpha\beta}(\S_{1})\xi^{\alpha}\xi^{\beta} = \infty$ in $\pi^{-1}(x_{0})$ called *indicatrix*. $_{\Gamma}P_{C}$ establishes a linear mapping $\pi^{-1}(x(t_{0})) \to \pi^{-1}(x(t))$. Γ is *metrizable* if there exists a field $\mathcal{E}(\S)$ such that from $\xi_{0} \in \mathcal{E}_{1}$ follows $_{\Gamma}P_{C(t)}\xi_{0} \in \mathcal{E}(\S(\sqcup))$, $\forall \mathcal{C}(\sqcup) \subset \mathcal{M}$. Indicatrices play the role of the unit sphere.

The most simple case is r = n. If $\Gamma_j{}^i{}_h(x)$ is symmetrical and metrizable by a g(x), then Γ is the Levi-Civita connection $\overset{g}{\Gamma}$ of the Riemannian manifold $V_n = (M, g)$.

Balkan Journal of Geometry and Its Applications, Vol.2, No.2, 1997, pp. 131-138 ©Balkan Society of Geometers, Geometry Balkan Press

Denoting the set of the Levi-Civita connections for the different g by $\{\stackrel{g}{\Gamma}\}$ and supposing the symmetry $\Gamma_j{}^i{}_h(x) = \Gamma_h{}^i{}_j(x)$ the question is whether $\Gamma \in \{\stackrel{g}{\Gamma}\}$. — Riemann metrizability of affine connections has been investigated by many authors from different points of view. I mention here only [1], [4], [5], [6], [9], [12].

A Finsler space $F_n = (M, \mathcal{L})$ on the manifold M is given by the smooth fundamental function $\mathcal{L}: \mathcal{TM} \to \mathcal{R}^+$; $(x, y) \mapsto \mathcal{L}(\S, \dagger), y \in T_x M$ which is supposed to be first order positively homogeneous: $\mathcal{L}(\S, \lambda^{\dagger}) = |\lambda| \mathcal{L}(\S, \dagger), \lambda \in \mathbb{R}$. Its indicatrix is given by $I(x_0) = \{y \mid \mathcal{L}(\S_I, \dagger) = \infty\} \subset \mathcal{T}_{\S_I} \mathcal{M}$ (the convexity of I is mostly also supposed). Giving of F_n is equivalent to giving of $\{I(x)\}$. Then an affine metrical connection should satisfy that from $y_0 \in I(x_0)$ follows $\Gamma P_C y_0 \in I(x_1), x_1 \in C(t_1)$ (this could be denoted by $_{\Gamma}P_{C}I(x_{0}) = I(x_{1})$), while $_{\Gamma}P_{C}$ is an affine mapping. However, this is impossible in general, e.g. if $I(x_0)$ is an ellipsoid and $I(x_1)$ is not so. This necessitates the introduction of the so called Finsler vector fields which are sections of a vector bundle $\zeta = (E, \pi, TM, V^n)$, in components $\xi^i(x, y)$ with the property $\xi^i(x,\lambda y) = \xi^i(x,y), \ \lambda \in \mathbb{R}, \ \lambda y \neq 0.$ The set $\{(x_0,\lambda y_0) \mid \lambda \in \mathbb{R}, \ \lambda y_0 \neq 0\}$ is geometrically a point x_0 and the direction of y_0 in $T_{x_0}M$; this is called a *line-element*. So Finsler vectors are defined in line-elements. The length (the norm) of such a vector is defined by $g_{ij}(x,y)\xi^i(x,y)\xi^j(x,y) := \|\xi(x,y)\|^2$, where $g_{ij} := \frac{1}{2} \frac{\partial^2 \mathcal{L}^{\epsilon}}{\partial y^i \partial y^j}$ and hence $g_{ij}(x,\lambda y) = g_{ij}(x,y)$. In an $F_n = (M, \mathcal{L}), g_{ij}$ is derived from \mathcal{L} . A more general structure is $F_n = (M, z)$. ture is $F_n = (M, g)$, called generalized Finsler space, where we start directly with the metric tensor $g_{ii}(x, y)$.

An affine connection Γ in the Finsler vector bundle ζ can be given locally by the connection coefficients $F_{j}{}^{i}{}_{k}(x,y), V_{j}{}^{i}{}_{h}(x,y)$ in the form $\Gamma \xi = \xi - d_{\Gamma}\xi$, where

(1)
$$d_{\Gamma}\xi^{i}(x,y) = F_{j}^{i}{}_{k}(x,y)\xi^{j}(x,y)dx^{k} + V_{j}^{i}{}_{k}(x,y)\xi^{j}(x,y)dy^{k}.$$

 Γ is metrizable if there exists a scalar product $g_{ij}(x, y)$ in each $\pi^{-1}(x, y)$ such that $\|_{\Gamma} P_C \xi_0\| = \text{constant for any curve } C(t) \subset M.$

2 Connection in μ

We want to find a new, geometric condition for the Riemann metrizability of a vector bundle $\eta = (E, \pi, M, V^r)$ endowed with the affine connection H_{η} given by $\Gamma_{\beta}{}^{\alpha}{}_i(x)$. First we derive from H_{η} an affine connection H_{μ} in $\mu = (E_{\mu}, \pi_{\mu}, M, V^{r^2})$, and then from H_{μ} a connection H_{ν} in the bundle $\nu = (E_{\nu}, \pi_{\nu}, \pi_{\nu})$.

 M, \mathbf{E}), where \mathbf{E} is the manifold of the ellipsoids in $\pi^{-1}(x) \cong V^r$ centered at the origin O of V^r .

Let us consider a canonical coordinate system (x^i, v^{α}) in $\pi^{-1}(U) \subset E$, where $U \subset M$ is a coordinate neighbourhood of $x \in M$ and v^{α} are components of $v \in \pi^{-1} \cong V^r$. Similarly we have local coordinates (x^i, y^a) in $\pi_{\mu}^{-1}(U) \subset E_{\mu}$, where $y^a, a = 1, \ldots, r^2$ are components of $y \in \pi_{\mu}^{-1}(x) \cong V^{r^2}$. Let $\overset{\alpha}{v} \in \pi^{-1}(x) \cong V^r$, $\alpha, \beta = 1, \ldots, r$ be r vectors with components $(\overset{\alpha}{v})^{\beta}$. Since any integer a $(1 \leq a \leq r^2)$ can uniquely be represented in the form $a = (\alpha - 1)r + \beta$, and conversely, any pair α, β uniquely determines such an a and thus

(2)
$$y^a = (\ddot{v})^{\beta}, \quad a = (\alpha - 1)r + \beta$$

determines a 1:1 mapping between $\pi_{\mu}^{-1}(x)$ and the vector *r*-tuples (v, \ldots, v) which can be considered as elements of $\stackrel{r}{\oplus} \pi^{-1}(x) \cong \stackrel{r}{\oplus} V^r$.

Having an affine connection H_{η} in η with local connection coefficients $\Gamma_{\beta}{}^{\alpha}{}_{i}(x)$, we obtain for the parallel translated of v from x to x + dx

$$_{\Gamma}P_{x,x+dx}v(x) = v(x) - d_{\Gamma}v(x), \quad d_{\Gamma}v^{\beta}(x) = \Gamma_{\sigma}{}^{\beta}{}_{i}(x)v^{\sigma}dx^{i}.$$

Then we define an affine connection H_{μ} in μ with local coefficients $G_{b}{}^{a}{}_{i}(x)$ by

(3)
$$d_G y := (d_{\Gamma} \stackrel{1}{v}, \dots, d_{\Gamma} \stackrel{r}{v}), \qquad \begin{array}{l} y = (\stackrel{1}{v}, \dots, \stackrel{r}{v}) \\ d_{\Gamma}(\stackrel{\alpha}{v})^{\beta} = \Gamma_{\sigma}{}^{\beta}{}_i(x)(\stackrel{\alpha}{v})^{\sigma} dx^i \end{array}$$

 $G_b{}^a{}_i$ can be expressed explicitly by $\Gamma_\beta{}^\alpha{}_i$ as follows:

(4)
$$\begin{aligned} d_G y^a &= G_b{}^a{}_i(x) y^b dx^i \\ &= d_G y^{(\alpha-1)r+\beta} = G_{(\kappa-1)r+\lambda}{}^{(\alpha-1)r+\beta}{}_i(x) y^{(\kappa-1)r+\lambda} dx^i, \end{aligned}$$

since $a = (\alpha - 1)r + \beta$, $b = (\kappa - 1)r + \lambda$. By (3) and (2) we get

(5)
$$d_G y^{(\alpha-1)r+\beta} = d_{\Gamma} (\overset{\alpha}{v})^{\beta} = \Gamma_{\sigma}{}^{\beta}{}_i(x) (\overset{\alpha}{v})^{\sigma} dx^i = \Gamma_{\sigma}{}^{\beta}{}_i(x) y^{(\alpha-1)r+\sigma} dx^i.$$

From (4) and (5) we obtain

$$\begin{split} G_{(\kappa-1)r+\lambda}{}^{(\alpha-1)r+\beta}{}_i(x) \, y^{(\kappa-1)r+\lambda} &= \Gamma_{\sigma}{}^{\beta}{}_i(x) \delta^{\alpha}_{\kappa} \delta^{\sigma}_{\lambda} y^{(\kappa-1)r+\lambda} \\ &= \Gamma_{\lambda}{}^{\beta}{}_i(x) \delta^{\alpha}_{\kappa} y^{(\kappa-1)r+\lambda} \end{split}$$

and hence

$$G_{(\kappa-1)r+\lambda}{}^{(\alpha-1)r+\beta}{}_i(x) = \delta^{\alpha}_{\kappa} \Gamma_{\lambda}{}^{\beta}{}_i(x).$$

3 Connection in ν

An ellipsoid \mathcal{E} in $\pi^{-1}(x) \cong V^r$ centered at the origin O of V^r has the equation $a_{\alpha\beta}v^{\alpha}v^{\beta} = 1$, $a_{\alpha\beta} = a_{\beta\alpha}$, $\operatorname{Det}|a_{\alpha\beta}| > 0$. The set $\{\mathcal{E}\} = \mathbf{E}$ can be given a natural manifold structure, namely each \mathcal{E} can be identified with the coefficients $a_{\alpha\beta}$ which correspond to a point of R^{r^2} . Hence \mathbf{E} can be identified with a variety of the Euclidean space R^{r^2} . Thus $\nu = (E_{\nu}, \pi_{\nu}, B, \mathbf{E})$ is a fiber bundle.

Now we want to derive from the H_{μ} determined by the affine connection H_{η} a connection H_{ν} in $\nu : H_{\eta} \Rightarrow H_{\mu} \Rightarrow H_{\nu}$. — Let $y = (\overset{1}{v}, \ldots, \overset{r}{v}) \in \pi_{\mu}^{-1}(x) \subset E_{\mu}$ be such that $\overset{1}{v}, \ldots, \overset{r}{v}$ are linearly independent vectors in $\pi^{-1}(x)$. From now on, in this section y denotes elements of E_{μ} with this independence property. The set of these (x, y)-s will be denoted by E_{μ}^{*} and the corresponding bundle by $\overset{*}{\mu} = (E_{\mu}^{*}, \pi_{\mu}^{*}, M, V_{*}^{r^{2}})$. We remark that $V_{*}^{r^{2}}$ is no vector space, and π_{*}^{*} is a restriction of π_{μ} to $E_{\mu}^{*} \subset E_{\mu}$. H_{μ} is equivalent with the splitting $T_{u}E_{\mu} = V_{u}E_{\mu} \oplus H_{u}E_{\mu}, u \in E_{\mu}$. The restriction

of an affine connection H_{μ} to $E_{\mu}^* \subset E_{\mu}$ is also a connection in E_{μ}^* , i.e. $H_{\mu} \subset E_{\mu}^*$ if $u \in E_{\mu}^* \subset E_{\mu}$. This is so, because H_{η} takes by parallel translation linearly independent vectors of $\pi^{-1}(x)$ into linearly independent vectors again. Also, H_{μ}^* can be extended by continuity to a H_{μ} , and if H_{μ}^* is a restriction of an affine connection H_{μ} , then its extension yields this H_{μ} .

The vectors \vec{v} of a y can be considered as a system of conjugate axes of an ellipsoid $\mathcal{E} \in \pi_{\nu}^{-\infty}(\S)$ centered at the origin O, and we order this \mathcal{E} to y. Doing this with every (x, y) we obtain a strong bundle mapping

$$\rho: E_{\stackrel{*}{\mu}} \to E_{\nu}, \qquad \pi_{\stackrel{*}{\mu}}^{-1}(x) \to \pi_{\nu}^{-1}(x), \quad y \mapsto \mathcal{E}.$$

The inverse $\rho^{-1}(\mathcal{E}) = \{\dagger_{l}, \dagger_{\infty}, \dots, \dagger_{l}, \dots\}$ is an infinite set consisting of $y_{0} = (\overset{1}{v}_{0}, \dots, \overset{r}{v}_{0})$ $), y_{1} = (\overset{1}{v}_{1}, \dots, \overset{r}{v}_{1}), \dots, y = (\overset{1}{v}, \dots, \overset{r}{v}), \dots$ such that every system $\overset{1}{v}_{0}, \dots, \overset{r}{v}_{0}; \overset{1}{v}_{1}, \dots, \overset{r}{v}_{1}; \dots, \overset{r}{v}; \dots, \overset{r}{v}_{1}; \dots, \overset{r}{v}; \dots, \overset{r}{v}_{1}; \dots, \overset{r}{v}; \dots, \overset{r}{v$

 H_{μ} takes $\pi_{\mu}^{-1}(x)$ into $\pi_{\mu}^{-1}(x+dx)$ and so it takes $y \in \pi_{\mu}^{-1}(x)$ into $\hat{y} \in \pi_{\mu}^{-1}(x+dx)$. However, according to (3), H_{μ} is defined via H_{η} , and in such a way that the images $\hat{y}_0, \hat{y}_1, \ldots, \hat{y}, \ldots$ by H_{μ} of the elements of an equivalence class $\{y_0, y_1, \ldots, y, \ldots\}$ (i.e. of conjugate axes systems of an ellipsoid \mathcal{E}) form again an equivalence class in $\pi_{\mu}^{-1}(x+dx)$ (i.e. $\hat{y}_0, \hat{y}_1, \ldots, \hat{y}, \ldots$ are conjugate axes systems of an ellipsoid again). This is shown on the diagram

(6)

$$\rho(x)\{y_0, y_1, \dots, y, \dots\} = \mathcal{E}(\S) \in \pi_{\nu}^{-\infty}(\S)$$

$$\downarrow H_{\mu} \qquad \downarrow H_{\nu}$$

$$\rho(x+dx)\{\hat{y}_0, \hat{y}_1, \dots, \hat{y}, \dots\} = \hat{\mathcal{E}}(x+dx) \in \pi_{\nu}^{-1}(x+dx).$$

It means that $H_{\mu}: \pi_{\mu}^{-1}(x) \to \pi_{\mu}^{-1}(x+dx)$ preserves equivalence classes. Thus

$$\rho \circ H_{\mu} \circ \rho^{-1} : \pi_{\nu}^{-1}(x) \to \pi_{\nu}^{-1}(x+dx)$$

yields a connection H_{ν} in ν (This fact is discussed in more detail in [10], [11]).

If H_{ν} is integrable at least for one $\mathcal{E}_{\ell} \in \pi_{\nu}^{-\infty}(\S_{\ell})$ and $\mathcal{E}(\S), \mathcal{E}(\S_{\ell}) = \mathcal{E}_{\ell}$ is the integral manifold, then $\mathcal{E}(\S)$ can be considered as indicatrix I(x) and $g_{\alpha\beta}(x)$ in the equation $g_{\alpha\beta}(x)v^{\alpha}v^{\beta} = 1$ of $\mathcal{E}(\S)$ as metric tensor. Any v_0 leading to a point of $\mathcal{E}_{\ell} : \sqsubseteq_{\ell} \in \mathcal{E}_{\ell}$ can be an axe of a conjugate axes system of \mathcal{E}_{ℓ} . Then, according to our construction, the parallel translated v of v_0 according to H_{η} along a curve $C \subset M$ from x_0 to x is an element of $\mathcal{E}(\S)$:

$${}_{H_{\eta}}P_{C;x_{0},x}v_{0} = v \in {}_{H_{\nu}}P_{C;x_{0},x}\mathcal{E}_{\prime} = \mathcal{E}(\S)$$

and hence

$$||v_0||_{g(x_0)} = ||v||_{g(x)}.$$

We remark that v depends on the path C joining x_0 and x, but $\mathcal{E}(\S)$ does not. — This means: if H_{ν} is integrable, then H_{η} is metrizable.

The converse is obvious. If H_{η} is metrical with respect to g(x), then $\mathcal{E}(\S) := \mathcal{I}(\S)$ is an integral manifold of H_{ν} .

Thus we obtain the

Theorem. The affine connection H_{η} of a vector bundle η is Riemann metrizable iff the constructed connection H_{ν} in a bundle ν fibered with ellipsoids is integrable.

4 Coefficients of H_{ν}

We want to determine the connection coefficients of H_{ν} . H_{ν} orders to the ellipsoid $\mathcal{E}(\S)$

(7)
$$a_{\alpha\beta}(x)v^{\alpha}v^{\beta} = 1 \in \pi_{\nu}^{-1}(x)$$

the ellipsoid $\hat{\mathcal{E}}(x+dx)$

(8)
$$a_{\alpha\beta}(x+dx)v^{\alpha}(x+dx)v^{\beta}(x+dx) = 1 \in \pi_{\nu}^{-1}(x+dx).$$

According to the definition (construction) of H_{ν} this last equation is satisfied by the parallel translated with respect to H_{η} of $v^{\alpha}(x)$, i.e. by $v^{\alpha}(x + dx) = v^{\alpha}(x) - \Gamma_{\sigma}{}^{\alpha}{}_{i}(x)v^{\sigma}(x)dx^{i} + o(dx^{i})$. (Since we work with linear connections, $o(dx^{i})$, i.e. higher order terms in dx^{i} , can be omitted.) Then the parallel translated of $a_{\alpha\beta}(x)$ according to H_{ν} are the $a_{\alpha\beta}(x + dx)$ appearing in (8). Denoting the connection coefficients of H_{ν} by $M_{\alpha\beta i}(x, a_{\kappa\lambda})$ we obtain from (8)

$$(a_{\alpha\beta} + M_{\alpha\beta i}(x, a_{\kappa\lambda})dx^{i})(v^{\alpha} - \Gamma_{\sigma}{}^{\alpha}{}_{i}v^{\sigma}dx^{i})(v^{\beta} - \Gamma_{\sigma}{}^{\beta}{}_{i}v^{\sigma}dx^{i}) = 1$$

or

$$a_{\alpha\beta}v^{\alpha}v^{\beta} + \left[M_{\alpha\beta i} - a_{\kappa\lambda}(\Gamma_{\beta}{}^{\lambda}{}_{i}\delta^{\kappa}_{\alpha} + \Gamma_{\alpha}{}^{\kappa}{}_{i}\delta^{\lambda}_{\beta})\right]v^{\alpha}v^{\beta}dx^{i} + o(dx^{i}) = 1$$

By (7) the right hand side drops out with $a_{\alpha\beta}v^{\alpha}v^{\beta}$. The remaining expression must vanish for every $v \in \mathcal{E}(\S)$ and for every dx^i . Thus, omitting $o(dx^i)$, we get

$$M_{\alpha\beta i}(x, a_{\kappa\lambda}) = (\Gamma_{\beta}{}^{\lambda}{}_{i}\delta^{\kappa}_{\alpha} + \Gamma_{\alpha}{}^{\kappa}{}_{i}\delta^{\lambda}_{\beta})a_{\kappa\lambda}$$

This means that $M_{\alpha\beta i}(x, a_{\kappa\lambda})$ is linear in $a_{\kappa\lambda}$, i.e. H_{ν} is an affine connection and its connection coefficients are

(9)
$$M_{\alpha\beta}{}^{\kappa\lambda}{}_{i}(x) = \Gamma_{\alpha}{}^{\kappa}{}_{i}(x)\delta^{\lambda}_{\beta} + \Gamma_{\beta}{}^{\lambda}{}_{i}(x)\delta^{\kappa}_{\alpha}$$

We remark that these coefficients are symmetric in the sense that $M_{\alpha\beta}{}^{\kappa\lambda}{}_i = M_{\beta\alpha}{}^{\lambda\kappa}{}_i$. Thus the symmetry of $a_{\alpha\beta}(x)$ implies the symmetry of $a_{\alpha\beta}(x + dx) = a_{\alpha\beta}(x) + M_{\alpha\beta}{}^{\kappa\lambda}{}_i(x)a_{\kappa\lambda}dx^i$ too, which are the coefficients of $\hat{\mathcal{E}}(x + dx)$.

The condition of the absolute parallelism of $a_{\alpha\beta}(x)$ with respect to H_{ν} is

$$\frac{\partial a_{\alpha\beta}}{\partial x^i} = -M_{\alpha\beta}{}^{\kappa\lambda}{}_i(x)a_{\kappa\lambda}(x).$$

This is integrable iff

$$T_{\alpha\beta}{}^{\kappa\lambda}{}_{ij}(x)a_{\kappa\lambda}(x) = 0$$
$$T_{\alpha\beta}{}^{\kappa\lambda}{}_{ij} \equiv \left(\frac{\partial M_{\alpha\beta}{}^{\kappa\lambda}{}_i}{\partial x^j} - M_{\alpha\beta}{}^{\mu\nu}{}_i M_{\mu\nu}{}^{\kappa\lambda}{}_j\right)_{[i,j]}$$

has a solution for $a_{\kappa\lambda}$ with positive determinant. We find that

$$T_{\alpha\beta}{}^{\kappa\lambda}{}_{ij} = R_{\alpha}{}^{\kappa}{}_{ij}\delta^{\lambda}_{\beta} + R_{\beta}{}^{\lambda}{}_{ij}\delta^{\kappa}_{\alpha},$$

where R is the curvature tensor of $\Gamma_{\beta}{}^{\alpha}{}_{i}(x)$.

5 Finsler vector bundles

Considering a Finsler vector bundle $\zeta = (E, \pi, TM, V^n)$ and a connection Γ with connection coefficients $F_{j}{}^{i}{}_{h}(x, y), V_{j}{}^{i}{}_{h}(x, y)$ we have (1). In this case the base manifold TM has dimension 2n. Its coordinates can be denoted by u^A , $A = 1, \ldots, 2n$; $u^i = x^i$, $u^{n+i} = y^i$. $\mathcal{E}(\S, \dagger)$ has the equation $a_{ij}(x, y)\xi^i\xi^j = 1$, and the equation of $\hat{\mathcal{E}}(x + dx)$ is

$$a_{ij}(x + dx, y + dy)\xi^{i}(x + dx, y + dy)\xi^{j}(x + dx, y + dy) = 1.$$

Here

$$a_{ij}(x + dx, y + dy) = a_{ij}(x) + M_{ij}{}^{rs}{}_{h}(x, y)a_{rs}(x, y)dx^{h} + M_{ij}{}^{rs}{}_{n+k}(x, y)a_{rs}dy^{h}.$$

Contrasting with (9), here the last index of M runs from 1 to 2n the other indices from 1 to n. Considerations and calculations similar to those done above yield

$$M_{ij}{}^{rs}{}_{h} = F_{j}{}^{s}{}_{h}\delta^{r}_{i} + F_{i}{}^{r}{}_{h}\delta^{s}_{j}$$
$$M_{ij}{}^{rs}{}_{n+k} = V_{j}{}^{s}{}_{k}\delta^{r}_{i} + V_{i}{}^{r}{}_{k}\delta^{s}_{j},$$

and furthermore

$$T_{ij}{}^{rs}{}_{kh} = {}^{F}R_{i}{}^{r}{}_{kh}\delta_{j}^{s} + {}^{F}R_{j}{}^{s}{}_{kh}\delta_{i}^{r}$$
$$T_{ij}{}^{rs}{}_{n+k\ n+h} = {}^{V}R_{i}{}^{r}{}_{kh}\delta_{j}^{s} + {}^{V}R_{j}{}^{s}{}_{kh}\delta_{i}^{r},$$

where ${}^{F}R$ and ${}^{V}R$ are formed from $F_{j}{}^{s}{}_{i}$ and $V_{j}{}^{s}{}_{i}$ resp. like common curvature tensors. Finally

$$T_{ij}{}^{rs}{}_{n+h\ k} = \frac{\partial M_{ij}{}^{rs}{}_{n+h}}{\partial x^k} - \frac{\partial M_{ij}{}^{rs}{}_k}{\partial y^h} + (V_j{}^s{}_kF_s{}^c{}_h - F_j{}^s{}_kV_s{}^c{}_h)\delta^b_i + V_j{}^c{}_kF_i{}^b{}_h - F_j{}^c{}_kV_i{}^b{}_h + V_i{}^b{}_kF_j{}^c{}_h - F_i{}^b{}_kV_j{}^c{}_h + (V_i{}^r{}_kF_r{}^b{}_h - F_i{}^r{}_kV_r{}^b{}_h)\delta^c_j.$$

One can use other connections, e.g. a pre-Finsler connection $F\Gamma(F_j{}^i{}_k, N^i{}_j, V_j{}^i{}_h)$ and *h*- and *v*-covariant derivatives

$$\xi^{i}{}_{|k} = \frac{\partial \xi^{i}}{\partial x^{k}} - \frac{\partial \xi^{i}}{\partial y^{r}} N^{r}{}_{k} + F_{j}{}^{i}{}_{k}\xi^{j}$$
$$\xi^{i}{}_{|k} = \frac{\partial \xi^{i}}{\partial y^{k}} + V_{j}{}^{i}{}_{k}\xi^{j}.$$

In this case (1) becomes

$$d_{\Gamma}\xi^{i} = (F_{j}{}^{i}{}_{k} - V_{j}{}^{i}{}_{r}N^{r}{}_{k})\xi^{j}dx^{k} + V_{j}{}^{i}{}_{k}\xi^{j}dy^{k},$$

or

$$d_{\Gamma}\xi^{i} = \left[(F_{j}{}^{i}{}_{k} - V_{j}{}^{i}{}_{r}F_{s}{}^{r}{}_{k}y^{s})dx^{k} + V_{j}{}^{i}{}_{k}dy^{k} \right]\xi^{j}$$

if $F\Gamma$ is without deflection. These lead to other formulae for $M_{ij}{}^{rs}{}_A$ and $T_{ij}{}^{rs}{}_{AB}$. If $F_j{}^i{}_k$ and $V_j{}^i{}_k$ are symmetric, $F\Gamma$ is without deflection and metrizable, then $F\Gamma$ is the Cartan connection.

Finally we mention still another affine connection introduced by M. Matsumoto [7], [8] (see also [2], [3]) which is an ordinary affine connection derived from a Finsler connection $F\Gamma(F_j{}^i{}_k, N^i{}_j, V_j{}^i{}_k)$. Starting with an $F\Gamma$ and a nonvanishing vector field Y(x) which depends on the point x only

(10)
$$\underline{\Gamma}_{j\,k}^{i\,k}(x) := F_{j\,k}^{i\,k}(x,Y(x)) + V_{j\,r}^{i\,r}(x,Y(x)) \left(\frac{\partial Y^{r}}{\partial x^{k}} + Y^{s}(x)F_{s\,r\,k}^{r\,r}(x,Y(x))\right)$$

turn out to be connection coefficients of an ordinary affine connection. Using the vector field Y(x) one can associate to any Finsler vector field $\xi^i(x, y)$ an ordinary vector field $\underline{\xi}^i(x) := \xi^i(x, Y(x))$. Then there exists a nice relation among the covariant derivative $\underline{\xi}^i_{;k}$ constructed with $\underline{\Gamma}$, and the *h*- and *v*-covariant derivatives with respect to $F\Gamma$, namely

$$\underline{\xi}^{i}_{;k} = \left[\xi^{i}_{|k} + \xi^{i}_{|k} \left(\frac{\partial Y^{r}}{\partial x^{k}} + Y^{s} F_{s}^{r}_{k}\right)\right]_{|_{y=Y(x)}}$$

Given a $\underline{\Gamma}$ and a Y(x), there are many $F\Gamma$ which satisfy (10). Then we can use our method to search for metrizable ones among these $F\Gamma$, e.g. for such, where $F\Gamma$ satisfies (10) with the given $\underline{\Gamma}$ and Y(x) and $g_{ij|k} = g_{ij}|_{k} = 0$ with respect to this $F\Gamma$.

Acknowledgements. This research was supported by OTKA: T - 17261.

Erratum. Received August 4, 1994; Revised August 15, 1995. Editorial Board decided to reprint this paper since the first printing in BJGA, 1,1 (1996), pp.83-90, contains several missprints due to e-mail and computer transmission.

References

- S. Golab, Uber die Metrisierbarkeit der affin-zusammenhangenden Raume, Tensor N.S., 9 (1959), 1-7.
- [2] R. S. Ingarden, M. Matsumoto and L. Tamássy, Vector-field relative Finsler space in two physical examples, to appear.
- [3] R. S. Ingarden and M. Matsumoto, On the 1953 Barthel connection of a Finsler space and its physical aspects, Publ. Math. Debrecen, vol. 43, 87-90, 1993.
- [4] A. Jakubowicz, Uber die Metrisierbarkeit der affin-zusammenhangenden Raume I., II., III. Tensor N. S., vol 14, 132–137, 1963; vol 17, 28-43, 1966; vol 18, 259-270, 1967.

- [5] O. Kowalski, On regular curvature structures, Math. Z., vol 125, 129-138, 1972.
- [6] D. Krupka and A. E. Sattarov The inverse problem of the calculus of variations for Finsler structures, Math. Slovaca, vol 35, 217-222, 1985.
- [7] M. Matsumoto, Contributions of prescribed supporting element and the Cartan connection, Tensor N.S., vol 49, 9-17, 1990.
- [8] M. Matsumoto, Theory of Y-extremal and minimal hypersurfaces in a Finsler space, J. Math. Kyoto Univ., vol 26, 647-665, 1986.
- [9] Z. I. Szabó, Positive definite Berwald spaces, Tensor N.S., vol 35, 25-39, 1981.
- [10] L. Tamássy and L. Kozma, Connections in k-vector bundles, Math. Pannonica, vol 6, 105-114, 1995.
- [11] L. Tamássy, Induced areal spaces and reduction of the connection in an areal space to connection in a vector bundle, An. St. Univ. Ovidius Constantza, vol 3, to appear, 1996.
- [12] T. Y. Thomas, The differential invariants of generalized spaces, Cambridge, 1934.

Institute of Mathematics Kossuth Lajos University Pf.12, Debrecen H-4010 Hungary