
Metrizability of AÆne ConnetionsLajos Tam�assy
AbstratAn aÆne onnetion � on a vetor bundle � = (E;�;M; V ) of a rank ris alled Riemann metrizable if there exists on M a Riemann metri whihpreserves the salar produt of vetor �elds parallel displaed aording to �. �determines a onnetion G in a bundle, where M is �bered by the manifold ofthe ellipsoids of Rr = ��1, x 2 M . We prove that � is Riemann metrizable i�G is integrable.An analogous result is dedued in the ase, where � is replaed by a Finslervetor bundle, � means a Finsler onnetion, and the metri is a Finsler metri.Mathematis Subjet Classi�ation: 53B15, 53B40, 53C07, 53C60.Key words: Riemann metrizability of aÆne onnetions, Finsler metrizability ofaÆne onnetions.1 IntrodutionWe onsider a vetor bundle � = (E; �;M; V ) over the n-dimensional base manifoldM with an r-dimensional real vetor spae V as typial �ber, where E is the totalspae and � : E !M is the projetion operator. An aÆne onnetion H� in � is givenby a speial splitting TzE = VzE �HzE, z 2 E and it is determined loally by theonnetion oeÆients ���i(x); �; �; : : : = 1; : : : ; r; i; j; : : : = 1; : : : ; n, where x 2 Mhas the loal oordinates xi. H� or � is alled Riemann metrizable if there exists a Eu-lidean salar produt h ; i in eah �ber ��1(x), i.e. a symmetrial bilinear form g(x),in loal oordinates h�; �i = g��(x)��(x)��(x), suh that the length of the paralleltranslated k�PC�0kg of a vetor �0 2 ��1(x0) along any urve C(t) �M , C(t0) = x0is onstant, i.e. if the onnetion � is ompatible with the Riemannian metri g. g(x0)is equivalent with an ellipsoid E(x0) : g��(x0)���� = 1 in ��1(x0) alled indiatrix.�PC establishes a linear mapping ��1(x(t0)) ! ��1(x(t)). � is metrizable if thereexists a �eld E(x) suh that from �0 2 E0 follows �PC(t)�0 2 E(x(t)); 8C(t) � M.Indiatries play the role of the unit sphere.The most simple ase is r = n. If �j ih(x) is symmetrial and metrizable by a g(x),then � is the Levi-Civita onnetion g� of the Riemannian manifold Vn = (M; g).Balkan Journal of Geometry and Its Appliations, Vol.2, No.2, 1997, pp. 131-138Balkan Soiety of Geometers, Geometry Balkan Press



132 L.TamassyDenoting the set of the Levi-Civita onnetions for the di�erent g by fg�g and suppos-ing the symmetry �j ih(x) = �hij(x) the question is whether � 2 fg�g. | Riemannmetrizability of aÆne onnetions has been investigated by many authors from dif-ferent points of view. I mention here only [1℄, [4℄, [5℄, [6℄, [9℄, [12℄.A Finsler spae Fn = (M;L) on the manifold M is given by the smooth fun-damental funtion L : TM ! R+; (x; y) 7! L(x; y), y 2 TxM whih is supposedto be �rst order positively homogeneous: L(x; �y) = j�jL(x; y), � 2 R. Its indiatrixis given by I(x0) = fy j L(x0; y) = 1g � Tx0M (the onvexity of I is mostly alsosupposed). Giving of Fn is equivalent to giving of fI(x)g. Then an aÆne metrialonnetion should satisfy that from y0 2 I(x0) follows �PCy0 2 I(x1), x1 2 C(t1)(this ould be denoted by �PCI(x0) = I(x1)), while �PC is an aÆne mapping. How-ever, this is impossible in general, e.g. if I(x0) is an ellipsoid and I(x1) is not so. Thisneessitates the introdution of the so alled Finsler vetor �elds whih are setionsof a vetor bundle � = (E; �; TM; V n), in omponents �i(x; y) with the property�i(x; �y) = �i(x; y), � 2 R, �y 6= 0. The set f(x0; �y0) j � 2 R, �y0 6= 0g is geomet-rially a point x0 and the diretion of y0 in Tx0M ; this is alled a line-element. SoFinsler vetors are de�ned in line-elements. The length (the norm) of suh a vetoris de�ned by gij(x; y)�i(x; y)�j(x; y) := k�(x; y)k2, where gij := 12 �2L2�yi�yj and henegij(x; �y) = gij(x; y). In an Fn = (M;L), gij is derived from L. A more general stru-ture is Fn = (M; g), alled generalized Finsler spae, where we start diretly with themetri tensor gij(x; y).An aÆne onnetion � in the Finsler vetor bundle � an be given loally by theonnetion oeÆients Fj ik(x; y), Vj ih(x; y) in the form �� = � � d��, whered��i(x; y) = Fj ik(x; y)�j(x; y)dxk + Vj ik(x; y)�j(x; y)dyk :(1) � is metrizable if there exists a salar produt gij(x; y) in eah ��1(x; y) suh thatk�PC�0k = onstant for any urve C(t) �M .2 Connetion in �We want to �nd a new, geometri ondition for the Riemann metrizability of a vetorbundle � = (E; �;M; V r) endowed with the aÆne onnetion H� given by ���i(x).First we derive from H� an aÆne onnetion H� in � = (E�; ��;M; V r2), and thenfrom H� a onnetion H� in the bundle � = (E� ; �� ;M;E), where E is the manifold of the ellipsoids in ��1(x) �= V r entered at the originO of V r.Let us onsider a anonial oordinate system (xi; v�) in ��1(U) � E, where U �M is a oordinate neighbourhood of x 2M and v� are omponents of v 2 ��1 �= V r.Similarly we have loal oordinates (xi; ya) in ��1� (U) � E�, where ya, a = 1; : : : ; r2are omponents of y 2 ��1� (x) �= V r2 . Let �v2 ��1(x) �= V r, �; � = 1; : : : ; r be rvetors with omponents (�v)� . Sine any integer a (1 � a � r2) an uniquely berepresented in the form a = (� � 1)r + �, and onversely, any pair �; � uniquelydetermines suh an a and thus(2) ya = (�v)� ; a = (�� 1)r + �



Metrizability of AÆne Connetions 133determines a 1:1 mapping between ��1� (x) and the vetor r-tuples (1v; : : : ; rv) whihan be onsidered as elements of r� ��1(x) �= r� V r.Having an aÆne onnetion H� in � with loal onnetion oeÆients ���i(x), weobtain for the parallel translated of v from x to x+ dx�Px;x+dxv(x) = v(x) � d�v(x); d�v�(x) = ���i(x)v�dxi:Then we de�ne an aÆne onnetion H� in � with loal oeÆients Gbai(x) by(3) dGy := (d� 1v; : : : ; d� rv); y = (1v; : : : ; rv)d�(�v)� = ���i(x)(�v)�dxi:Gbai an be expressed expliitely by ���i as follows:(4) dGya = Gbai(x)ybdxi= dGy(��1)r+� = G(��1)r+�(��1)r+�i(x) y(��1)r+�dxi;sine a = (�� 1)r + �, b = (�� 1)r + �. By (3) and (2) we get(5) dGy(��1)r+� = d�(�v)� = ���i(x)(�v)�dxi == ���i(x)y(��1)r+�dxi:From (4) and (5) we obtainG(��1)r+�(��1)r+�i(x) y(��1)r+� = ���i(x)Æ�� Æ��y(��1)r+� == ���i(x)Æ��y(��1)r+�and hene G(��1)r+�(��1)r+�i(x) = Æ�����i(x):3 Connetion in �An ellipsoid E in ��1(x) �= V r entered at the origin O of V r has the equationa��v�v� = 1, a�� = a��, Detja�� j > 0. The set fEg = E an be given a naturalmanifold struture, namely eah E an be identi�ed with the oeÆients a�� whihorrespond to a point of Rr2 . Hene E an be identi�ed with a variety of the Eulideanspae Rr2 . Thus � = (E� ; �� ; B;E) is a �ber bundle.Now we want to derive from the H� determined by the aÆne onnetion H� aonnetion H� in � : H� ) H� ) H� . | Let y = (1v; : : : ; rv) 2 ��1� (x) � E� besuh that 1v; : : : ; rv are linearly independent vetors in ��1(x). From now on, in thissetion y denotes elements of E� with this independene property. The set of these(x; y)-s will be denoted by E�� and the orresponding bundle by ��= (E��; ���;M; V r2� ).We remark that V r2� is no vetor spae, and ��� is a restrition of �� to E�� � E�.H� is equivalent with the splitting TuE� = VuE� �HuE�, u 2 E�. The restrition



134 L.Tamassyof an aÆne onnetion H� to E�� � E� is also a onnetion in E��, i.e. H� � E�� ifu 2 E�� � E�. This is so, beauseH� takes by parallel translation linearly independentvetors of ��1(x) into linearly independent vetors again. Also, H�� an be extendedby ontinuity to a H�, and if H�� is a restrition of an aÆne onnetion H�, then itsextension yields this H�.The vetors �v of a y an be onsidered as a system of onjugate axes of an ellipsoidE 2 ��1� (x) entered at the origin O, and we order this E to y. Doing this with every(x; y) we obtain a strong bundle mapping� : E�� ! E� ; ��1�� (x)! ��1� (x); y 7! E :The inverse ��1(E) = fy0; y1; : : : ; y; : : :g is an in�nite set onsisting of y0 = (1v0; : : : ; rv0), y1 = (1v1; : : : ; rv1); : : : ; y = (1v; : : : ; rv); : : : suh that every system 1v0; : : : ; rv0; 1v1; : : : ; rv1; : : : ; 1v; : : : ; rv; : : : forms onjugate axes of an ellipsoid E . Elements of ��1(E) an begenerated from a single element, e.g. from y0 as follows: Let V r0 be a Eulidean vetorspae with an orthonormed base �e and a : ��1(x) ! V r0 an aÆne mapping taking�v0 into �e. Then the set f�v= a�1 Æ f Æ a �v0, � = 1; : : : ; r j f 2 O(r)g produes allvetor systems y = (1v; : : : ; rv) of ��1(E), where O(r) denotes the group of rotations ofV r0 . This indues a lassi�ation of ��1�� (x) into equivalene lasses, and � is a 1 : 1mapping between the equivalene lasses and the ellipsoids.H� takes ��1� (x) into ��1� (x+dx) and so it takes y 2 ��1�� (x) into ŷ 2 ��1�� (x+dx).However, aording to (3), H� is de�ned via H�, and in suh a way that the imagesŷ0; ŷ1; : : : ŷ; : : : by H� of the elements of an equivalene lass fy0; y1; : : : ; y; : : :g (i.e. ofonjugate axes systems of an ellipsoid E) form again an equivalene lass in ��1�� (x+dx)(i.e. ŷ0; ŷ1; : : : ; ŷ; : : : are onjugate axes systems of an ellipsoid again). This is shownon the diagram(6) �(x)fy0; y1; : : : ; y; : : :g = E(x) 2 ��1� (x)# H� # H��(x+ dx)fŷ0; ŷ1; : : : ; ŷ; : : :g = Ê(x+ dx) 2 ��1� (x+ dx):It means that H� : ��1�� (x)! ��1�� (x + dx) preserves equivalene lasses. Thus� ÆH� Æ ��1 : ��1� (x)! ��1� (x + dx)yields a onnetion H� in � (This fat is disussed in more detail in [10℄, [11℄).If H� is integrable at least for one E0 2 ��1� (x0) and E(x); E(x0) = E0 is the integralmanifold, then E(x) an be onsidered as indiatrix I(x) and g��(x) in the equationg��(x)v�v� = 1 of E(x) as metri tensor. Any v0 leading to a point of Eo : v0 2 E0 anbe an axe of a onjugate axes system of E0. Then, aording to our onstrution, theparallel translated v of v0 aording to H� along a urve C � M from x0 to x is anelement of E(x): H�PC;x0;xv0 = v 2 H�PC;x0;xE0 = E(x);



Metrizability of AÆne Connetions 135and hene kv0kg(x0) = kvkg(x):We remark that v depends on the path C joining x0 and x, but E(x) does not. |This means: if H� is integrable, then H� is metrizable.The onverse is obvious. If H� is metrial with respet to g(x), then E(x) := I(x)is an integral manifold of H� .Thus we obtain theTheorem. The aÆne onnetion H� of a vetor bundle � is Riemann metrizable i�the onstruted onnetion H� in a bundle � �bered with ellipsoids is integrable.4 CoeÆients of H�We want to determine the onnetion oeÆients of H� . H� orders to the ellipsoidE(x)(7) a��(x)v�v� = 1 2 ��1� (x)the ellipsoid Ê(x+ dx)(8) a��(x+ dx)v�(x+ dx)v�(x+ dx) = 1 2 ��1� (x+ dx):Aording to the de�nition (onstrution) of H� this last equation is satis�ed bythe parallel translated with respet to H� of v�(x), i.e. by v�(x + dx) = v�(x) ����i(x)v�(x)dxi + o(dxi). (Sine we work with linear onnetions, o(dxi), i.e. higherorder terms in dxi, an be omitted.) Then the parallel translated of a��(x) aordingto H� are the a��(x + dx) appearing in (8). Denoting the onnetion oeÆients ofH� by M��i(x; a��) we obtain from (8)(a�� +M��i(x; a��)dxi)(v� � ���iv�dxi)(v� � ���iv�dxi) = 1or a��v�v� + �M��i � a��(���iÆ�� + ���iÆ��)� v�v�dxi + o(dxi) = 1:By (7) the right hand side drops out with a��v�v� . The remaining expression mustvanish for every v 2 E(x) and for every dxi. Thus, omitting o(dxi), we getM��i(x; a��) = (���iÆ�� + ���iÆ��)a��:This means that M��i(x; a��) is linear in a��, i.e. H� is an aÆne onnetion and itsonnetion oeÆients are(9) M����i(x) = ���i(x)Æ�� + ���i(x)Æ��:We remark that these oeÆients are symmetri in the sense that M����i =M����i.Thus the symmetry of a��(x) implies the symmetry of a��(x + dx) = a��(x) +M����i(x)a��dxi too, whih are the oeÆients of Ê(x+ dx).The ondition of the absolute parallelism of a��(x) with respet to H� is�a���xi = �M����i(x)a��(x):



136 L.TamassyThis is integrable i� T����ij(x)a��(x) = 0T����ij � ��M����i�xj �M���� iM����j�[i;j℄has a solution for a�� with positive determinant. We �nd thatT����ij = R��ijÆ�� +R��ijÆ��;where R is the urvature tensor of ���i(x).5 Finsler vetor bundlesConsidering a Finsler vetor bundle � = (E; �; TM; V n) and a onnetion � withonnetion oeÆients Fj ih(x; y), Vj ih(x; y) we have (1). In this ase the base manifoldTM has dimension 2n. Its oordinates an be denoted by uA, A = 1; : : : ; 2n; ui = xi,un+i = yi. E(x; y) has the equation aij(x; y)�i�j = 1, and the equation of Ê(x+ dx) isaij(x+ dx; y + dy)�i(x+ dx; y + dy)�j(x+ dx; y + dy) = 1:Hereaij(x+ dx; y + dy) = aij(x) +Mijrsh(x; y)ars(x; y)dxh +Mijrsn+k(x; y)arsdyh:Contrasting with (9), here the last index of M runs from 1 to 2n the other indiesfrom 1 to n. Considerations and alulations similar to those done above yieldMijrsh = Fj shÆri + FirhÆsjMijrsn+k = Vj skÆri + VirkÆsj ;and furthermore Tijrskh = FRirkhÆsj + FRjskhÆriTijrsn+k n+h = V RirkhÆsj + V RjskhÆri ;where FR and V R are formed from Fjsi and Vjsi resp. like ommon urvature tensors.FinallyTijrsn+h k = �Mijrsn+h�xk � �Mijrsk�yh + (Vj skFsh � FjskVsh)Æbi++VjkFibh � FjkVibh + VibkFjh � FibkVjh + (VirkFrbh � FirkVrbh)Æj :One an use other onnetions, e.g. a pre-Finsler onnetion F�(Fj ik, N ij ; Vj ih)and h- and v-ovariant derivatives�ijk = ��i�xk � ��i�yrNrk + Fj ik�j�ijk = ��i�yk + Vj ik�j :



Metrizability of AÆne Connetions 137In this ase (1) beomesd��i = (Fj ik � Vj irNrk)�jdxk + Vj ik�jdyk;or d��i = �(Fj ik � Vj irFsrkys)dxk + Vj ikdyk� �jif F� is without deetion. These lead to other formulae for MijrsA and TijrsAB . IfFj ik and Vj ik are symmetri, F� is without deetion and metrizable, then F� is theCartan onnetion.Finally we mention still another aÆne onnetion introdued by M. Matsumoto[7℄, [8℄ (see also [2℄, [3℄) whih is an ordinary aÆne onnetion derived from a Finsleronnetion F�(Fj ik; N ij ; Vj ik). Starting with an F� and a nonvanishing vetor �eldY (x) whih depends on the point x only(10) �j ik(x) := Fj ik(x; Y (x)) + Vj ir(x; Y (x))��Y r�xk + Y s(x)Fsrk(x; Y (x))�turn out to be onnetion oeÆients of an ordinary aÆne onnetion. Using the vetor�eld Y (x) one an assoiate to any Finsler vetor �eld �i(x; y) an ordinary vetor �eld�i(x) := �i(x; Y (x)). Then there exists a nie relation among the ovariant derivative�i;k onstruted with �, and the h- and v-ovariant derivatives with respet to F�,namely �i;k = ��ijk + �ijk ��Y r�xk + Y sFsrk����y=Y (x) :Given a � and a Y (x), there are many F� whih satisfy (10). Then we an useour method to searh for metrizable ones among these F�, e.g. for suh, where F�satis�es (10) with the given � and Y (x) and gijjk = gij jk = 0 with respet to this F�.Aknowledgements. This researh was supported by OTKA: T - 17261.Erratum. Reeived August 4, 1994; Revised August 15, 1995. Editorial Boarddeided to reprint this paper sine the �rst printing in BJGA, 1,1 (1996), pp.83-90,ontains several missprints due to e-mail and omputer transmission.Referenes[1℄ S. Golab, Uber die Metrisierbarkeit der aÆn-zusammenhangenden Raume, Ten-sor N.S., 9 (1959), 1-7.[2℄ R. S. Ingarden, M. Matsumoto and L. Tam�assy, Vetor-�eld relative Finsler spaein two physial examples, to appear.[3℄ R. S. Ingarden and M. Matsumoto, On the 1953 Barthel onnetion of a Finslerspae and its physial aspets, Publ. Math. Debreen, vol. 43, 87-90, 1993.[4℄ A. Jakubowiz, Uber die Metrisierbarkeit der aÆn-zusammenhangenden RaumeI., II., III. Tensor N. S., vol 14, 132{137, 1963; vol 17, 28-43, 1966; vol 18, 259-270,1967.
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