On Real Hypersurfaces of Type A in a Complex Space Form (III) Hyang Sook Kim and Yong-Soo Pyo #### Abstract We denote by $M_n(c)$ a complex space form with the metric of constant holomorphic sectional curvature c and M a real hypersurface in $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler metric and the almost complex structure of $M_n(c)$. We will give characterizations of homogeneous real hypersurfaces of type A under the condition that $\nabla_{\xi} A = f(A\phi - \phi A) - df(\xi)I$, $2f \neq -g(A\xi, \xi)$ for a smooth function f without zero points, where I denotes the identity transformation and A mean the shape operator of M. Mathematics Subject Classification: 53C40 Key words: complex space form, homogeneous real hypersurface, shape operator # 1 Introduction A complex *n*-dimensional Kähler manifold of constant holomorphic sectional curvature c is called a *complex space form*, which is denoted by $M_n(c)$. A complete and simply connected complex space form consists of a complex projective space $P_n\mathbf{C}$, a complex Euclidean space \mathbf{C}^n or a complex hyperbolic space $H_n\mathbf{C}$, according as c > 0, c = 0 or c < 0. Now, let M be a real hypersurface of an n-dimensional complex space form $M_n(c)$. Then M has an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler metric and the almost complex structure of $M_n(c)$. Okumura [7] and Montiel and Romero [6] proved the following **Theorem A.** Let M be a real hypersurface of $P_n\mathbf{C}$, $n \geq 2$. If it satisfies $$(1.1) A\phi - \phi A = 0,$$ then M is locally congruent to a tube of radius r over one of the following Kähler submanifolds: - (A_1) a hyperplane $P_{n-1}\mathbf{C}$, where $0 < r < \pi/2$, - (A_2) a totally geodesic $P_k \mathbf{C}$ $(1 \le k \le n-2)$, where $0 < r < \pi/2$, Balkan Journal of Geometry and Its Applications, Vol.3, No.2, 1998, pp. 101-110 © Balkan Society of Geometers, Geometry Balkan Press where A is the shape operator in the direction of the unit normal C on M. **Theorem B.** Let M be a real hypersurface of $H_n\mathbf{C}$, $n \geq 2$. If it satisfies (1.1), then M is locally congruent to one of the following hypersurfaces: - (A_0) a horosphere in $H_n\mathbf{C}$, - (A_1) a tube of a totally geodesic hyperplane $H_{n-1}\mathbf{C}$, - (A_2) a tube of a totally geodesic $H_k \mathbb{C}$ $(1 \le k \ge n-2)$. Such real hypersurfaces in Theorems A and B are said to be of $type\ A$. The following theorem is proved by Maeda and Udagawa [4] under the condition that the structure vector ξ is principal, and recently by Kimura and Maeda [3] and Ki, Kim and Lee [1] without the above assumption. **Theorem C.** Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies $$\nabla_{\xi} A = 0, \quad g(A\xi, \xi) \neq 0,$$ then M is of type A, where ∇ is the Riemannian connection on M. In his previous paper [9], the second named auther proved the following **Theorem D.** Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies $$\nabla_{\xi} A = a(A\phi - \phi A), \quad 2a \neq -g(A\xi, \xi)$$ for some non-zero constant a, then M is of type A. The purpose of this article is to generalize slightly Theorem D and to prove the following results. **Theorem 1.** Let M be a real hypersurface of $M_n(c), c \neq 0, n \geq 2$. If it satisfies (1.2) $$\nabla_{\xi} A = f(A\phi - \phi A) - df(\xi)I, \quad 2f \neq -g(A\xi, \xi)$$ for a smooth function f without zero points and the identity transformation I, then M is of type A. **Theorem 2.** Let M be a real hypersurface of $M_n(c), c \neq 0, n \geq 2$. If it satisfies $$\mathcal{L}_{\mathcal{E}}(\mathcal{H} + \{\}) = \prime, \quad \in \{ \neq -\}(\mathcal{A}\xi, \xi)$$ for a smooth function f without zero points, then M is of type A, where \mathcal{L}_{ξ} is the Lie derivative with respect to ξ and H is second fundamental form of M in $M_n(c)$, namely H(X,Y) = g(AX,Y) for any vector fields X and Y. ### 2 Preliminaries First of all, we recall fundamental properties about real hypersurfaces of a complex space form. Let M be a real hypersurface of a complex n-dimensional complex space form $(M_n(c), g)$ of constant holomorphic sectional curvature c, and let C be a unit normal vector field on a neighborhood in M. We denote by J the almost complex structure of $M_n(c)$. For a local vector field X on the neighborhood in M, the images of X and C under the linear transformation J can be represented as $$JX = \phi X + \eta(X)C, \quad JC = -\xi,$$ where ϕ defines a skew-symmetric transformation on the tangent bundle TM of M, while η and ξ denote a 1-form and a vector field on the neighborhood in M, respectively. Then it is seen that $g(\xi,X)=\eta(X)$, where g denotes the Riemannian metric tensor on M induced from the metric tensor on $M_n(c)$. The set of tensors (ϕ,ξ,η,g) is called an almost contact metric structure on M. They satisfy the following properties $$\phi^2 = -I + \eta \otimes \xi, \quad \phi \xi = 0, \quad \eta(\xi) = 1,$$ where I denotes the identity transformation. Furthermore the covariant derivatives of the structure tensors are given by (2.1) $$\nabla_X \xi = \phi A X, \quad \nabla_X \phi(Y) = \eta(Y) A X - g(A X, Y) \xi$$ for any vector fields X and Y on M, where ∇ is the Riemannian connection on M and A denotes the shape operator of M in the direction of C. Since the ambient space is of constant holomorphic sectional curvature c, the equations of Gauss and Codazzi are respectively given as follows: $$(2.2) R(X,Y)Z = \frac{c}{4} \{g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z\} + g(AY,Z)AX - g(AX,Z)AY,$$ (2.3) $$\nabla_X A(Y) - \nabla_Y A(X) = \frac{c}{4} \{ \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \},$$ where R denotes the Riemannian curvature tensor of M and $\nabla_X A$ denotes the covariant derivative of the shape operator A with respect to X. Next, we suppose that the structure vector field ξ is principal with corresponding principal curvature α , namely $A\xi = \alpha \xi$. Then it is seen in [2] and [5] that α is constant on M and it satisfies (2.4) $$2A\phi A = \frac{c}{2}\phi + \alpha(A\phi + \phi A).$$ # 3 Proof of Theorems Let M be a real hypersurface of $M_n(c), c \neq 0, n \geq 2$. First of all, we shall give a sufficient condition for the structure vector field ξ to be principal. We suppose that ξ is principal, i.e., $A\xi = \alpha \xi$, where α is constant. Then, by (2.1) and (2.4), we get $$\nabla_X A(\xi) = -\frac{c}{4} \phi X - \frac{1}{2} \alpha (A\phi - \phi A) X,$$ from which together with (2.3) it follows that we have (3.1) $$\nabla_{\xi} A = -\frac{1}{2} \alpha (A\phi - \phi A).$$ Taking account of this property and the already known some facts, in order to prove our theorems, we shall assert the following **Proposition 3.1.** Let M be a real hypersurface of $M_n(c)$, $c \neq 0$, $n \geq 2$. If it satisfies (3.2) $$\nabla_{\xi} A = f(A\phi - \phi A) - df(\xi)I$$ for a smooth function f without zero points, then ξ is principal, and hence $df(\xi) = 0$. By the assumption (3.2) and (2.3), it turns out to be (3.3) $$\nabla_Y A(\xi) = f(A\phi - \phi A)Y - df(\xi)Y - \frac{c}{4}\phi Y.$$ Differentiating this equation with respect to X covariantly and using (2.1), we get $$\nabla_{X}\nabla_{Y}A(\xi) = f\{\nabla_{X}A(\phi Y) + g(Y,\xi)A^{2}X - g(AX,Y)A\xi - g(AY,\xi)AX + g(AX,AY)\xi - \phi\nabla_{X}A(Y)\}$$ $$- \frac{c}{4}\{g(Y,\xi)AX - g(AX,Y)\xi\} - \nabla_{Y}A(\phi AX) + df(X)(A\phi - \phi A)Y$$ for any vector fields X and Y. Since the Ricci formula for the shape operator A is given by $$\nabla_X \nabla_Y A(Z) - \nabla_Y \nabla_X A(Z) = R(X, Y)(AZ) - A(R(X, Y)Z),$$ from (2.2), (2.3) and (3.4), it follows that $$\nabla_{X}A(\phi AY) - \nabla_{Y}A(\phi AX) + f\{\nabla_{X}A(\phi Y) - \nabla_{Y}A(\phi X)\}$$ $$= -\{fg(Y,\xi) + g(AY,\xi)\}A^{2}X + \{fg(X,\xi) + g(AX,\xi)\}A^{2}Y + \{fg(AY,\xi) + g(A^{2}Y,\xi)\}AX - \{fg(AX,\xi) + g(A^{2}X,\xi)\}AY + \frac{c}{4}\{fg(Y,\xi) + g(AY,\xi)\}X - \frac{c}{4}\{fg(X,\xi) + g(AX,\xi)\}Y + \frac{c}{4}\{g(A\phi Y,\xi)\phi X - g(A\phi X,\xi)\phi Y\} - \frac{c}{2}g(\phi X,Y)\phi A\xi + df(Y)(A\phi - \phi A)X - df(X)(A\phi - \phi A)Y$$ for any vector fields X and Y. Now, in order to prove Proposition 3.1, we shall express (3.5) with the simpler form. The inner product of (3.5) and ξ , combining with (2.3) and (3.2), implies $$fg((A\phi A\phi - \phi A\phi A)X, Y)$$ $$+ f^{2}\{g(X, \xi)g(AY, \xi) - g(Y, \xi)g(AX, \xi)\}$$ $$- df(\xi)\{g((A\phi + \phi A)X, Y) + 2fg(\phi X, Y)\}$$ $$+ f\{g(X, \xi)g(A^{2}Y, \xi) - g(Y, \xi)g(A^{2}X, \xi)\}$$ $$+ 2\{g(AX, \xi)g(A^{2}Y, \xi) - g(AY, \xi)g(A^{2}X, \xi)\}$$ $$- df(X)g(A\phi Y, \xi) + df(Y)g(A\phi X, \xi) = 0$$ for any vector fields X and Y. Since Y is any vector field, we get $$\{ f(A\phi A\phi - \phi A\phi A) - df(\xi)(A\phi + \phi A) \} X - 2f df(\xi)\phi X$$ $$+ \{ fg(X,\xi) + 2g(AX,\xi) \} A^2 \xi + \{ f^2 g(X,\xi)$$ $$- 2g(A^2 X,\xi) \} A \xi - f \{ fg(AX,\xi) + g(A^2 X,\xi) \} \xi$$ $$+ df(X)\phi A \xi + g(A\phi X,\xi) \nabla f = 0$$ for any vector field X, where we denote by ∇f the gradient of the function f. On the other hand, taking account of (2.1) and the skew-symmetry of the transformation ϕ , we have (3.7) $$g((A\phi A\phi - \phi A\phi A)X, \phi X) = g(X, \xi)g(A\phi AX, \xi).$$ Putting $Y = \phi X$ in (3.6) and applying the above property, we get $$(3.8) \begin{array}{rcl} fg(X,\xi)\{g(A\phi AX,\xi) & + & fg(A\phi X,\xi) + g(A^2\phi X,\xi)\} \\ & + & 2\{g(AX,\xi)g(A^2\phi X,\xi) - g(A\phi X,\xi)g(A^2X,\xi)\} \\ & - & df(\xi)\{g((A\phi + \phi A)X,\phi X) + 2fg(\phi X,\phi X)\} \\ & - & df(X)g(A\phi^2 X,\xi) + df(\phi X)g(A\phi X,\xi) = 0. \end{array}$$ Let T_0 be a distribution defined by the subspace $T_0(x) = \{u \in T_x M : g(u, \xi(x)) = 0\}$ of the tangent space $T_x M$ of M at any point x, which is called a holomorphic distribution. Now, suppose that the structure vector field ξ is not principal. Then we can put $A\xi = \alpha \xi + \beta U$, where U is a unit vector field in the holomorphic distribution T_0 , and α and β are smooth functions on M. So we may consider the case that the function β does not vanish identically on M. Let M_0 be the non-empty open subset of M consisting of points x at which $\beta(x) \neq 0$. And we put $AU = \beta \xi + \gamma U + \delta V$, where U and V are orthonormal vector fields in T_0 , and γ and δ are smooth functions on M_0 . And let $L(\xi, U)$ be a distribution spanned by ξ and U. For any vector field X belonging to the holomorphic distribution T_0 , (3.8) is simplified as $$\begin{split} 2\{g(AX,\xi)g(A^2\phi X,\xi) & - & g(A\phi X,\xi)g(A^2 X,\xi)\} \\ & - & df(\xi)\{g((A\phi + \phi A)X,\phi X) + 2fg(\phi X,\phi X)\} \\ & + & \beta\{df(X)g(X,U) + df(\phi X)g(\phi X,U)\} = 0. \end{split}$$ Furthermore, we can see that this equation holds for any vector field X. By the polarization of the above equation, we have $$\begin{split} & 2\{g(AX,\xi)g(A^{2}\phi Y,\xi) - g(A\phi X,\xi)g(A^{2}Y,\xi) \\ & + g(AY,\xi)g(A^{2}\phi X,\xi) - g(A\phi Y,\xi)g(A^{2}X,\xi)\} \\ & - df(\xi)\{g((A\phi + \phi A)X,\phi Y) + g((A\phi + \phi A)Y,\phi X) \\ & + 4fg(\phi X,\phi Y)\} + \beta\{df(X)g(Y,U) + df(\phi X)g(\phi Y,U) \\ & + df(Y)g(X,U) + df(\phi Y)g(\phi X,U)\} = 0 \end{split}$$ for any vector fields X and Y. Hence we have (3.9) $$df(\xi)\{\phi(A\phi + \phi A)X + (A\phi + \phi A)\phi X + 4f\phi^{2}X\}$$ $$-2\{g(AX, \xi)\phi A^{2}\xi + g(A\phi X, \xi)A^{2}\xi - g(A^{2}\phi X, \xi)A\xi\}$$ $$-g(A^{2}X, \xi)\phi A\xi\} + \beta\{df(X)U - df(\phi X)\phi U\}$$ $$+g(X, U)\nabla f + g(\phi X, U)df(\phi)\} = 0.$$ First, in order to prove Proposition 3.1, we shall show the following **Lemma 3.2.** The distribution $L(\xi, U)$ is A-invariant on M_0 , namely we have $$(3.10) AU = \beta \xi + \gamma U$$ on M_0 . **Proof.** On the open subset M_0 , by the forms $A\xi = \alpha \xi + \beta U$ and $AU = \beta \xi + \gamma U + \delta V$, it turns out to be $$A^{2}\xi = (\alpha^{2} + \beta^{2})\xi + \beta(\alpha + \gamma)U + \beta\delta V.$$ Thus we can rewrite (3.9) as $$df(\xi)\{\phi(A\phi + \phi A)X + (A\phi + \phi A)\phi X + 4f\phi^{2}X\}$$ $$+2\{\alpha g(A^{2}\phi X, \xi) - (\alpha^{2} + \beta^{2})g(A\phi X, \xi)\}\xi$$ $$+2\beta\{g(A^{2}\phi X, \xi) - (\alpha + \gamma)g(A\phi X, \xi)\}U - 2\beta\delta g(A\phi X, \xi)V$$ $$+2\beta\{g(A^{2}X, \xi) - (\alpha + \gamma)g(AX, \xi)\}\phi U - 2\beta\delta g(AX, \xi)\phi V$$ $$+\beta\{df(X)U - df(\phi X)\phi U + g(X, U)\nabla f + g(\phi X, U)df(\phi)\} = 0$$ for any vector field X. The inner product of (3.11) and ξ implies that $$\alpha g(\phi X, A^2 \xi) - (\alpha^2 + \beta^2) g(\phi X, A \xi) = 0$$ for any vector field X. This gives us $$\alpha A^2 \xi - (\alpha^2 + \beta^2) A \xi = 0$$ on M_0 and hence we have $$\beta\{(\alpha\gamma - \beta^2)U + \alpha\delta V\} = 0.$$ Consequently, we have $$\beta^2 = \alpha \gamma, \qquad \delta = 0$$ on M_0 . So it completes the proof. \square Furthermore, by (3.12), we also get $$(3.13) A^2 \xi = (\alpha + \gamma) A \xi$$ on M_0 . Next, in order to prove Proposition 3.1, we shall prove the following **Lemma 3.3.** If it satisfies (3.2), then we have (3.14) $$A\phi U = -\lambda \phi U, \qquad \lambda = f + \alpha + \gamma$$ on M_0 . **Proof.** By the polarization of (3.8) and (3.13), we have $$\begin{split} &fg(X,\xi)\{g(A\phi AY,\xi) + fg(A\phi Y,\xi) + g(A^2\phi Y,\xi)\} \\ &+ fg(Y,\xi)\{g(A\phi AX,\xi) + fg(A\phi X,\xi) + g(A^2\phi X,\xi)\} \\ &- df(\xi)\{g((A\phi + \phi A)X,\phi Y) + 4fg(\phi X,\phi Y) + g((A\phi + \phi A)Y,\phi X)\} \\ &- df(X)g(A\phi^2 Y,\xi) + df(\phi X)g(A\phi Y,\xi) \\ &- df(Y)g(A\phi^2 X,\xi) + df(\phi Y)g(A\phi X,\xi) = 0 \end{split}$$ for any vector fields X and Y. Putting $Y = \xi$, we have $$f\{g(A\phi AX, \xi) + fg(A\phi X, \xi) + g(A^2\phi X, \xi)\} = 0,$$ because $A\phi A\xi$ is orthogonal to ξ . Since f has not zero points, we have $$A\phi A\xi + f\phi A\xi + \phi A^2\xi = 0.$$ This equation, by (3.13), completes the proof. \square We remark here that the property $f \neq 0$ is essential to derive the equation (3.14). Lastly, in order to prove Proposition 3.1, we have the following **Lemma 3.4.** Assume that $A^2\xi + hA\xi = 0$, where h is a smooth function on M_0 . Then it satisfies (3.15) $$f\lambda^2 + (4f\gamma - 2h\gamma + \frac{c}{4})\lambda - f^2\gamma - \frac{c}{4}(2h + 2\alpha + \gamma) - \beta dh(\phi U) = 0$$ on M_0 . **Proof.** Differentiating our assumption $A^2\xi + hA\xi = 0$ with respect to X and taking account of (2.1), (2.3) and (3.3), we get $$\nabla_X A(A\xi) + fA(A\phi - \phi A)X + fh(A\phi - \phi A)X + A^2\phi AX$$ $$+hA\phi AX - df(\xi)(AX + hX) - \frac{c}{4}A\phi X - \frac{c}{4}h\phi X + dh(X)A\xi = 0$$ for any vector field X. The inner product of this equation with any vector field Y implies $$\begin{split} g(\nabla_X A(Y), A\xi) + fg(A(A\phi - \phi A)X, Y) + fhg((A\phi - \phi A)X, Y) \\ + g(A^2\phi AX, Y) + hg(A\phi AX, Y) - df(\xi)g(AX + hX, Y) \\ - \frac{c}{4}g(A\phi X, Y) - \frac{c}{4}hg(\phi X, Y) + dh(X)g(A\xi, Y) = 0. \end{split}$$ Exchanging X and Y in the above equation and substituting the second one from the first one, we have $$\begin{split} g(\nabla_X A(Y) - \nabla_Y A(X), A\xi) + fg((A^2 \phi - 2A\phi A + \phi A^2)X, Y) \\ + g((A^2 \phi A + A\phi A^2)X, Y) + 2hg(A\phi AX, Y) \\ - \frac{c}{4}g((A\phi + \phi A)X, Y) - \frac{c}{2}hg(\phi X, Y) \\ + dh(X)g(A\xi, Y) - dh(Y)g(A\xi, X) = 0 \end{split}$$ for any vector fields X and Y. Putting X = U and $Y = \phi U$ in this equation and taking account of (2.3), (3.10), (3.12) and (3.14), we can easily see that the equation (3.15) holds. \square Now, we are in position to prove Proposition 3.1, namely, to prove the fact that under the condition (3.2), the structure vector ξ is principal. We suppose that the open set M_0 is not empty. Then, differentiating the form $A\xi = \alpha \xi + \beta U$ with respect to ξ covariantly on M_0 , we have by (2.1) $$\nabla_{\xi} A(\xi) = d\alpha(\xi)\xi + \alpha\beta\phi U + d\beta(\xi)U - \beta A\phi U + \beta\nabla_{\xi}U.$$ This, combining with the assumption (3.2) and (3.14), implies $$d(f + \alpha)(\xi)\xi + d\beta(\xi)U + \beta(2f + 2\alpha + \gamma)\phi U + \beta\nabla_{\xi}U = 0.$$ From the inner product of ξ and U respectively, we get (3.16) $$\nabla_{\xi} U = -(2f + 2\alpha + \gamma)\phi U, \quad d(f + \alpha)(\xi) = 0, \quad d\beta(\xi) = 0$$ on M_0 , where we have used that $g(\nabla_{\xi}U, \xi) = 0$ and $g(\nabla_{\xi}U, U) = 0$. By making use of (3.2) and (3.10), $\gamma = g(AU, U)$ gives us to $d\gamma(\xi) = -df(\xi)$. Therefore, from (3.14) and (3.16), we get $d\lambda(\xi) = -df(\xi)$. Differentiating (3.14) with respect to ξ covariantly, and taking account of (2.1) and the above property, we get $$\nabla_{\xi} A(\phi U) - g(AU, \xi) A\xi - \lambda g(AU, \xi)\xi + (A\phi + \lambda\phi) \nabla_{\xi} U - df(\xi)\phi U = 0.$$ By (3.2), (3.10), (3.12), (3.14) and the first equation of (3.16), the above equation gives the following $$(3.17) (f + \alpha + \gamma)(f + 2\alpha + 2\gamma) = 0, df(\xi) = 0$$ on M_0 . Since $f \neq 0$, we have $\alpha + \gamma \neq 0$ by the above equation. Now, we consider the first case $f + \alpha + \gamma = 0$. By (3.14) and (3.16), we get (3.18) $$A\phi U = 0, \qquad \nabla_{\varepsilon} U = \gamma \phi U.$$ Differentiating $A\xi = \alpha \xi + \beta U$ with respect to any vector field X covariantly, and taking account of (2.1), (3.3) and the second equation (3.17), we get $$f(A\phi - \phi A)X - \frac{c}{4}\phi X + A\phi AX - d\alpha(X)\xi$$ $$-\alpha\phi AX - d\beta(X)U - \beta\nabla_X U = 0.$$ By taking the inner product of this equation with ξ and U respectively, we get (3.19) $$d\alpha(X) = f\beta g(\phi X, U), \qquad d\beta(X) = (f\gamma - \frac{c}{4})g(\phi X, U),$$ where we have used (3.10) and the first equation of (3.18). Owing to $\beta^2 = \alpha \gamma$, it is easily seen that $$2\beta d\beta(X) = \gamma d\alpha(X) + \alpha d\gamma(X),$$ from which together with (3.19), it turns out to be $$\beta(f\alpha + f\gamma - \frac{c}{2})g(\phi X, U) + \alpha df(X) = 0$$ for any vector field X, where we have used $f + \alpha + \gamma = 0$. This implies $\beta(f^2 + \frac{c}{2}) + \alpha df(\phi U) = 0$. Hence, by the first equation of (3.12) and (3.15), we get $\beta = 0$ on M_0 , where we have used that $\lambda = 0$ and h = f. It leads to a contradiction. Next, we consider the second case, that is, we suppose that $f+2\alpha+2\gamma=0$. Putting $X=\xi$ and Y=U in (3.5) and from the inner product of ξ and U respectively, we obtain $$\beta g(\phi \nabla_U U, U) = (f + \gamma)(f + \alpha + \gamma) + \gamma(f + \alpha) + \frac{c}{4}$$ and $$\beta(f + \alpha + 2\gamma)g(\phi \nabla_U U, U) = f(f + 2\gamma)(f + \alpha + \gamma) + \gamma^2(f + \alpha) - \frac{c}{4}(f + \alpha),$$ where we have used (3.2), (3.10), (3.13), (3.14), (3.16) and $df(\xi) = d\gamma(\xi) = 0$. Combining of the above two equations, we get $$(f + \alpha + \gamma)(f\alpha + 2f\gamma + 2\alpha\gamma + 2\gamma^2 + \frac{c}{2}) = 0.$$ By the supposition $f + 2\alpha + 2\gamma = 0$, we have $f^2 = c$. Therefore, we obtain $\alpha = 0$, where we have used (3.15), $f + 2\alpha + 2\gamma = 0$ and $h = \lambda = \frac{f}{2}$. Hence $\beta = 0$ on M_0 by the first equation of (3.12). Therefore it also leads to a contradition. Consequently, from these two cases it follows that the subset M_0 is empty and hence the structure vector field ξ is principal. Thus, combining (3.1) with (3.2), we get $df(\xi) = 0$. It completes the proof of Proposition 3.1. \square **Remark.** Recently, Park[8] also give an another sufficient condition for the structure vector field ξ is principal. **Proof of Theorem 1.** By Proposition 3.1, the structure vector ξ is principal and $df(\xi) = 0$. Combining (3.1) with the assumption (1.2) of Theorem 1, we have $$(2f + \alpha)(A\phi - \phi A) = 0,$$ which implies that $A\phi - \phi A = 0$. Thus, owing to Theorems A and B the real hypersurface M is of type $A.\Box$ **Proof of Theorem 2.** Since $\mathcal{L}_{\xi}(\mathcal{H} + \{\})(\mathcal{X}, \mathcal{Y}) = \{\nabla_{\xi}\mathcal{A}(\mathcal{X}), \mathcal{Y}\} - \{\}((\mathcal{A}\phi - \phi\mathcal{A})\mathcal{X}, \mathcal{Y}) + [\{(\xi)\}(\mathcal{X}, \mathcal{Y}) \text{ for any vector fields } X \text{ and } Y, \text{ by the assumption (1.3)}$ of Theorem 2, we have $$\nabla_{\xi} A = f(A\phi - \phi A) - df(\xi)I.$$ Hence Theorem 2 is proved by Theorem 1. \square **Acknowledgements**. This work was supported by 1998 Inje University Research Grant. # References - [1] U-H. Ki, S.-J. Kim and S.-B. Lee, Some characterizations of a real hypersurfaces of type A, Kyungpook Math. J., 31(1991), 73-82. - [2] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama, 32(1990), 207-221. - [3] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space II, Tsukuba J. Math., 15(1991), 547-561. - [4] S. Maeda and S. Udagawa, Real hypersurfaces of a complex projective space in term of holomorphic distribution, Tsukuba J. Math., 14(1)(1990), 39-52. - [5] Y. Maeda, On real hypersurfaces of a complex projective space, J. Math. Soc. Japan, 28(1976), 529-540. - [6] S. Montiel and A. Romero, On some real hypersurfaces of a complex hyperbolic space, Geometriae Dedicata, 20(1986), 245-261. - [7] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc., 212(1975), 355-364. - [8] S.C. Park, Real hypersurfaces of a complex space form in terms of the Lie derivative, Thesis for Grad. School Edu. Kyungpook Univ., (1995, June) - Y.S. Pyo, On real hypersurfaces of type A in a complex space form (I) Tsukuba J. Math., 18(2)(1994), 483-492. - [10] H.S.Kim, G.S.Lee, Y.S.Pyo, Geodesics and circles on real hypersurfaces of type A and B in a complex space form, Balkan Journal of Geometry and Its Applications, 2, 2 (1997), 79-89. Department of Mathematics Inje University Kimhae 621-749, Korea email: mathkim@ijnc.inje.ac.kr Division of Mathematical Sciences Pukyong National University Pusan 608-737, Korea email: yspyo@dolphin.pknu.ac.kr