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Abstract

We denote by M, (c) a complex space form with the metric of constant
holomorphic sectional curvature ¢ and M a real hypersurface in M,(c). Then
M has an almost contact metric structure (¢, £,n,¢g) induced from the Kéahler
metric and the almost complex structure of M, (c). We will give characterizations
of homogeneous real hypersurfaces of type A under the condition that V¢ A =
F(Ap—pA)—df (E)I,2f # —g(AE,€) for a smooth function f without zero points,
where I denotes the identity transformation and A mean the shape operator of
M.
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1 Introduction

A complex n-dimensional K&hler manifold of constant holomorphic sectional curva-
ture ¢ is called a complex space form, which is denoted by M,(c). A complete and
simply connected complex space form consists of a complex projective space P,C,
a complex Euclidean space C™ or a complex hyperbolic space H,C, according as
c>0,c=0o0rc<0.

Now, let M be a real hypersurface of an n-dimensional complex space form M, (c).
Then M has an almost contact metric structure (¢, &, n,g) induced from the Kéhler
metric and the almost complex structure of M, (c). Okumura [7] and Montiel and
Romero [6] proved the following
Theorem A. Let M be a real hypersurface of P,C,n > 2. If it satisfies

(1.1) Ap—pA =0,

then M is locally congruent to a tube of radius r over one of the following Kéhler
submanifolds:

(Ay) a hyperplane P,,_1C, where 0 < r < /2,

(As) a totally geodesic P,C (1 < k <n —2), where 0 < r < 7/2,
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where A is the shape operator in the direction of the unit normal C' on M.
Theorem B. Let M be a real hypersurface of H,C,n > 2. If it satisfies (1.1), then
M is locally congruent to one of the following hypersurfaces:

(Ao) a horosphere in H, C,

(A1) a tube of a totally geodesic hyperplane H,,_,C,

(As) a tube of a totally geodesic H,C (1 < k >n —2).

Such real hypersurfaces in Theorems A and B are said to be of type A. The
following theorem is proved by Maeda and Udagawa [4] under the condition that the
structure vector ¢ is principal, and recently by Kimura and Maeda [3] and Ki, Kim
and Lee [1] without the above assumption.

Theorem C. Let M be a real hypersurface of M, (c),c # 0,n > 2. If it satisfies

then M is of type A, where V is the Riemannian connection on M.

In his previous paper [9], the second named auther proved the folllwing
Theorem D. Let M be a real hypersurface of My(c),c # 0,n > 2. If it satisfies

ng = CL(A¢ - ¢A)a 2a # —g(Af,f)

for some non-zero constant a, then M is of type A.

The purpose of this article is to generalize slightly Theorem D and to prove the
following results.
Theorem 1. Let M be a real hypersurface of M, (c),c # 0,n > 2. If it satisfies

(1.2) VeA = f(Ad — pA) —df (I, 2f # —g(AL,€)

for a smooth function f without zero points and the identity transformation I, then
M is of type A.
Theorem 2. Let M be a real hypersurface of M, (c),c # 0,n > 2. If it satisfies

(1.3) LeH+{}) =1 e{#-}HAY)

for a smooth function f without zero points, then M is of type A, where L¢ is the
Lie derivative with respect to £ and H is second fundamental form of M in M,(c),
namely H(X,Y) = g(AX,Y) for any vecror fields X and Y.

2 Preliminaries

First of all, we recall fundamental properties about real hypersurfaces of a complex
space form. Let M be a real hypersurface of a complex n-dimensional complex space
form (My,(c),g) of constant holomorphic sectional curvature ¢, and let C' be a unit
normal vector field on a neighborhood in M. We denote by J the almost complex
structure of M, (c). For a local vector field X on the neighborhood in M, the images
of X and C under the linear transformation J can be represented as
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JX = ¢X +n(X)C, JC =-¢,

where ¢ defines a skew-symmetric transformation on the tangent bundle T'M of M,
while n and £ denote a 1-form and a vector field on the neighborhood in M, respec-
tively. Then it is seen that g(&, X) = n(X), where g denotes the Riemannian metric
tensor on M induced from the metric tensor on My, (c). The set of tensors (¢, &, n, g) is
called an almost contact metric structure on M. They satisfy the following properties

¢2:—I+77®f, ¢£:0) 77(5):1;

where I denotes the identity transformation. Furthermore the covariant derivatives
of the structure tensors are given by

(2.1) Vx§=0AX, Vxo(V)=n)AX — g(AX, V)¢

for any vector fields X and Y on M, where V is the Riemannian connection on M
and A denotes the shape operator of M in the direction of C.

Since the ambient space is of constant holomorphic sectional curvature ¢, the
equations of Gauss and Codazzi are respectively given as follows:

R(X,Y)Z = z{g(Y, )X — g(X, 2)Y

(2:2) + g(0Y, 2)¢X — g(¢X, Z)pY — 29(¢X,Y)pZ}
+ g(AY,Z2)AX — g(AX, Z)AY,

(23)  VxA®Y) - VyAX) = £{n(X)6Y - n(¥)6X - 29(6X,Y)e},

where R denotes the Riemannian curvature tensor of M and VxA denotes the co-
variant derivative of the shape operator A with respect to X.

Next, we suppose that the structure vector field ¢ is principal with corresponding
principal curvature a, namely A = a&. Then it is seen in [2] and [5] that « is constant
on M and it satisfies

(2.4) 2AA = §¢ +a(Ag + pA).

3 Proof of Theorems

Let M be a real hypersurface of M,(c),c # 0,n > 2. First of all, we shall give a
sufficient condition for the structure vector field £ to be principal. We suppose that &
is principal, i.e., A{ = af, where « is constant. Then, by (2.1) and (2.4), we get

c 1
VxA(§) = —1%X - §Q(A¢ - pA)X,
from which together with (2.3) it follows that we have

(3.1) Ved = —%a(Ang — pA).
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Taking account of this property and the already known some facts, in order to prove
our theorems, we shall assert the following
Proposition 3.1. Let M be a real hypersurface of M, (c),c # 0,n > 2. If it satisfies

(3.2) VeA = f(Ad — A) —df (I

for a smooth function f without zero points, then & is principal, and hence df (§) = 0.
By the assumption (3.2) and (2.3), it turns out to be

(3.3) VyA(©) = f(Ad - pA)Y — df(E)Y - 74V
Differentiating this equation with respect to X covariantly and using (2.1), we get
ViVyA@©) = J{VxA@Y) +g(V.A2X —g(AX,Y)Ag
— gAY, OAX +g(AX, AV)E — 6VxA(Y)}

(3.4) ¢
= {9V, 9AX — g(AX,Y)E} - Vy A(9AX)

+ df(X)(Ad - 9A)Y

for any vector fields X and Y. Since the Ricci formula for the shape operator A is
given by

VxVyA(Z) — VyVxA(Z) = R(X,Y)(AZ) — A(R(X,Y)Z),

from (2.2), (2.3) and (3.4), it follows that
(3.5)
VxABAY) — VyA@AX) + F{VxA(GY) - Vy A(6X)}

= —{f9(Y,6) + g(AY, )} A’ X + {fg(X, ) + g(AX, )} A%Y
+ {fg(AY, &) + g(A%Y, &)} AX
— {f9(AX, &) + g(A%X,€)}AY

+ U0 + gAY O}X — {f9(X. ) + g(AX, O}V

+ LAY, O0X — g(ApX, )6V} — Zg(oX,V)oA
+AFY)(AD — $A)X — df(X)(Ap — pA)Y

for any vector fields X and Y.
Now, in order to prove Proposition 3.1, we shall express (3.5) with the simpler
form. The inner product of (3.5) and &, combining with (2.3) and (3.2), implies

fa((ApAd — ¢APA)X,Y)

+ (X, 6)g(AY, &) — g(Y,€)g(AX, )}

= df(O{9((A9 + 9A)X,Y) + 2fg(¢X,Y)}
f9(X,8g(A?Y,€) — g(Y,§)g(A*X, €)}
2{9(AX,€)g(A’Y, ) — g(AY,£)g(A%X, &)}
— df(X)g(AgY,§) +df (Y)g(AdX, &) =0

+ o+
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for any vector fields X and Y. Since Y is any vector field, we get
{f(ApAg - ¢APA) — df(§)(Ag + pA)}X — 2fdf (§)pX
+ {f9(X,8) + 29(AX, O}A*C + {f29(X, §)
— 29(A2X, AL — f{f9(AX, &) + g(A°X, §)}¢
+ df(X)PAE + g(ApX, VS =0

for any vector field X, where we denote by V f the gradient of the function f. On the
other hand, taking account of (2.1) and the skew-symmetry of the transformation ¢,
we have

(3.7) 9((A0A¢ — pAPA) X, 9X) = g(X,£)g(APAX, ).
Putting Y = ¢X in (3.6) and applying the above property, we get

fo(X,){9(ApAX, &) + [fg(AdX,E) + g(A*¢X, &)}
+ 2{9(AX,8)g(A%0X,€) — g(ApX, )g(A*X,€)}
— df(O{9((A9 + 9A) X, 6 X) + 2fg(dX, 9 X)}
— df(X)g(Ad*X,€) +df ($X)g(AdX,€) = 0.

Let Ty be a distribution defined by the subspace Top(z) = {u € T, M : g(u,&(x)) =
0} of the tangent space T, M of M at any point z, which is called a holomorphic
distribution.

Now, suppose that the structure vector field £ is not principal. Then we can put
A€ = a& + BU, where U is a unit vector field in the holomorphic distribution Ty, and
a and f are smooth functions on M. So we may consider the case that the function
B does not vanish identically on M. Let My be the non-empty open subset of M
consisting of points x at which 8(z) # 0. And we put AU = ¢ +~U + 6V, where U
and V are orthonormal vector fields in Ty, and v and § are smooth functions on M.
And let L(&,U) be a distribution spanned by & and U.

For any vector field X belonging to the holomorphic distribution Tp, (3.8) is sim-
plified as

2{g(AX,)g(A%¢X,&) — g(ApX, €)g(A*X,{)}
— df(O{9((A¢ + 9A) X, 9X) + 2fg(dX, $X)}
+ Bdf(X)g(X,U) +df (9X)g(oX,U)} = 0.

Furthermore, we can see that this equation holds for any vector field X. By the
polarization of the above equation, we have

2{g(AX,€)g(A*¢Y, ) — g(AdX, £)g(A*Y,¢)
+9(AY,§)g(A%9X, §) — g(AgY, §)g(A* X, €)}

—df (E){9((A¢ + ¢A) X, ¢Y) + g((Ad + dA)Y, ¢ X)
+4f9(¢X, 0Y)} + B{df (X)g(Y,U) + df (¢X)g(¢Y, U)
+df (Y)g(X,U) + df (¢Y )g(6X,U)} =0

(3.8)
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for any vector fields X and Y. Hence we have

df (){¢(Ad + ¢A)X + (A¢ + pA)pX + 4f¢* X}
—2{g(AX,£)pA¢ + g(ApX, ) A%E — g(A*$X, €) AL
—g(A*X, )AL} + Bldf (X)U — df (¢ X)pU

+9(X, U)Vf +9(¢X,U)df (¢)} = 0.

First, in order to prove Proposition 3.1, we shall show the following
Lemma 3.2. The distribution L({,U) is A-invariant on My, namely we have

(3.9)

(3.10) AU = B¢ +U

on Mo.
Proof. On the open subset My, by the forms A¢ = aé+ U and AU = BE+U+6V,
it turns out to be

A%¢ = (@ + B+ Bla+)U + B4V.
Thus we can rewrite (3.9) as
df (){d(Ad + dA)X + (AP + ¢A)X +4fH* X}
+2{ag(A?¢X, &) — (&® + 5?)g(APX, ) }¢
(3.11) +2B{g(A%¢X, &) — (a +7)9(APX, §)}U — 2B69(ApX, )V
+28{g(A’X,€) — (a +7)g(AX, &) }oU — 2809(AX, )V
+B8{df (X)U — df (¢ X)pU + g(X,U)Vf + g(¢X,U)df (¢)} =0

for any vector field X. The inner product of (3.11) and £ implies that

ag(pX, A%€) — (a® + 5%)g(¢X, A = 0

(
(

for any vector field X. This gives us
aA?¢ — (a® 4+ B AE =0
on My and hence we have
Bl{(ay — BU + adV} = 0.
Consequently, we have
(3.12) 6% = av, §=0
on Mjy. So it completes the proof. O
Furthermore, by (3.12), we also get
(3.13) A%E = (a + 7)A€

on Mj.
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Next, in order to prove Proposition 3.1, we shall prove the following
Lemma 3.3. If it satisfies (3.2), then we have

(3.14) AU = =AU,  A=f+a+~

on M().
Proof. By the polarization of (3.8) and (3.13), we have

f9(X,){9(ADAY, &) + fg(AY,€) + g(A%¢Y, )}

+f9(YV, {9(APAX, §) + f9(AdX,€) + g(A*0X, &)}

—df (){9((Ad + ¢A) X, 9Y) + 4fg(dX, 9Y) + g((Ap + ¢A)Y, pX)}
—df (X)g(Ad*Y, &) + df (¢ X)g(AeY, €)

—df (Y)g(A¢* X, &) + df (Y )g(AX, &) = 0

for any vector fields X and Y. Putting Y = £, we have
F{9(APAX, &) + fg(AdX,€) + g(A%¢X, )} = 0,
because APAE is orthogonal to £. Since f has not zero points, we have
APAE + fPAE + pA%E = 0.

This equation, by (3.13), completes the proof. O
We remark here that the property f # 0 is essential to derive the equation (3.14).
Lastly, in order to prove Proposition 3.1, we have the following
Lemma 3.4. Assume that A%2¢ + hA¢ = 0, where h is a smooth function on Mj.
Then it satisfies

(3.15) FAZ 4 (4fy — 20y + 2)/\ Py Z(2h +2a +7) — Bdh(U) = 0

on M().
Proof. Differentiating our assumption A%¢ + hA¢ = 0 with respect to X and taking
account of (2.1), (2.3) and (3.3), we get

VxA(AE) + fA(Ap — pA)X + fh(Ad — pA)X + ApAX
+hAGAX — df(€)(AX + hX) — £A¢X - gmpx + dh(X)AE =0

for any vector field X. The inner product of this equation with any vector field Y
implies

9(VxAY), AE) + fg(A(AD — GA)X,Y) + fhg((Ap — pA)X.Y)
+9(A%PAX,Y) + hg(ApAX,Y) — df (§)g(AX + hX,Y)
—J9(A0X.Y) = Thg(6X,Y) + dh(X)g(AEY) = 0.

Exchanging X and Y in the above equation and substituting the second one from the
first one, we have
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g(VXA(Y) = Vy A(X), 4) + Fg((426 — 2494 + $A?)X,Y)
+9((A20A + AGA2)X,Y) + 2hg(ApAX,Y)

—79((40 + BAX,Y) = Shg(¢X,Y)

+dh(X)g(AL,Y) — dh(Y)g(AE, X) =0

for any vector fields X and Y. Putting X = U and Y = ¢U in this equation and
taking account of (2.3), (3.10), (3.12) and (3.14), we can easily see that the equation
(3.15) holds. O

Now, we are in position to prove Proposition 3.1, namely, to prove the fact that
under the condition (3.2), the structure vector ¢ is principal. We suppose that the
open set My is not empty. Then, differentiating the form A¢ = a€ + BU with respect
to ¢ covariantly on My, we have by (2.1)

VeA(€) = da(§)€ + afoU + dB(§)U — BASU + fVeU.
This, combining with the assumption (3.2) and (3.14), implies
d(f +a)(§)§ +dB(E)U + B(2f + 2o+ 7)¢U + SV U = 0.

From the inner product of £ and U respectively, we get
(3.16) VeU = —(2f + 200+ 7)9U, d(f+a)(§) =0, dB(§) =0

on My, where we have used that g(V¢U,&) = 0 and g(V¢U,U) = 0. By making use
of (3.2) and (3.10), v = g(AU, U) gives us to dy(§) = —df (§). Therefore, from (3.14)
and (3.16), we get dA(§) = —df (€). Differentiating (3.14) with respect to £ covariantly,
and taking account of (2.1) and the above property, we get

VeA(QU) — g(AU,§) AL — Ag(AU, §)¢ + (A + X))V U — df (§)pU = 0.

By (3.2), (3.10), (3.12), (3.14) and the first equation of (3.16), the above equation
gives the following

(3.17) (f+a+9)(f+2a+2v) =0, df(€) =0

on My. Since f # 0, we have a + v # 0 by the above equation.
Now, we consider the first case f +a + v = 0. By (3.14) and (3.16), we get

(3.18) AU =0, VU =~¢U.

Differentiating A¢ = a€ + BU with respect to any vector field X covariantly, and
taking account of (2.1), (3.3) and the second equation (3.17), we get

F(Ad — pA)X — £X + APAX — do(X)E
—apAX — dB(X)U — BV xU = 0.

By taking the inner product of this equation with £ and U respectively, we get

c
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where we have used (3.10) and the first equation of (3.18). Owing to 8% = a7, it is
easily seen that

28dB(X) = yda(X) + ady(X),
from which together with (3.19), it turns out to be

c

B(fa+ fy=35)9(6X,U) + adf (X) =0

for any vector field X, where we have used f + a +~ = 0. This implies 3(f2 + g) +

adf (pU) = 0. Hence, by the first equation of (3.12) and (3.15), we get 8 = 0 on M,
where we have used that A = 0 and h = f. It leads to a contradiction.

Next, we consider the second case, that is, we suppose that f+2a+2y = 0. Putting
X =¢and Y = U in (3.5) and from the inner product of £ and U respectively, we
obtain

Bg(dVuU,U) = (f+V)(f +a+7y) +v(f +a)+

=0

and

B(f +a+27)g(¢VyU,U) = f(f +27)(f +a+7)
+7(f +a) = §(f +a),

where we have used (3.2), (3.10), (3.13), (3.14), (3.16) and df(£) = dvy(¢) = 0. Com-
bining of the above two equations, we get

(f+a+7)(fa+2fy+2ay+2y° + g) =0.
By the supposition f + 2a + 2y = 0, we have f? = c. Therefore, we obtain a = 0,
where we have used (3.15), f +2a+2y=0and h =\ = g Hence 8 = 0 on M, by
the first equation of (3.12). Therefore it also leads to a contradition.

Consequently, from these two cases it follows that the subset M, is empty and
hence the structure vector field £ is principal. Thus, combining (3.1) with (3.2), we
get df (§) = 0. It completes the proof of Proposition 3.1. O
Remark. Recently, Park[8] also give an another sufficient condition for the structure
vector field & is principal.

Proof of Theorem 1. By Proposition 3.1, the structure vector ¢ is principal and
df (¢€) = 0. Combining (3.1) with the assumption (1.2) of Theorem 1, we have

(2f + @) (A¢ — $A) =0,

which implies that A¢ — ¢ A = 0. Thus, owing to Theorems A and B the real hyper-
surface M is of type A.00

Proof of Theorem 2. Since L¢(H + {})(X,Y) = HVAWX),Y) — {3 (Ao —
dA)X,Y) + [{(£)}(X,Y) for any vector fields X and Y, by the assumption (1.3)
of Theorem 2, we have

VeA = f(A¢ — ¢A) — df (1.

Hence Theorem 2 is proved by Theorem 1. O
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