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Abstract

In this paper are presented certain connections between the tangency rela-
tions of sets given by W. Waliszewski and considered earlier definitions of the
tangency of sets in metric spaces. Some applications of results of my mono-
graphic paper for further investigations of the tangency of sets in metric spaces
are discussed in the present paper. In Section 2 of this paper is shown that
the W. Waliszewski’s definition of the tangency of regular arcs is strictly re-
lated to the Alexandrov’s and Riemann’s angles between these arcs in a smooth
Riemannian manifold.
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1 Introduction

Let E be any non-empty set. By E0 we shall denote a family of all non-empty subsets
of the set E. Let l be a non-negative real function defined on the Cartesian product
E0 × E0 of the family E0 and let by the definition

l0(x, y) = l({x}, {y}) for x, y ∈ E.(1.1)

If we put suitable conditions on the function l, then the function l0 defined by
(1.1) will be the metric of the set E. For this reason the pair (E, l) can be treated
as a certain generalization of the metric space and we call it the generalized metric
space (see [9]).

Similarly as in a metric space, using (1.1), we may define in the generalized metric
space (E, l) the open ball Kl0(p, r) with the centre at the point p ∈ E and the radius
r ≥ :

Kl0(p, r) = {x ∈ E : l0(p, x) < r}.(1.2)

Assuming the family of all open balls Kl0(p, r) with positive radiuses for the com-
plete system of neighbourhoods, we give to the set E the character of a topological
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space. Then any generalized metric space (E, l) determines a certain topological space
(E, τl).

The sets of the family τl are unions of open balls. The family of all open balls
Kl0(p, r) constitutes the base of topological space (E, τl). We consider the set A ⊂ E
as open in the topology τl iff for any point p ∈ A there exists a number r > 0 such
that Kl0(p, r) ⊂ A.

By Sl0(p, r)u we denote the so-called u-neighbourhood of the sphere Sl0(p, r) (with
the centre at the point p ∈ E and the radius r) in the generalized metric space (E, l)
of the form

Sl0(p, r)u =

{ ⋃
q ∈ Sl0(p, r)

⋃
Kl0(q, u) for u > 0,

Sl0(p, r) for u = 0 .
(1.3)

Let a, b be arbitrary non-negative real functions defined in a certain right-hand
side neighbourhood of 0 such that

a(r)−−−→
r→0+

0 and b(r)−−−→
r→0+

0.(1.4)

We say that the pair (A, B) of sets A,B of the family E0 is (a, b)-clustered at the
point p of the space (E, l), if 0 is the cluster point of the set of all real numbers r > 0,
such that the sets A ∩ Sl0(p, r)a(r) and B ∩ Sl0(p, r)b(r) are non-empty.

According to the definition given by W. Waliszewski in the paper [9], the set
A ∈ E0 is (a, b)-tangent of order k > 0 to the set B ∈ E0 at the point p of the
generalized metric space (E, l), if the pair of sets (A,B) is (a, b)-clustered at the
point p ∈ E and

1
rk

l(A ∩ Sl0(p, r)a(r), B ∩ Sl0(p, r)b(r))−−−→
r→0+

0.(1.5)

If the set A is (a, b)-tangent of order k > 0 to the set B at the point p ∈ E, then
we shall write: (A,B) ∈ Tl(a, b, k, p).

The set Tl(a, b, k, p) we call the relation of (a, b)-tangency of order k at the point
p (shortly: the tangency relation of sets) in the generalized metric space (E, l).

Let ρ be a metric of the set E and let ρ0 be the function defined by the formula

ρ0(A,B) = sup{ρ(x, B) : x ∈ A} for A, B ∈ E0 ,(1.6)

where ρ(x,B) is the distance from the point x ∈ A to the set B in the metric space
(E, ρ).

If in the condition (1.5) we suppose k = 1 and in place of the function l we put
the function ρ0 defined by (1.6), then we get

1
r
ρ0(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r))−−−→

r→0+
0.(1.7)

Setting a(r) = 0 and b(r) = r for r > 0, the condition (1.7) we can write in the
form

1
r
ρ0(A ∩ Sρ(p, r), B)−−−→

r→0+
0,
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i.e.
1
r

sup{ρ(x,B) : x ∈ A and ρ(p, x) = r}−−−→
r→0+

0.(1.8)

The condition (1.8) is equivalent to the condition

ρ(x,B)
ρ(p, x)

−−−→
A3x→p

0.(1.9)

If p ∈ A′, where A′ is the set of all cluster points of the set A, then the formula
(1.9) presents the well-known definition of the tangency of sets, in particular of simple
arcs, in the metric space (E, ρ).

Because here k = 1 and the function ρ0 is the special case of the function l, then
the W. Waliszewski’s definition essentially generalizes the above mentioned definition
of the tangency of sets in the metric space (E, ρ).

The tangency relation of sets Tl(a, b, k, p) given by W. Waliszewski we call the
relation of equivalence in the set E, if is reflexive, symmetric and transitive in this
set.

Two tangency relations of sets Tl1(a1, b1, k, p) and Tl2(a2, b2, k, p) are called com-
patible (equivalent) in the set E, if (A,B) ∈ Tl1(a1, b1, k, p) iff (A,B) ∈ Tl2(a2, b2, k, p)
for A,B ∈ E0.

We say that the tangency relation of sets Tl(a, b, k, p) is homogeneous of the order
0 in some class of functions F, if (A,B) ∈ Tml(a, b, k, p) ⇔ (A, B) ∈ Tl(a, b, k, p) for
m > 0, l ∈ F and A,B ∈ E0.

In my monographic paper [4] I gave many theorems which are necessary and suf-
ficient conditions for the equivalence, compatibility and homogeneity of the tangency
relation of sets Tl(a, b, k, p).

2 On some connections and applications

Let ρ be a metric of the set E and let A be any set of the family E0 . Let k be a fixed
positive real number. We put by the definition (see [4, 6]).

M̃p,k = {A ∈ E0 : p ∈ A′, and there exists a number µ > 0 such that for an
arbitrary ε > 0 there exists δ > 0 such that for any pair of points (x, y) ∈ [A, p;µ, k]
if

ρ(p, x) < δ and
ρ(x,A)
ρk(p, x)

< δ, then
ρ(x, y)
ρk(p, x)

< ε},(2.1)

where

[A, p; µ, k] = {(x, y) : x ∈ E, y ∈ A and µρ(x, A) < ρk(p, x) = ρk(p, y)}.(2.2)

For k = 1 the class of sets M̃p,k contains the classes of sets Hp, A∗p and the class
Ap of rectifiable arcs (see [4]). Moreover M̃p,k ⊃ A∗p,k for any k > 0 and p ∈ E (see
[5, 7]).

Let f be subadditive increasing and continuous real function defined in a certain
right-hand side neighbourhood of 0 such that f(0) = 0. By Ff,ρ we shall denote the
class of all functions l fulfilling the conditions:

10 l : E0 × E0 7−→ [ 0,∞),
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20 f(ρ(A,B)) ≤ l(A,B) ≤ f(dρ(A ∪B)) for A, B ∈ E0,
where ρ(A,B) is the distance of sets A, B and dρ(A ∪ B) is the diameter of the
union of sets A, B in the metric space (E, ρ).

Because

f(ρ(x, y)) = f(ρ({x}, {y})) ≤ l({x}, {y}) ≤ f(dρ({x} ∪ {y})) = f(ρ(x, y)),

then from the above and from (1.1) it follows that

l0(x, y) = f(ρ(x, y)) for l ∈ Ff,ρ and x, y ∈ E.(2.3)

It is easy to check that the function l0 defined by the formula (2.3) is the metric
of the set E.

We say that the set A ∈ E0 has the Darboux property at the point p of the metric
space (E, l0), which we write: A ∈ Dp(E, l0), if there exists a number σ > 0 such that
the set A ∩ Sl0(p, r) is non-empty for r ∈ (0, σ).

In the monographic paper [4] I proved, among others, the following theorems
concerning the compatibility and homogeneity of the tangency relations of sets :

Theorem 2.1 If the functions a, b fulfil the condition

a(r)
rk

−−−→
r→0+

0 and
b(r)
rk

−−−→
r→0+

0,(2.4)

then for arbitrary functions l1, l2 ∈ Ff,ρ the tangency relations Tl1(a, b, k, p) and
Tl2(a, b, k, p) are compatible in the classes of sets M̃p,k ∩Dp(E, l0).

Theorem 2.2 If the functions ai, bi (i = 1, 2) fulfil the condition

ai(r)
rk

−−−→
r→0+

0 and
bi(r)
rk

−−−→
r→0+

0,(2.5)

then for any function l ∈ Ff,ρ the tangency relations Tl(a1, b1, k, p) and Tl(a2, b2, k, p)
are compatible in the classes of sets M̃p,k ∩Dp(E, l0).

Theorem 2.3 If the non-decreasing functions a, b fulfil the condition (2.4), then for
arbitrary sets of the classes M̃p,k ∩ Dp(E, l0) the tangency relation Tl(a, b, k, p) is
homogeneous of the order 0 in the class of functions Ff,ρ.

The mentioned above W. Waliszewski’s definition of the tangency of sets and
the theorems proved in the paper [4] may have the essential meaning for further
investigations connected with the tangency of sets in metric spaces. Some connections
and applications of the above I show below.

A. From the Theorem 2.3 and Theorem 2.1 on the homogeneity and compatibility
of the tangency relations of sets and from the definition of the class of the functions
Ff,ρ (Fmf,ρ) the corollaries follow :

Corollary 2.1 For arbitrary functions l1, l2 such that l1 ∈ Ff,ρ , l2 ∈ Fmf,ρ the
tangency relations Tl1(a, b, k, p), Tl2(a, b, k, p) are compatible in the classes of sets
M̃p,k ∩Dp(E, l0), if the non-decreasing functions a, b fulfil the condition (2.4).
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Corollary 2.2 If the non-decreasing functions a, b fulfil the condition (2.4), then
(A,B) ∈ Tml1(a, b, k, p) iff (A, B) ∈ TMl2(a, b, k, p) for arbitrary sets A,B ∈ M̃p,k ∩
Dp(E, l0), the functions l1, l2 ∈ Ff,ρ and numbers m,M > 0.

From the above corollaries it follows that the Theorem 2.3 on the homogeneity
of the tangency relations of sets may have essential meaning for the investigation of
the tangency of sets in the generalized metric spaces (E, l1), (E, l2), in which the
functions l1 and l2 do not generate the same metric on the set E.

This theorem is a certain criterion, which allows to compare the tangency of sets
of some classes in two different (although not completely arbitrary) metric spaces.

The problem of the compatibility of the tangency relations of sets for the functions
belonging to the class Fρ and generating different metrics was considered in some of
my earlier papers. At that time it was assumed that any real function l ∈ Fρ defined
on the Cartesian product E0 × E0 of the family E0 of all non-empty subsets of the
set E generates on the set E a metric and fulfils the inequality

mρ(A,B) ≤ l(A,B) ≤ M dρ(A ∪B) for A,B ∈ E0,(2.6)

where m, M are numbers such that 0 < m ≤ M < ∞.
The results concerning this problem were obtained there by putting enough strong

restriction on the functions l1, l2 ∈ Fρ. Namely, it was assumed that these functions
fulfil in any set A ∈ E0 of the considered class of sets, the so-called condition of the
proximity of the spheres of order k > 0 at the point p ∈ E with regard to the metric
ρ :

1
rk

ρ(A ∩ Sl1(p, r), A ∩ Sl2(p, r))−−−→
r→0+

0.(2.7)

Let f1, f2 be functions fulfilling the same assumptions just as the function f. Hence
and from the Corollary 2.1 it follows that, if the functions f1, f2 fulfil the equality

f2 = mf1 for m > 0,(2.8)

then for l1 ∈ Ff1,ρ and l2 ∈ Ff2,ρ the tangency relations Tl1(a, b, k, p), Tl2(a, b, k, p) are
compatible in the classes of sets M̃p,k ∩Dp(E, l0), when the non-decreasing functions
a, b fulfil the condition (2.4).

In connection with this the following question arises: possibly with what other
assumptions relating to the functions f1, f2 are the tangency relations Tl1(a, b, k, p)
and Tl2(a, b, k, p) compatible in the classes of sets M̃p,k ∩Dp(E, l0) ?

I believe that, similarly as in case of the class of the functions Fρ , we may get
certain results concerning the compatibility of the tangency of sets of the classes
M̃p,k ∩Dp(E, l0), if we put on the functions f1 and f2 the condition

1
rk

fi(ρ(A ∩ Sl1,0(p, r), A ∩ Sl2,0(p, r)))−−−→
r→0+

0(2.9)

for i = 1, 2, A ∈ M̃p,k ∩ Dp(E, l0), where l1,0 and l2,0 are the metrics of the set E
defined by the formulas :

l1,0(x, y) = f1(ρ(x, y)) and l2,0(x, y) = f2(ρ(x, y)) for x, y ∈ E.(2.10)
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In connection with the above the next question arises: what is the connection
between the conditions (2.8) and (2.9) ? The following may be true :

In the classes M̃p,k of sets having the Darboux property in the metric spaces
(E, l1,0) and (E, l2,0) the conditions (2.8) and (2.9) are equivalent.

The above problems may have essential meaning for the solution of the problem of
compatibilty (equivalence) of the tangeny relations Tl1(a1, b1, k, p) and Tl2(a2, b2, k, p)
of sets for the functions l generating different metrics on the set E and fulfilling the
condition

f1(ρ(A,B)) ≤ l(A,B) ≤ f2(dρ(A ∪B)) for A,B ∈ E0,(2.11)

where f1, f2 are subadditive increasing and continuous real functions defined in a
certain right-hand side neighbourhood of 0 such that f1(0) = f2(0) = 0.

B. Let id be the identity function defined in a certain right-hand side neighbour-
hood of the point 0. It is easy to notice that this function fulfils all assumptions
concerning the function f . Let us suppose that the function l in particular belongs to
the class Fid,ρ .

Let A,B ∈ E0 be arbitrary regular arcs tangent at the point p of the generalized
metric space (E, l) in sense of the W. Waliszewski’s definition. Then for k = 1

1
r
l(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r))−−−→

r→0+
0.

Hence and from the fact that l ∈ Fid,ρ we have

1
r
ρ(A ∩ Sρ(p, r)a(r), B ∩ Sρ(p, r)b(r))−−−→

r→0+
0.(2.12)

From the Theorem 2.2 on the compatibility of the tangency relations of sets it follows
that for

a(r)
r

−−−→
r→0+

0 and
b(r)
r
−−−→
r→0+

0,

the condition (2.12) can be written in the equivalent form

1
r
ρ(A ∩ Sρ(p, r), B ∩ Sρ(p, r))−−−→

r→0+
0.(2.13)

Let x ∈ A ∩ Sρ(p, r), y ∈ B ∩ Sρ(p, r). From this and from (2.13) we get

1
r
ρ(x, y)−−−→

r→0+
0.

From the above condition it follows that

2r2 − ρ2(x, y)
2r2

−−−→
r→0+

1,

that is
ρ2(p, x) + ρ2(p, y)− ρ2(x, y)

2ρ(p, x)ρ(p, y)
−−−→

A×B3(x,y)→(p,p)
1.(2.14)

The condition (2.14) presents the next well-known definition of the tangency of
simple arcs in the metric space (E, ρ). It means that (see [1, 8]), if the condition (2.14)
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is fulfilled, then the simple arc A ∈ E0 is tangent to the simple arc B ∈ E0 at the
point p of the metric space (E, ρ).

From the above considerations it follows that the W. Waliszewski’s definition
essentially generalizes the definition (2.14) of the tangency of simple arcs in the metric
space (E, ρ).

The left side of the formula (2.14), by ρ(p, x) → 0 and ρ(p, y) → 0, is equal
to cos α, where α ∈ [0, π] is the so-called the Alexandrov’s angle between the arcs
A, B ∈ E0 in the metric space (E, ρ) (see [1]).

Figure 1

From this it follows that the W. Waliszewski’s definition of the tangency of sets
for the regular arcs in the metric space (E, ρ) is strictly related to cosine of the angle
of Alexandrov between these arcs (see Figure 1).

Let us assume now that E is a differential Riemannian manifold with given the
symmetric tensor field g of the valence (0, 2). Using the metric tensor we may define in
manifold E, among others, the following notions : length of a tangent vector, length
of an arc and distance of points of this manifold.

By ρ we denote the metric of the manifold E generated by its metric tensor. Let
A, B be regular arcs defined respectively by the vector equations: r = r1(t), r = r2(t)
for t ∈ [0, 1] and let p = r1(0) = r2(0).

The angle between these arcs, the so-called the Riemannian angle, is defined as
an angle γ ∈ [0, π] between vectors tangent to these arcs at the point p, as follows:

cos γ =
(ŕ1(0) | ŕ2(0))
|ŕ1(0)| |ŕ2(0)| ,(2.15)

where (ŕ1(0) | ŕ2(0)) denotes the scalar product of the vectors ŕ1(t), ŕ2(t) at the point
t = 0.

Two regular arcs A,B ∈ E0 are tangent at the point p ∈ E corresponding to the
parameter t = 0, if they have at this point equal tangent vectors or ones differing only
in the positive factor, i.e. ŕ1(0) = λ ŕ2(0) for λ > 0.

Hence and from (2.15) it follows that the regular arcs A,B ∈ E0 are tangent at
the point p ∈ E, if cos γ = 1, where α denotes the Riemannian angle between these
arcs.

M.R. Bridson and A. Haefliger in the book ”Metric spaces of non-positive curva-
ture” (see [2]) proved that the Riemannian angle between the regular arcs (geodesics)
in a smooth Riemann’s manifold is equal to the Alexandrov’s angle between them
(see Figure 2).
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Figure 2

From this it follows (by the connection between the W. Waliszewski’s definition
of the tangency of sets and the Alexandrov’s and Riemann’s angles) that for inves-
tigation of the tangency of regular arcs in Riemannian manifolds we can use the W.
Waliszewski’s definition.

Furthermore, this definition can be use to examine the tangency of an arbitrary
order k ≥ 1 of regular arcs in Riemannian manifolds.

Moreover, it is worth emphasizing that the W. Waliszewski’s definition of the
tangency of sets generalizes the known earlier definitions of the tangency of regular
arcs to the sets, which do not have a parametric structure.

Because the class M̃p,1 contains the class of regular arcs, then from the above
considerations it follows that the results obtained by me in the paper [4] concerning
the tangency of sets can be used in investigations of the tangency (of any order) of
regular arcs in Riemannian manifolds.
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