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Abstract. The aim of this paper is to study subgeodesically related
spaces. Using some results of Levi-Civita and Vrănceanu an example of
projectively equivalent Riemann metrics is given. ξ-subcharacteristic vec-
tor fields are studied for some deformation algebras and it is also illustrated
the relation with the concept of ξ-subgeodesically related connexions.
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1 Introduction

Let M be a connected paracompact, smooth manifold of dimension n ≥ 3. Let
X (M) be the Lie algebra of vector fields on M, T (p,q)(M) the C∞(M)-module of
tensor fields of type (p, q) on M, Λp (M) the C∞ (M)− module of p−forms on M and
Hp (M) the p−th de Rham cohomology group of M .

Let Γi
jk be the components of an affine symmetric connection ∇ and ξi be the

components of a vector field ξ. One can associate the differential system of equations

(1.1)
d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= a

dxi

dt
+ bξi,

a and b being functions of t, which defines the ξ-subgeodesics.
K. Yano introduced the subprojective transformations of connections, which pre-

serve the ξ-subgeodesics

(1.2) Γ
i

jk = Γi
jk + δi

jωk + δkωj + θjkξi,

where ωi and θjk are the components of a 1-form and of a symmetric tensor field of
type (0,2), respectively.

Two Riemannian spaces (M, g) and (M, g) are ξ-subgeodesically related, the tensor
of correspondence θjk, being −gjk, if the Levi-Civita connections associated to g
and g satisfy the Yano formulae (1.2). Therefore there exists a diffeomorphism f
between these two spaces which maps ξ-subgeodesics onto ξ-subgeodesics. f is called
the subgeodesic mapping.
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If ξi = 0, then the Yano formulae become the Weyl formulae and spaces are
geodesically related.

In the present paper subgeodesically and geodesically spaces are considered. The
Levi-Civita and Vrănceanu canonical forms are given for certain projectively equiva-
lent metrics on some Weyl manifolds.

It is also illustrated the close ties that exist between the ξ-subcharacteristic vector
fields and ξ-subgeodesically related connections.

2 On ξ-subcharacteristic vector fields

Let A be a (1, 2)−tensor field on M . The C∞(M)− modul X (M) becomes a
C∞ (M)−algebra if we consider the multiplication rule given by
X ◦ Y = A (X,Y ), ∀X, Y ∈ X (M) . This algebra is denoted by U (M, A) and it is
called the algebra associated to A. If ∇ and ∇′ are two linear connections on M and
A = ∇′ − ∇, then U (M, A) is called the deformation algebra defined by the pair
(∇,∇′).

A vector field X ∈ X (M) is called ξ-subcharacteristic in the deformation algebra
U(M, A) if there exists two functions λ, µ ∈ C∞(M) such that

(2.1) A(X, X) = λX + µξ.

Remark 2.1 1) If X is a nonvanishing ξ-subcharacteristic vector field i.e. is a
vector field of ξ-subcharacteristic direction, then (2.1) is equivalent to

A(X,X)⊗X −X ⊗A(X, X) = µ(ξ ⊗X −X ⊗ ξ).

2) The trajectories of vector fields of ξ-subcharacteristic directions, called the ξ-
subcharacteristic curves, satisfy the following differential system of equations

(2.2) Bijpq
ksrh

dxk

dt

dxs

dt

dxr

dt

dxh

dt
= 0,

where Bijpq
ksrh = (Ai

ksδ
j
r −Aj

ksδ
i
r)(δ

q
hξp − δq

hξp)− (Ap
ksδ

q
r −Aq

ksδ
p
r )(δi

hξj − δj
hξi).

The geometric interpretation of vector fields of ξ-subcharacteristic direction is
given by the following result

Proposition A[8] Let ∇ and ∇′ be two symmetric linear connections on M and
ξ ∈ X (M). Let X ∈ X (M), Xp 6= 0, ∀p ∈ M such that X and ξ are either independent
∀p ∈ M or dependent ∀p ∈ M. The following assertions are equivalent:

1) X is a vector field of ξ -subcharacteristic direction in the deformation algebra
U(M,∇′ −∇).

2) Let any p ∈ M. If c is a (ξ,∇)-subgeodesic verifying

c(t0) = p,
dc

dt
| t0 = aXp, a ∈ R∗,

then the point p is (ξ,∇′)-subgeodesic i.e. ξp belongs to the osculating plane of the
curve c at p.
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The following result illustrates the relation between the ξ-subcharacteristic vector
fields and the ξ-subgeodesically related connections:

Proposition B [8] Let ∇ and ∇′ be two symmetric linear connections on M and
ξ ∈ X (M). The following assertions are equivalent:

1) All the elements of the algebra U(M,∇′ − ∇) are ξ-subcharacteristic vector
fields.

2) In every point p ∈ M there exists a curve ξ-subcharacteristic tangent to a given
direction.

3) There exists a symmetric (0,2)-tensor field θ and a 1-form ω on M such that

∇′XY −∇XY = ω(X)Y + ω(Y )X + θ(X, Y )ξ,∀X, Y ∈ X (M).

4) ∇′ and ∇ have the same ξ-subgeodesics.

3 On geodesically and subgeodesically related Rie-
mann spaces

Let g be a Riemannian metric on M. A Weyl manifold is a triple (M, ĝ,W ) , where
ĝ = {eug | u ∈ C∞ (M)} is the conformal class defined by g and W : ĝ −→ Λ1 (M) is
a Weyl structure on the conformal manifold (M, ĝ) , hence

(3.1) W (eug) = W (g)− du,∀u ∈ C∞ (M) .

A linear connection ∇ on M is compatible with the Weyl structure W if

(3.2)
W

∇ g + W (g)⊗ g = 0.

There exists a unique torsion free linear connection
W

∇, verifying (3.2), given by the
formula:

(3.3)
2g(

W

∇X Y, Z) = X(g (Y,Z)) + Y (g (X, Z))− Z (g (X,Y )) +
+W (g) (X) g (Y, Z) + W (g) (Y ) g (X, Z)−W (g) (Z) g (X, Y )+
+g ([X,Y ] , Z) + g ([Z, X] , Y )− g ([Y,Z] , X) , ∀X, Y, Z ∈ X (M) .

W

∇ is called the Weyl conformal connection. This connection is invariant under a ”gauge
transformation” g −→ eug. So, the 1−form W (g) is required to change by (1.1).

Weyl introduced a 2−form ψ (W ) on M by setting ψ (W ) = dW (g) ,
g ∈ ĝ, and called it the distance curvature. This is a gauge invariant. If ψ (W ) = 0,
then by (1.1), the cohomology class [W (g)] ∈ H1 (M) of the closed form W (g) does
not depend on the choice of a metric in ĝ. For simplicity, we write ch (W ) = [W (g)] .
The 2−form ψ (W ) and the class ch (W ) are the obstructions for a Weyl structure to
be a Riemannian structure. Indeed:

Proposition C [2] Let (M, ĝ, W ) be a Weyl manifold and
W

∇ be the Weyl conformal
connection. Then the following two conditions are equivalent:

1) ψ (W ) = 0 and ch (W ) = 0;



On subprojective transformations 69

2) There is a Riemann metric in ĝ such that
W

∇ g = 0.

Let π be a 1−form on M. We denote by
L

∇ the connection compatible with the
Weyl structure W, which is π-semi-symmetric i.e. the torsion tensor is required to be
L

T (X, Y ) = π (Y )X − π (X)Y, ∀X,Y ∈ X (M) and

(3.4)

2g(
L

∇X Y,Z) = X (g (Y, Z)) + Y (g (X,Z))− Z (g (X, Y ))+
+W (g) (X) g (Y,Z) + W (g) (Y ) g (X, Z)−
−W (g) (Z) g (X, Y ) + 2π (Y ) g (X,Z)−

−2π (Z) g (X, Y ) + g([X, Y ], Z) + g([Z, X], Y )− g([Y,Z], X)

holds. The relation between these two connections is given by

(3.5)
L

∇X Y =
W

∇X Y + π(Y )X − g(X, Y )π],

where g(Z, π]) = π(Z), ∀Z ∈ X (M).

We denote by
L

∇ the transposed connection of
L

∇ i.e.

(3.6)
L

∇X Y =
L

∇Y X + [X, Y ].

The relations (3.5) and (3.6) lead to

(3.7)
L

∇X Y =
W

∇X Y + π(X)Y − g(X, Y )π].

Let us denote by
s

∇ the symmetric connection associated to
L

∇ i.e.
s

∇= 1
2 (

L

∇ +
L

∇). Hence

(3.8)
s

∇X Y =
W

∇X Y +
1
2
π(X)Y +

1
2
π(Y )X − g(X, Y )π].

Let (M, g) be a Riemanian manifold. Let (M, ĝ, W ) be a Weyl manifold and π ∈
∧1(M). Let

◦
∇ be the Levi-Civita connection associated to g. From (3.3) one gets

(3.9)
W

∇X Y =
◦
∇X Y + ϕ(X)Y + ϕ(Y )X − g(X, Y )ϕ],

where 2ϕ = W (g) and g(ϕ], X) = ϕ(X),∀X ∈ X (M). The relation (3.8) leads to

(3.10)
s

∇X Y =
◦
∇X Y + (ϕ +

1
2
π)(X)Y + (ϕ +

1
2
π)(Y )X − g(X, Y )(π + ϕ)].

Let us suppose that
s

∇ is the Levi-Civita connection associated to another Riemannian
metric g̃ on M. Let gij , g̃ij , ϕi, πi be the local components of g, g̃, ϕ and π respec-

tively, in a local system of coordinates (x1, . . . , xn). We denote with
∣∣∣∣

i
jk

∣∣∣∣ ,
˜∣∣∣∣
i
jk

∣∣∣∣
the Christoffel symbols of the metrics
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(3.11) ds2 = gijdxidxj , ds̃2 = g̃ijdxidxj .

The relation (3.10) becomes

(3.10)′
˜∣∣∣∣
i
jk

∣∣∣∣ =
∣∣∣∣

i
jk

∣∣∣∣ + δi
j(ϕk +

1
2
πk) + δi

k(ϕj +
1
2
πj)− gjk(πi + ϕi),

where πi = gijπj , ϕ
i = gijϕj . Considering i = j in (3.10)′ and summing, one gets

(3.10)′′ nϕk +
n− 1

2
πk =

˜∣∣∣∣
i
ik

∣∣∣∣−
∣∣∣∣

i
ik

∣∣∣∣ =
∂

∂xk

(
ln

√
det(g̃ij)
det(gij)

)
.

Let us denote with ξ = (π + ϕ)]. The formula (3.10)′ implies

(3.12)
˜∣∣∣∣
i
jk

∣∣∣∣ =
∣∣∣∣

i
jk

∣∣∣∣ + δi
jωk + δi

kωj − gjkξi,

where ωi = ϕi + 1
2πi, ξ

i = ϕi +πi. Therefore the metrics (3.11) are ξi-subgeodesically
related. There exist differentiable mappings u and h, with variables (x1, . . . , xn), such
that ξi = ∂u

∂xi and ωi = ∂h
∂xi [9].

Therefore ϕi = 1
2

∂(u+h)
∂xi , πi = 1

2
∂(u−h)

∂xi , ∀i = 1, n.

We consider ˜̃g = e2ug. One has

(3.13)
˜̃∣∣∣∣
i
jk

∣∣∣∣ =
∣∣∣∣

i
jk

∣∣∣∣ + δi
jξk + δi

kξj − gjkξi,

where
˜̃∣∣∣∣
i
jk

∣∣∣∣ are the Christoffel symbols associated to ˜̃g. Therefore one gets

(3.14)
˜∣∣∣∣
i
jk

∣∣∣∣ =
˜̃∣∣∣∣
i
jk

∣∣∣∣ + δi
jσk + δi

kσj ,

where σi = ωi − ξi. Hence the metrics

(3.15) d˜̃s
2

= ˜̃gijdxidxj , ds̃2 = g̃ijdxidxj

are geodesically related. So, the metrics (3.15) can be reduced to the canonical forms
of Levi-Civita and Vrănceanu (according to the fact that the Riemann space (M, ˜̃g)
is of cathegory n or cathegory m < n).

(3.16)
dV 2 = a1(x1)f ′(x1)(dx1)2 + . . . + an(xn)f ′(xn)(dxn)2,

dL2 = 1
x1...xn {a1(x

1)f ′(x1)
x1 (dx1)2 + . . . + an(xn)f ′(xn)

xn (dxn)2},
where f(x) = (x− x1) · . . . · (x− xn) or

(3.17)

dV 2 = ai(xi)F ′(xi)(dxi)2 + F (c2)cλµ(xm+1, . . . , xp)dxλdxµ+
+F (k2)cα′β′(xp+1, . . . , xn)dxα′dxβ′ ,

dL2 = 1
x1...xm {ai(x

i)F ′(xi)
xi (dxi)2 + F (c2)

c2 cλµ(xm+1, . . . , xp)dxλdxµ+

+
F (k2)

k2
cα′β′(xp+1, . . . xn)dxα′dxβ′},
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where F (x) = (x− x1) · . . . · (x− xm), 1 ≤ i ≤ m,m + 1 ≤ λ, µ ≤ p, p + 1 ≤ α′, β′ ≤ n
and c2 and k2 are nonvanishing constants. Therefore the metrics (3.11) can be reduced
to

ds2 = e−2u(x1,...,xn)dV 2, ds̃2 = dL2.

Hence we obtain:

Theorem 3.1 Let (M, g) be a Riemannian space and W a Weyl structure on

the conformal manifold (M, ĝ). Let π be a 1-form on M,
L

∇ be the π-semi-symmetric

conformal connection,
s

∇ be the symmetric connection associated to
L

∇ . We suppose
that

s

∇ is the Levi-Civita connection associated to another Riemannian metric g̃ on
M. Then

i) The 1-forms W (g) and π are exact.
ii) The metrics (3.11) can be reduced to ds2 = e−2u(x1,...,xn)dV 2, ds̃ = dL2, where

dV 2 and dL2 are the canonical forms of Levi-Civita and Vrănceanu, given by (3.16) or
(3.17), according to the case when the equation
det(g̃ij − r2gij) = 0 has distinct roots or has m < n equal roots.

Remark 3.1. Let us consider the first formula (3.17) for c = k. Multiplying all
the variables x1, . . . , xn with the same constant, we can suppose that c is the unit.
Therefore the metric dV 2 can be written

(3.18) dV 2 = ai(xi)F ′(xi)(dxi)2 + F (1)cαβdxαdxβ .

One gets the next result, under the same hypothesis of the previous theorem:

Theorem 3.2. The metric ds2 = gijdxidxj can be written
ds2 = e−2u(x1,...,xn)dV 2, where dV 2 is given by the first formula of (3.16) or by the
expression (3.18), if the equation det(g̃ij − r2gij) = 0 has distinct roots or has m < n
equal roots, respectively.

The last result underlines the connection between the concept of ξ - subcharac-
teristic vector fields and of those of deformation algebra on Weyl manifolds:

Theorem 3.3. Let (M, g) be a Riemannian space and W a Weyl structure on

the conformal manifold (M, ĝ). Let π be a 1-form on M,
L

∇ be the π-semi-symmetric

conformal connection,
s

∇ be the symmetric connection associated to
L

∇ . We suppose
that

s

∇ is the Levi-Civita connection associated to another Riemannian metric g̃ on
M. Let ˜̃∇ be a connection conformally related to the Levi-Civita connection

◦
∇ .

Then the deformation algebras U(M,
s

∇ − ◦
∇) and U(M, ˜̃∇− ◦

∇) have the same
ξ-subcharacteristic vector fields, where ξ = (π + 1

2W (g))].

Proof. One considers Ã =
s

∇ − ◦
∇ and ˜̃A = ˜̃∇− ◦

∇ .
˜̃∇ and

s

∇ being geodesically related, one has
˜̃A(X, Y )− Ã(X, Y ) = 1

2π(X)Y + 1
2π(Y )X.

Let X ∈ U(M, Ã) be a ξ-subcharacteristic vector field. So, there exist λ, µ ∈
C∞(M) such that Ã(X, X) = λX +µξ, where λ = (W (g)+π)(X) and µ = −g(X, X).
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Therefore ˜̃A(X, X) = νX + µξ, where ν = (W (g) + 3
2π)(X) and X is a ξ-

subcharacteristic vector field of the algebra U(M, ˜̃A).
The converse inclusion is analogous.
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