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Abstract. The aim of this paper is to study subgeodesically related
spaces. Using some results of Levi-Civita and Vranceanu an example of
projectively equivalent Riemann metrics is given. ¢-subcharacteristic vec-
tor fields are studied for some deformation algebras and it is also illustrated
the relation with the concept of £-subgeodesically related connexions.
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1 Introduction

Let M be a connected paracompact, smooth manifold of dimension n > 3. Let

X (M) be the Lie algebra of vector fields on M, 79 (M) the C°°(M)-module of

tensor fields of type (p, q) on M, AP (M) the C*>° (M) — module of p—forms on M and
HP? (M) the p—th de Rham cohomology group of M.

Let F;-k be the components of an affine symmetric connection V and ¢* be the

components of a vector field £&. One can associate the differential system of equations

d*x’ ; dxd dao® da’

(1.1) —+T =

o het
dt? i ar ar - Yar T &

a and b being functions of ¢, which defines the {-subgeodesics.
K. Yano introduced the subprojective transformations of connections, which pre-
serve the ¢-subgeodesics

=1

(1.2) ij = F;‘k + (5;(4)/9 + (5kwj + ijfi,
where w; and 0, are the components of a 1-form and of a symmetric tensor field of
type (0,2), respectively.

Two Riemannian spaces (M, g) and (M, g) are £-subgeodesically related, the tensor
of correspondence 6, being —g;i, if the Levi-Civita connections associated to g
and g satisfy the Yano formulae (1.2). Therefore there exists a diffeomorphism f
between these two spaces which maps é-subgeodesics onto é-subgeodesics. f is called
the subgeodesic mapping.
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If € = 0, then the Yano formulae become the Weyl formulae and spaces are
geodesically related.

In the present paper subgeodesically and geodesically spaces are considered. The
Levi-Civita and Vranceanu canonical forms are given for certain projectively equiva-
lent metrics on some Weyl manifolds.

It is also illustrated the close ties that exist between the &-subcharacteristic vector
fields and &-subgeodesically related connections.

2 On &-subcharacteristic vector fields

Let A be a (1,2)—tensor field on M. The C*°(M)— modul X (M) becomes a

C*> (M) —algebra if we consider the multiplication rule given by
XoY =A(X,Y), VXY € X (M). This algebra is denoted by U (M, A) and it is
called the algebra associated to A. If V and V' are two linear connections on M and
A = V' =V, then U (M, A) is called the deformation algebra defined by the pair
(V,V").

A vector field X € X(M) is called {-subcharacteristic in the deformation algebra
U(M, A) if there exists two functions A, u € C*° (M) such that

(2.1) A(X, X) = AX + p.

Remark 2.1 1) If X is a nonvanishing &-subcharacteristic vector field i.e. is a
vector field of {-subcharacteristic direction, then (2.1) is equivalent to

AX, X)X - XQAX, X)=pul@X - X ).

2) The trajectories of vector fields of &-subcharacteristic directions, called the &-
subcharacteristic curves, satisfy the following differential system of equations
dz® dz® da” dah

ijpq & or
(2:2) Bsrn dt dt dt dt 0

where Bl = (A},,00 — A 0)(51€" — 51€7) — (A7,67 — AL0p) (5,7 — 51€").
The geometric interpretation of vector fields of £-subcharacteristic direction is

given by the following result

Proposition A[8] Let V and V' be two symmetric linear connections on M and
e X(M). Let X € X(M), X, # 0,VYp € M such that X and & are either independent
Vp € M or dependent ¥p € M. The following assertions are equivalent:

1) X is a vector field of & -subcharacteristic direction in the deformation algebra
UM,V =V).

2) Let any p € M. If ¢ is a (§, V)-subgeodesic verifying

dc .
C(to):p,a | 1o = aX,p,a € RY,

then the point p is (§,V')-subgeodesic i.e. &, belongs to the osculating plane of the
curve ¢ at p.
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The following result illustrates the relation between the £-subcharacteristic vector
fields and the £-subgeodesically related connections:

Proposition B [8] Let V and V' be two symmetric linear connections on M and
&€ X(M). The following assertions are equivalent:

1) All the elements of the algebra U(M,V' — V) are &-subcharacteristic vector
fields.

2) In every point p € M there exists a curve &-subcharacteristic tangent to a given
direction.

3) There exists a symmetric (0,2)-tensor field 8 and a 1-form w on M such that

VY = VxY =w(X)Y +w(Y)X 4+ 0(X,YV)E,VX, Y € X(M).

4) V' and V have the same &-subgeodesics.

3 On geodesically and subgeodesically related Rie-
mann spaces

Let g be a Riemannian metric on M. A Weyl manifold is a triple (M, g, W) , where
g={e"g | u e C>® (M)} is the conformal class defined by g and W : g — A! (M) is
a Weyl structure on the conformal manifold (M,g), hence

(3.1) W (e'g) =W (g9) — du,Yu € C*® (M) .

A linear connection V on M is compatible with the Weyl structure W if
w
(3.2) Vg+W(9)®g=0.

w
There exists a unique torsion free linear connection V, verifying (3.2), given by the
formula:

2(Vx Y, Z) = X(g(Y, 2)) +Y (g(X, 2) — Z (g (X, Y)) +
(3:3) W (9) (X) g (Y, Z) + W (g) (Y) g (X, Z) — W (g) (Z) g (X, V) +
+9(X,Y],2) + g (2 X],Y) - g([Y, Z),X), VX,Y,Z € X (M).

VVV is called the Weyl conformal connection. This connection is invariant under a ” gauge
transformation” g — e*g. So, the 1—form W (g) is required to change by (1.1).
Weyl introduced a 2—form v (W) on M by setting ¢ (W) = dW (g),

g € g, and called it the distance curvature. This is a gauge invariant. If ¢ (W) = 0,
then by (1.1), the cohomology class [W (g)] € H' (M) of the closed form W (g) does
not depend on the choice of a metric in g. For simplicity, we write ch (W) = [W (g)] .
The 2—form ¢ (W) and the class ch (W) are the obstructions for a Weyl structure to
be a Riemannian structure. Indeed:

w
Proposition C [2] Let (M, g, W) be a Weyl manifold and V7 be the Weyl conformal
connection. Then the following two conditions are equivalent:
1)y (W) =0 and ch (W) = 0;
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w
2) There is a Riemann metric in g such that V g = 0.

L
Let m be a 1—form on M. We denote by V¥ the connection compatible with the
Weyl structure W, which is m-semi-symmetric i.e. the torsion tensor is required to be

T (X,Y)=7(Y)X =7 (X)Y, VX,Y € X (M) and

L
2g(VxYZ) X(g(Y.2)+Y (9(X,2) - Z(9(X,Y)) +
(3.4) (g)(X)g( YV, Z2)+Wi(g)(Y)g(X,Z)—
Wi(g)(Z)g(X 7Y)+27T(Y)9(X, )—
—2m(Z)g ( Y)+9(X. Y], 2) + 9([2, X].Y) — g([Y, Z], X)

holds. The relation between these two connections is given by

L w
(3.5) Vx Y =Vx Y +7(Y)X - g(X,Y)r?

where g(Z,7%) = 7(Z), VZ € X(M).

m(Z
L
We denote by V the transposed connection of V i.e.

L L
(36) VXy:VyX+[X,Y].

The relations (3.5) and (3.6) lead to

L w
(3.7) Vx Y =Vx Y +7(X)Y —g(X,Y)r*

s L
Let us denote by ¥ the symmetric connection associated to V i.e.
s L L
V= %(V + V). Hence
1

(3.8) Vx ¥V =Vx ¥+ gn(X)Y + (V)X — g(X,Y)rt

Let (M, g) be a Riemanian manifold. Let (M, g, W) be a Weyl manifold and 7 €
AL(M). Let V¥ be the Levi-Civita connection associated to g. From (3.3) one gets

w o
(3.9) Vx Y =Vx Y+ o(X)Y +o(Y)X — g(X,Y)",

where 2 = W(g) and g(¢*, X) = ¢(X),VX € X(M). The relation (3.8) leads to

(310)  Vx Y =Vx ¥+ (o + g (XY + (o + gm) (V)X — g(X,¥)(r + ¢)F.

S
Let us suppose that V is the Levi-Civita connection associated to another Riemannian
metric g on M. Let g5, §ij, pi, m; be the local components of g, g, and 7 respec-

tively, in a local system of coordinates (x!,...,2"). We denote with

)

i )
Jk gk
the Christoffel symbols of the metrics
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(3.11) ds® = gijdxidxj, ds® = gijdxidxj.

The relation (3.10) becomes

i

K
gk |

/
(3.10) i

i 1 i 1 i
45+ )+ 8k + 5m) — galn' + )
where 7 = g¥n;, o' = g¥ ;. Considering i = j in (3.10)’ and summing, one gets
_ 9 In det(gij) _

Ok det(g:j)

Let us denote with & = (7 + ¢)*. The formula (3.10)" implies

i

" n—1 _
(3.10) nes, + 5 Tk = ik

i j—
ik

t i
(3.12) ’ ik ): ik ‘+5wk+5kw3 g5k’
where w; = ¢; + 2m;, &' = @' + 7. Therefore the metrics (3.11) are &'-subgeodesically
related. There exist differentiable mappings u and h, with variables (z', ... 2™), such
that & = g;ﬁ and w; = gﬁ- [9].

Therefore p; = éa(g;h) T = %B(g;h%w =1,n.

We consider § = e**g. One has

? ? i i i
(3.13) ‘ ik ‘ = ‘ +0€k + 0385 — gjk€’s
where ; o | are the Christoffel symbols associated to §. Therefore one gets
(3.14) ‘ ik ’z’ ik ’—1—52.01@—1—5}603',

where o; = w; — ;. Hence the metrics
(3.15) d5° = §yydatda?  d&* = §yjdada?

are geodesically related. So, the metrics (3.15) can be reduced to the canonical forms
of Levi-Civita and Vranceanu (according to the fact that the Riemann space (M, g)
is of cathegory n or cathegory m < n).

av? *al( D@D (dat)? + .+ an (@) f' (2") (da")?,
(3.16) dI? = L {ul)f @) g1y |y e G (g2,
where f(z) = (z —21)-... - (x —2") or

dv? = a;(x ) "(x )(da: N2+ F(P)en, (@™t oL aP)dae dat +
+F (k) carp (P, L) da® dx?’
(3.17) dI? = 1 o ai(z lF( )(dmi)2 + Figg)c)\#(x"ﬁl, o ,mp)dxAdw”-l-
Pk
k2

xl. . .gm
+ )ca,g/(xp+1,...x”)dw“’dwﬁ'},
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where F(z) = (z—2')-...-(x —2™),1<i<mm+1<\u<pp+1<a,5 <n
and ¢? and k? are nonvanishing constants. Therefore the metrics (3.11) can be reduced
to

ds® = e~ 2@ 2" Y2 32 = dL2,

Hence we obtain:

Theorem 3.1 Let (M,g) be a Riemannian space and W a Weyl structure on
L
the conformal manifold (M,q). Let w be a 1-form on M, ¥V be the w-semi-symmetric

s L
conformal connection, ¥ be the symmetric connection associated to V . We suppose

that % is the Levi-Civita connection associated to another Riemannian metric g on
M. Then

i) The 1-forms W(g) and w are exact.

ii) The metrics (3.11) can be reduced to ds* = e=2u(@ 2™ qy2 45 = dL2, where
dV? and dL? are the canonical forms of Levi-Civita and Vrdanceanu, given by (3.16) or
(8.17), according to the case when the equation
det(gi; — r*gij) = 0 has distinct roots or has m < n equal Toots.

Remark 3.1. Let us consider the first formula (3.17) for ¢ = k. Multiplying all
the variables z!,..., 2" with the same constant, we can suppose that ¢ is the unit.
Therefore the metric dV? can be written

(3.18) dV? = a;i(x")F'(2") (dz")? + F(1)capdz®dz’.

One gets the next result, under the same hypothesis of the previous theorem:

Theorem 3.2. The metric ds®> = gijda;idacj can be written
ds? = 6_2“(11""’wn)dV2, where dV? is given by the first formula of (3.16) or by the
expression (3.18), if the equation det(g;; —r2gi;) = 0 has distinct roots or has m < n
equal roots, respectively.

The last result underlines the connection between the concept of £ - subcharac-
teristic vector fields and of those of deformation algebra on Weyl manifolds:

Theorem 3.3. Let (M, g) be a Riemannian space and W a Weyl structure on
L
the conformal manifold (M,q). Let w be a 1-form on M, ¥V be the w-semi-symmetric

conformal connection, % be the symmetric connection associated to é We suppose
that V is the Levi-Clivita connection associated to another Riemannian metmc g on
M. Let V be a connection conformally Telated to the Levz—szta connection V

Then the deformation algebras U(M, v V) and Z/I(M,V— V) have the same
&-subcharacteristic vector ﬁelds where§ (71' + W( ).

Proof One considers A V V and A V V.

V and V being geodesmally related, one has

A(X, Y)— A(X7 Y)= 2 (XY + 27T(Y)X.

Let X € U(M,A) be a {-subcharacteristic vector field. So, there exist A\, u €
C°°(M) such that A(X, X) = AX +p&, where A = (W(g)+7)(X) and p = —g(X, X).
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Therefore E(X,X) = vX + p&, where v = (W(g) + 37)(X) and X is a &

characteristic vector field of the algebra U(M, A).
The converse inclusion is analogous.
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