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Abstract. We prove a rigidity result on the action of the extended map-
ping class group Γ∗(S) of a closed surface S of genus ≥ 2 on Thurston’s
space of measured foliations MF(S). More precisely, we describe a nat-
ural homomorphism from Γ∗(S) to the automorphism group of the train
track PL structure of MF(S) and we prove that if the genus of S is ≥ 3,
then this natural homomorphism is an isomorphism, and if the genus of S
is 2, then the homomorphism is surjective and its kernel is Z2 generated
by the hyperelliptic involution.
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1 Introduction

A beautiful and recurrent theme in low-dimensional topology says that when the ex-
tended mapping class group of a surface acts on some space X of geometric structures
on that surface, then this group coincides with the automorphism group of X. Fa-
mous instances of this rigidity phenomenon include the results of Royden stating that
the extended mapping class group is (except for some special surfaces) the group of
isometries of Teichmüller space of the surface, equipped with its Teichmüller metric,
and that it is also the group of biholomorphic maps of the same Teichmüller space
equipped with its complex structure (see [7]). Another well-known result of the same
sort is Ivanov’s result saying that the extended mapping class group is (again, with
a few exceptions) the group of simplicial automorphisms of the complex of curves of
the surface (see [2]). Feng Luo obtained a rigidity result concerning the action of the
extended mapping class group on Thurston’s space of measured foliations of the sur-
face, in terms of homeomorphisms of this space preserving the intersection functions
(see [3]). Recently, I obtained a rigidity result of a different character, concerning the
action of the mapping class group on the space of unmeasured foliations of the surface
(see [5]). In this paper, I present another rigidity result that concerns the action of
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the mapping class group on Thurston’s measured foliations space equipped with its
piecewise-linear structure.

The plan of the paper is the following. I start by recalling some necessary back-
gound material on measured foliations and on train tracks, and then I prove the fol-
lowing (Theorem 4.9): Let S be an oriented connected closed surface of genus g ≥ 2
and let Aut(MF ,P) be the group of homeomorphisms of the spaceMF that preserve
the train track PL structure (the precise definition is given below). Then, there is a
natural homomorphism

Γ∗(S) → Aut(MF ,P).

This homomorphism is an isomorphism if g ≥ 3. If g = 2, the homomorphism is
surjective and its kernel is Z2 generated by the hyperelliptic involution.

2 Measured foliations

In what follows, S = Sg is a connected closed oriented surface of genus g ≥ 2. An
isotopy of S is a homeomorphism which is isotopic to the identity. The extended
mapping class group, Γ∗ = Γ∗(S), is the group of isotopy classes of homeomorphisms
of S. The mapping class group, Γ = Γ(S), is the group of isotopy classes of orientation-
preserving homeomorphisms of S. Elements of the (extended) mapping class group are
called (extended) mapping classes. Mapping class groups of surfaces are certainly the
most important groups in low-dimensional topology. These groups have been studied
from several points of view, and these studies use actions of these groups on various
spaces. In this paper, I present a new result on the action of Γ∗ on the space of
measured foliations on the surface.

I start by recalling the notion of measured foliation, which was introduced by
Thurston (see [9] and [1]).

We consider foliations on S with singular points, where the local model of a singular
point is of the type represented in Figure 1, that is, the point is a “saddle with k
separatrices” with all values of k ≥ 3 allowed.

Figure 1: Singular points of measured foliations with k-separatrices, for k = 3, 4, 5, 6
respectively.

By an Euler-Poincaré count, and since the genus of S is ≥ 2, any foliation on S
has at least one singular point.

We shall call a transverse measure for a foliation a measure on each transverse
arc that is equivalent to the Lebesgue measure of an interval of R, such that these
measures on arcs are invariant by the local holonomy maps, that is, by isotopies of
arcs that keep each point on the same leaf.

A measured foliation on S is a foliation equipped with a transverse measure.
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A Whitehead move on a measured foliation is an operation on the surface S that
modifies a measured foliation by isotopy and by contracting to a point a compact leaf
that joins two singular points, or by the inverse operation. An example of a Whitehead
move is represented in Figure 2. The equivalence relation between measured foliations
that is generated by isotopy and Whitehead moves is called Whitehead equivalence.
The space of Whitehead equivalence classes of measured foliations is called measured
foliations space, and it is denoted by MF or MF(S).

Given a measured foliations F on S, we shall use the notation [F ] for its equivalence
class in MF .

Figure 2: Whitehead move: collapsing an arc joining two singular points.

A partial measured foliation on S is a measured foliations whose support is a
nonempty subsurface with boundary of S. The support is not necessarily connected.
We shall denote by Supp(F ) the support of a partial measured foliation F . From
a partial measured foliation F , one can obtain a genuine measured foliation F0 by
collapsing each connected component of S \Supp(F ) onto a one-dimensional complex
(a spine of S \ Supp(F )). The equivalence class of F0 does not depend on the chosen
spine, and the collapse operation therefore gives a well defined element of MF .

A simple closed curve on S is a homeomorphic image of a circle. Such a curve is
said to be essential if it does not bound a disk on S.

We let S be the set of isotopy classes of essential simple closed curves on S. If c is
a simple closed curve on S, we denote its isotopy class by [c].

We denote by R∗+ the set of positive real numbers. There is a natural map from
R∗+ × S into MF defined by assigning to each pair (r, [c]) an annulus N in the
interior of S which is isotopic to a regular neighborhood of c, foliated by closed leaves
in the homotopy class [c] and equipped with a transverse measure such that the
total transverse measure of a segment transverse to the foliation and joining the two
boundary components of the annulus is equal to r. The resulting partial measured
foliation on S gives a well defined element of MF . This defines a map R∗+×S →MF ,
and it is known that this map is injective.

Any measured foliation on S can be decomposed into a union of finitely many
components, where each component is a partial measured foliation whose support is
contained in the support of S and which is of one of the following two sorts:

• a partial measured foliation in which every leaf is dense;

• a partial measured foliation all whose leaves are closed and homotopic to each
other, and whose support is maximal with respect to inclusion.

The components of a measured foliation give a well-defined set of elements ofMF .
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For any measured foliation F and for any element γ of S, the geometric intersection
number i(F, γ) is the infimum of the total measure of c, where c varies over the set
of closed curves c in the homotopy class γ which are made up of arcs transverse to F
and arcs contained in the leaves of F . The geometric intersection number i(F, γ) does
not depend on the choice of the Whitehead equivalence class. Thus, we obtain a map

i : MF × S → R+

called the geometric intersection function.
Using this function, we can map the space MF into the space RS+ of nonnegative

functions on S. It is known that this map is injective. From this injection, the set MF
inherits a topology which makes it homeomorphic to R6g−6\{0}. It is sometimes useful
to consider the “empty foliation” as an element of MF . When we add to MF this
empty foliation, MF becomes homeomorphic to R6g−6.

There is a natural action of the group of positive reals R∗+ on MF , induced from
the action of this group on measured foliations defined by multiplying the transverse
measures by a constant. The quotient of MF by this action is denoted by PMF .
The embedding of MF into the space RS+ induces an embedding of PMF in the
projectived space PRS+.

3 A review of train tracks

A train track τ on S is a (non-necessarily connected) graph on S with trivalent vertices
such that the three half-edges that abut on any vertex have a well defined tangent
at that point. The local structure at a vertex is represented in Figure 3. Train tracks
were introduced by Thurston in [8]. We refer to the monograph [6] by Penner and
Harer for a detailed study of train tracks.

Figure 3: The local model at a switch.

We also allow a train track to have no vertices, that is, τ can consist of a collection
of disjoint simple closed curves. An edge of such a train track will denote a connected
component, that is, a simple closed curve. A vertex of a train track is also called a
switch. At each switch, there is a well-dfined notion of two half-edges abutting from
one side and one half-edge abutting from the other side. A corner of the surface S
equipped with a train track τ is a region in a neighborhood of a switch of τ contained
between the two half-edges that abut from the same side. All the train tracks τ that
we consider satisfy the following property: any connected component of S \ τ is not a
disk with 0, 1 or 2 corners, or an annulus with no corner (cf. Figure 4). A train track
τ on S is said to be maximal if every component of S \ τ is a disk with three corners
on its boundary.

A train track τ has a regular neighborhood N(τ) foliated by segments that are
called the ties, whose endpoints lie on the boundary of N(τ). The local picture of the
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foliation by the ties near a switch is represented in Figure 5. The ties are the fibres
of a natural projection N(τ) ↘ τ . The regular neighborhood N(τ), equipped with its
foliation by the ties, is well defined up to an isotopy of the surface.

Let τ be a train track and let e1, . . . , eN be its edges. We consider the vector space
RN of real weights (x1, . . . , xN ) on the edges of τ , and we let Vτ ⊂ RN denote the
closed convex cone defined by the system

{
xi ≥ 0 for every i = 1, . . . , N

xi = xj + xk for every switch of τ

where, in the equations, xj and xk denote the weights of the two edges that abut
from the same side at the given switch, and xi is the weight on the edge that abuts
from the other side.

A train track τ is said to be recurrent if there exists an element (x1, . . . , xN ) of
Vτ satisfying xi > 0 for all i = 1, . . . , N .

Let N(τ) be a regular neighborhood of τ equipped with a projection N(τ) ↘ τ .
Let (x1, . . . , xN ) be a nonzero element of Vτ . For each nonzero coordinate xi, consider
the inverse image of the edge ei by the projection N(τ) ↘ τ . This inverse image
has a natural structure of a rectangle equipped with a foliation induced by the ties,
which we call the “vertical” foliation. We equip this rectangle with another foliation,
which we call the “horizontal” foliation, whose leaves are segments transverse to the
ties and joining the two edges of the rectangle that consist of ties. Furthermore, we
equip this horizontal foliation with a transverse measure whose total mass is equal
to xi. Gluing by measure-preserving homeomorphisms all such horizontally foliated

Figure 4: The shaded regions represent the four types of excluded components of the
complement of a train track.

Figure 5: The regular neighborhood and the local structure of the ties near a switch
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rectangles along their vertical sides, we obtain a well defined element ofMF . The zero
element of Vτ is sent to the empty foliation. This defines a map ϕτ : Vτ →MF which
is a homeomorphism onto its image. In the case where τ is maximal and recurrent,
the image ϕτ (Vτ ) = Uτ has nonempty interior in MF (see [4] p. 20).

A measured foliation F (or its equivalence class [F ] ∈ MF) is said to be carried
by a train track τ if [F ] is in the image Uτ of Vτ by the map ϕτ .

Given two train tracks τ and σ on S, we say that τ is carried by σ, and we write this
relation as τ ≺ σ, if τ is isotopic to a train track τ ′ which is contained in a regular
neighborhood N(σ) of σ and which is transverse to the ties (see Figure 6). When
τ ≺ σ, there is a natural linear map (independent of the choice of the representative
τ ′ isotopic to τ) from the closed convex cone Vτ to the closed convex cone Vσ, which
induces the inclusion map at the level of the two subspaces ϕτ (Vτ ) and ϕσ(Vσ) ofMF .
The linear map Vτ → Vσ is obtained by using the natural identification between the
edges of τ and the edges of a train track τ ′ isotopic to τ , contained in N(σ) and
transverse to the ties. A set of weights on τ naturally induces a set of weights on τ ′,
which in turn induces a set of weights on σ by assigning to each edge e of σ the total
transverse measure induced by the weighted train track τ ′ on a tie that lies above
that edge e with respect to the projection N(σ) ↘ σ. The system of weights thus
obtained on the edges of σ does not depend on the choice of the train track τ ′ isotopic
to τ , contained in N(σ) and transverse to the ties.

Figure 6: The train track in bold lines is carried by the train track whose regular
neighborhood is represented.

We shall use some standard operations on train tracks, called shift and split op-
erations. These operations are represented in Figure 7. A shift operation on a train
track σ produces a train track σ′ satisfying σ′ ≺ σ and such that the inclusion
MF(σ′) ⊂MF(σ) induces the identity map (that is, it is also onto). There are two
splitting operations, a right splitting and a left splitting. Each of these operations
produces a train track σ′ (respectively σ′′) out of σ satisfying σ′ ≺ σ (respectively
σ′′ ≺ σ). In general, the induced inclusion map from the set of measured foliations
carried by σ to the set of measured foliations carried by σ′ is not onto. Rather, the
interiors in MF of the two sets MF(σ′) and MF(σ′′) are disjoint, and the union of
these sets is equal to MF(σ).

4 Automorphisms of the train track PL structure

Thurston showed that the space MF is equipped with a natural piecewise-linear
structure defined by an atlas whose charts use the train track coordinates.
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More precisely, for each maximal recurrent train track τ , we let ψτ : Uτ → Vτ

denote the inverse of the homeomorphism ϕτ : Vτ → Uτ defined above, and we
consider the set

A = {(Uτ , ψτ ) |τ is a maximal recurrent train track }.

Thurston proved in [8] the following

Theorem 4.1. The set A is an atlas of a PL structure on MF .

In what follows, we prove a rigidity result concerning the automorphisms of this
structure. This result is based on a precise analysis of the singular set of the coordinate
changes of this atlas. To understand this, we need to introduce a few notions that
concern the singular set of a PL map.

Let M ≥ 1 be an integer. A subset V of RM will be called a linear polytope (or a
polytope, for brevity) if V is the intersection of a finite number of closed linear half-
spaces. Note that the set V is closed and convex, and that it is noncompact unless it
is empty. The dimension of V is the smallest dimension of a vector subspace of RM

that contains it.
Let M and N be two positive integers. Let V be a finite union of polytopes

V1, . . . , Vn in RM , all having the same dimension. A function f : V → RN is said to
be piecewise-linear (PL for brevity) if f is continuous and if the restriction of f to
the relative interior of each of the polytopes V1, . . . , Vn is the restriction of a linear
function from RM to RN .

Given a PL function f : V → RN , its singular set, denoted by Sing(f), is the set
of points x ∈ V1 ∪ . . . ∪ Vn such that f is not linear in any neighborhood of x.

We observe the following:
1) The set Sing(f) is a union of codimension one faces, each of which is the

intersection of two sets in the collection of polytopes {V1, . . . , Vn}.
2) If the polytopes V have dimension D, then the set Sing(f) has a natural struc-

ture of a union of linear polytopes of dimension D − 1 in RM , and the restriction of
f to Sing(f) is PL.

Figure 7: In the situation to the left, the train track is obtained by a shift operation,
and in the two situations to the right, the train tracks are obtained by splitting
operations.
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Using this fact, we associate inductively to such a PL function f : V → RN a
nested sequence of subsets of V

V ⊃ Sing0(f) ⊃ Sing1(f) ⊃ . . . Singk(f),

characterized by the following conditions:

1. Sing0(f) = V \ Sing(f);

2. Sing1(f) = Sing(f);

3. for each integer i satisfying 2 ≤ i ≤ k, Singi(f) is the singular set of the
restriction of f to Singi−1(f);

4. the restriction of f to Singk(f) is linear.

We note that for each 2 ≤ i ≤ k, Singi(f) is a codimension-1 subset of Singi−1(f)
(see Observation 2 above) and that k ≤ D.

The sequence Sing0(f) ⊃ Sing1(f) ⊃ . . . Singk(f) associated to the PL function f
defines a stratification of V , each stratum being characterized by its codimension in
V .

We shall call this stratification the flag of f , and we shall denote it by Fl(f).
We need to give a precise description of the coordinate changes ψτσ = ψσ ◦ ψ−1

τ

of the atlas A. We start by introducing the following notion.

Definition 4.2 (Adapted family of train tracks). Let τ be a maximal recurrent
train track on S and let T = {τ1, . . . , τn} be a family of maximal recurrent train tracks.
We say that the family T is adapted to τ if the following properties are satisfied:

1. for each i = 1, . . . , n, τi ≺ τ ;

2. for each i and j satisfying 1 ≤ i < j ≤ n, the interiors of Uτi and Uτj are
disjoint.

A typical example of a family of train tracks adapted to a train track σ is a
collection {σ′, σ′′} of two train tracks obtained from σ by a left and a right shift
operation on some edge of σ.

Proposition 4.3. Let (Uτ , ψτ ) and (Uσ, ψσ) be two charts in A and let ψτσ be the
corresponding coordinate change, defined on the subset ψτ (Uτ ∩ Uσ) of Vτ . Then, for
every point F in the interior of ψτ (Uτ ∩ Uσ), we can find a family T = {τ1, . . . , τn}
of train tracks which is adapted to τ and which furthermore satisfies the following
properties:

1. τi ≺ σ for all i = 1, . . . , n;

2. the union
⋃n

i=1 Uτi is a neighborhood of F in MF ;

3. F belongs to each set Uτi , for all i = 1, . . . , n;

4. the PL map ψτσ is a union of linear maps that are induced by the relations
τi ≺ τ and τi ≺ σ, and inverses of such maps.
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Proof. The family T = {τ1, . . . , τn} of train tracks is obtained by a sequence of succes-
sive splittings and shifts that start from the train track τ , and we shall now describe
how to obtain it. We note right away that each shift operation that we use produces
a new train track, but as for splitting operations, some of them produce one train
track, and some of them produce two.

A singular leaf of a partial foliation is a leaf that starts at a singular point.
The sequence of splittings and shifts that we use is obtained step by step, by

“following the singular leaves” of a partial measured foliation representing the ele-
ment F of MF , whose support is equal to a regular neighborhood of a train track
obtained at the preceding step, and whose leaves are transverse to the foliation of
that neighborhood by the ties. The process of “following a singular leaf” is illustrated
in Figure 8. At each step, opening up the regular neighborhood by following the sin-
gular leaf produces a new train track out of the old one, either by a shift or by a
splitting, except that in the case where the singular leaf abuts on another singular
point (as illustrated in Figure 9), the operation produces two train tracks. Indeed, in
this case, it is necessary to take the two train tracks σ′ and σ′′ obtained from the
given train track σ by splitting, in order to insure that the union MF(σ′)∪MF(σ′′)
is a neighborhood of F in MF . The fact that F is also carried by σ insures that by
performing a finite number of appropriate shift and splitting operations, we obtain
a sequence of train tracks satisfying the required properties. Note that there is no
natural choice of the singular leaf that one uses at each step, but it is important to
choose the singular leaves in such a way that the maximal transverse measure of the
rectangles that appear in the construction becomes less than any amount that is fixed
in advance. (Equivalently, the maximal weight that is induced by the foliation F on
the edges of the train tracks resulting from the construction can be made smaller than
an amount that is fixed in advance.) To insure this, it may be necessary not to use
the same singular leaf at each step, and one possible way to proceed is to use, in any
given order, all the singular leaves one after the other. The details of this construction
are contained in Chapter 1 of [4].

Let us note that it follows from the proof of Proposition 4.3 that if the foliation
representing the class F does not have any compact leaf joining singular points, then
the process described produces a family T consisting of a single train track, and the
coordinate change in the neighborhood of F in MF is linear, and not only PL.

Figure 8: The operation of following a leaf, used in the proof of Proposition 4.3. In the
case represented, the operation corresponds, at the level of train tracks, to a splitting.

We note that Property (4) of Proposition 4.3 implies that the restriction of the
coordinate change map ψτσ to the neighborhood N(F ) of F is linear on each subset
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Uτi
of N(F ). Proposition 4.3 is the basic technical result which implies that the

coordinate changes in the atlas A are piecewise-linear.
The study of the automorphisms of the train track PL structure will be based on

considerations on the singular set of a PL function.

Definition 4.4 (Train track PL function). Let N be a positive integer. A function
f : MF → RN is said to be a train track PL function if for every x in MF , there
exists a chart (Uτ , ψτ ) belonging to the atlas A such that the set Uτ contains x in its
interior and the function f ◦ ψ−1

τ defined on Vτ = ψτ (Uτ ) is PL. Furthermore, we
require that there exists a coordinate change map ψτσ belonging to the atlas A, having
ψ(x) in the interior of its domain and such that the singular sets of the restrictions
of the maps f ◦ψ−1

τ and ψτσ to the set Vτ coincide in a neighborhood of ψτ (x) in Vτ .

The last condition is the important part of the definition. It says that a train
track PL function is not allowed to have singularities that do not already appear in a
coordinate change function.

Let P be the set of train track PL functions on MF . In some sense, P is the set
of smoothest possible PL functions on MF relatively to the atlas A.

Definition 4.5 (Automorphism of the train track PL structure). We shall
say that a homeomorphism h : MF → MF is an automorphism of the train track
PL structure of MF if for every element f of P, f ◦ h is also in P.

In other words, an automorphism of the PL structure is a homeomorphism of MF
that preserves the set P of PL functions.

We denote by Aut(MF ,P) the automorphism group of the train track PL struc-
ture.

Proposition 4.6. Any homeomorphism of MF that is induced by an element of the
extended mapping class group is an automorphism of the train track PL structure of
MF .

Proof. Let h : MF → MF be a homeomorphism induced by an extended mapping
class, let N be a positive integer and let f : MF → RN be a function in P. For
each x in MF , let (Uτ , ψτ ) and ψτσ be respectively a chart in A and a coordinate
change map in A satisfying the properties required in Definition 4.4. Then, τ ′ = h(τ)

Figure 9: In the case considered (where the singular leaf abuts on another singular
point), the operation of following a leaf, used in the proof of Proposition 4.3, produces
two train tracks, each one obtained by a splitting operation (one right splitting and
one left splitting).
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and σ′ = h(σ) are maximal recurrent train tracks on S, (h(Uτ ), ψτ ′) is a chart in A,
and ψτ ′σ′ is a coordinate change in A which also satisfies the properties required in
Definition 4.4, with respect to the point h(x) instead of the point x. From this the
proof follows.

From Proposition 4.6, we obtain a homomorphism

Γ∗(S) → Aut(MF ,P).

Theorem 4.9 below says that this homomorphism is an isomorphism, except in
genus two, where the homomorphism is surjective with kernel Z2. Before proving this
theorem, we need to establish a few more notations.

A system of curves on S is the isotopy class of a collection of disjoint and pairwise
non-isotopic essential curves on S. Note that for g ≥ 2, the number of elements in
such a collection is bounded above by 3g − 3.

Let S ′ be the set of systems of curves on S.
For each integer k satisfying 1 ≤ k ≤ 3g − 3, we denote by Sk the subset of S ′

consisting of isotopy classes of curves of cardinality k. In particular S1 = S.
For each k satisfying 1 ≤ k ≤ 3g − 3, we let MFk ⊂MF be the set of measured

foliation classes x having the following properties:

(C1) For each i satisfying 0 ≤ i ≤ k − 1, there is no chart (Uτ , ψτ ) in A having x in
the interior of its domain Uτ with a coordinate change ψτσ having ψτ (x) in the
interior of its domain, and with ψτ (x) on a stratum of dimension i of the flag
Fl(ψτσ).

(C2) There exists a coordinate chart (Uτ , ψτ ) in A having x in the interior of its
domain and a coordinate change ψτσ having ψτ (x) in the interior of its domain
such that ψ(x) is on a stratum of dimension k of the flag Fl(ψτσ). Furthermore,
we require that ψτ (x) is a convex combination of k elements in the 1-stratum of
Fl(ψτσ), with respect to the linear structure of Vτ being the one induced from
its inclusion in RN .

Note that MF1 ⊂MF is simply the set of measured foliation classes x such that
there exists a coordinate chart (Uτ , ψτ ) in A having x in the interior of its domain
and a coordinate change ψτψ having ψ(x) in the interior of its domain, and such that
x is on a stratum of dimension 1 of the flag defined by the singular set Fl(ψτσ).

Proposition 4.7. For any k ≥ 0, any element of Aut(MF ,P) preserves the set
MFk.

Proof. An automorphism of (MF ,P) acts on the set of flags of the coordinate changes
ψτσ of A, that is, it carries the flag of any coordinate change in A to a flag of some
coordinate change in A, and it preserves the properties defining the elements ofMFk,
for each k ≥ 1.

For each integer k satisfying 1 ≤ k ≤ 3g − 3, there is a natural inclusion jk :
(R∗+)k × Sk ↪→ MF , defined by associating to each vector v in (R∗+)k and to each
element C in Sk the equivalence class of a partial measured foliation F satisfying the
following properties:
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1. the support of F is the union of disjoint annuli A1, . . . , Ak foliated by closed
leaves;

2. for each 1 ≤ i ≤ k, the annulus Ai is a regular neighborhood of a closed curve
ci, where c1, . . . , ck are the components of a system of curves representing the
isotopy class C;

3. for each 1 ≤ i ≤ k, the total transverse measure of the annulus Ai is equal to
the i-th coordinate of v.

We shall call a foliation on S representing an element of MF which is the image
of some element of S ′ by one of the maps jk an annular foliation.

Figure 10: The pinching operation that is used in the proof of Proposition 4.8.

Proposition 4.8. For every k ≥ 1, the image of (R∗)k × Sk in MF by the map jk

is equal to MFk.

Proof. Let F ∈MF be a measured foliation class which is in the image of an element
of (R∗)k×Sk by jk. We must show that it satisfies Properties (C1) and (C2) above. We
start by representing F by a system of weights on a train track consisting of a union
of k disjoint simple closed curves representing the given element of (R∗)k × Sk. We
can pinch this system of curves along a system of disjoint arcs having their endpoints
on these curves so as to obtain a maximal recurrent train track τ such that F is in
the interior of the linear polytope Vτ associated to τ , as represented in Figure 10. By
choosing a different system of arcs, we can obtain a maximal recurrent train track σ
such that F is in the interior of the associated linear polytope Vσ, and we can choose
this new system of arcs so that F is in the codimension-k skeleton of the flag Fl(ψτσ).
From this it follows that F is in MFk. (This uses the description of the coordinate
changes that is contained in Proposition 4.3 above.) It is easy to see that conversely,
if a measured foliation satisfies Properties (C1) and (C2), then it is in the image of
(R∗)k × Sk.

Theorem 4.9. If the genus of S is ≥ 3, then the homomorphism

Γ∗(S) → Aut(MF ,P)

is an isomorphism. If the genus is 2, this homomorphism is surjective, and its kernel
is Z2 generated by the hyperelliptic involution.
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Proof. Consider an element f of Aut(MF ,P). We use the action of f on the curve
complex C(S) of S, that is, the flag complex whose k-simplices, for each k ≥ 0, are the
isotopy classes of disjoint k + 1 disjoint and pairwise non-homotopic essential simple
closed curves on S. We refer to [2] for a study of this complex. By Proposition 4.7, f
preserves the subset MF1 of MF . By Proposition 4.8, the set MF1 is the natural
image of R∗+ × S in MF , that is, it is the set of measured foliation classes that are
representable by foliations all whose nonsingular leaves are closed curves homotopic
to a simple closed curve. Thus, MF1 is in natural one-to-one correspondence with the
set R∗+×S of isotopy classes of weighted essential curves on S. In particular, f acts on
the set of isotopy classes of weighted essential simple closed curves on S. Since f acts
linearly on rays, it acts on the set S of isotopy classes of essential curves, which is the
set of vertices of the curve complex C(S). Therefore, f naturally defines a self-map of
the vertex set of C(S), and it follows from the fact that f is a homeomorphism that
this map is a bijection.

Similarly, by Proposition 4.7, for each k = 2, . . . , 3g− 3, f preserves the set MFk

of MF which, again using Proposition 4.8, can be naturally identified with the set
Sk of isotopy classes of weighted systems of curves which have k components. This
implies that f also induces a self-map of the set of (k − 1)-simplices of C(S). Thus,
the bijection induced by f on the vertex set of C(S) extends naturally to a simplicial
automorphism of C(S). Now by a theorem of Ivanov [2], the action of f on C(S) is
induced by an element γ of the extended mapping class group of S. It is clear from
the definitions of these actions that the restriction of f and of the extended mapping
class γ on the image of {1}×S (and, even, of {1}×S ′) in MF coincide. Since f and
γ are linear on each ray in MF , these actions coincide on the subset R∗+×S of MF .
Since the image of R∗+ × S in MF is dense and since the actions of f and γ on MF
are continuous, the two actions coincide on the space MF . Thus, each automorphism
of (MF ,P) is induced by an extended mapping class. This proves the surjectivity of
the homomorphism Γ∗(S) → Aut(MF ,P). The results about the injectivity in genus
≥ 3 and the kernel in genus 2 follow from the fact that the homomorphism from the
extended mapping class group to the automorphism group of the curve complex is
injective except in genus two, in which case the kernel is Z2.

References

[1] A. Fathi, F. Laudenbach & V. Poénaru, Travaux de Thurston sur les surfaces,
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