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Abstract. In this paper we study the uniqueness of complete noncom-
pact spacelike hypersurfaces immersed in generalized Robertson-Walker
(GRW) spacetimes. According to a suitable restriction on the higher or-
der mean curvature and the norm of the gradient of the height function of
the hypersurface, we obtain some rigidity theorems in GRW spacetimes.
Besides, we establish nonparametric results on the entire vertical graph in
such ambient spacetimes.
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1 Introduction

Spacelike hypersurface in spacetimes are objects of increasing interest in recent years.
A basic question on this topic is the problem of uniqueness of spacelike hypersurface
in certain spacetimes. For instance, in [7] L. J. Aĺıas with A. Romero and M. Sánchez
prove that in a generalized Robertson-Walker spacetime obeying the timelike conver-
gence condition, every compact spacelike hypersurface with constant mean curvature
is totally umbilical, also they are spacelike slices, except in very exceptional cases.
Recall that a spacetime is said to obey the timelike (null) convergence condition if
the Ricci curvature is nonnegative on timelike (lightlike) direction. In [8] by those
same authors and in [20] by S. Montiel, they all obtained uniqueness result for com-
pact spacelike hypersurface with constant mean curvature in some spacetimes. More
generally, in [5] L. J. Aĺıas and A. G. Colares have studied the problem of uniqueness
for compact spacelike hypersurface with constant higher order mean curvature im-
mersed in generalized Robertson-Walker spacetimes, where the so-called generallized
Robertson-Walker (GRW) spacetimes are Lorentzian warped products −I×fM

n with
1-dimensional negative definite base I, warping function f and Riemannian fibreMn,
when the Riemannian fibre Mn has constant sectional curvature then −I ×f M

n is
called a Robertson-Walker (RW) spacetime. In [6] the compact spacelike hypersur-
face was extended to complete spacelike hypersurface. Besides, there are many other
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authors have studied these problems in this branch, such as [10, 11], where M. Ca-
ballero and other authors have obtained some rigidity and uniqueness results for the
spacelike hypersurface in GRW spacetimes.

In this paper, we will develop another method which follows the ideas of [9], using
the operators Lk apply to the height function of the complete non-compact spacelike
hypersurfaces in GRW spacetimes, according to impose a suitable restriction on the
higher order mean curvature and norm of the gradient of the height function, we then
obtain rigidity theorems in spacetimes, which without needing the restriction timelike
convergence condition or null convergence condition.

Our approach is based on the use of second order linear differential operators Lk

associate with the Newton transformations, combining with a consequence of a version
of Stokes theorem on an n-dimensional, complete noncompact Riemannian manifold,
which obtained by S. T. Yau in [24]. In secition 3, we obtain the following (Theorem
3.3)

LetM = −I×fM
n be a RW spacetime, ψ : Σn → −I×fM

n (with n ≥ 2)
be a complete, connected spacelike hypersurface bounded away from the
infinity of M . Suppose that mean curvature H is bounded on Σn and
|∇h| ∈ L1(Σn). Assume that either

(i) when k = 1, H2 > 0 and 0 < H2

H1
≤ f ′

−f⟨N,∂t⟩ , or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect

to an appropriate choice of the Gauss map, and 0 < Hk+1

Hk
≤ f ′

−f⟨N,∂t⟩ .

Then the hypersurface Σn is a slice.

In section 4, we establish nonparametric results of Theorem 3.1, 3.2 and 3.3.
Taking into account the entire vertical graphs immersed in a RW spacetime, then we
obtain the following nonparametric version of Theorem 3.3 ( Corollary 4.1)

Let M = −I ×f M
n be a RW spacetime, Σn(u) (with n ≥ 2) be a entire

spacelike vertical graph bounded away from the infinity of M . Suppose
that mean curvature H is bounded on Σn and |Du|Mn ∈ L1(Mn). For
some constant 0 ≤ α < 1, |Du|2Mn ≤ αf2(u), assume that either

(i) when k = 1, H2 > 0 and 0 < H2

H1
≤ (1− α) f

′

f (h), or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect

to an appropriate choice of the Gauss map, and 0 < Hk+1

Hk
≤ (1−α) f

′

f (h).
Then the hypersurface Σn is a slice.

In section 5, taking into account that the sign of derivation of the warping function
f , we obtain our applications of the previous result. For instance, when the ambient
spacetime is the steady state space, which is the model of half Hn+1 of de Sitter space,
then from Theorem 3.3 we have following consequence (Corollary 5.2).

Let ψ : Σn → Hn+1 be a complete, connected spacelike hypersurface
bounded away from the infinity ofHn+1. Suppose that the mean curvature
H of Σn is bounded and |∇h| ∈ L1(Σn). Assume that either
(i) when k = 1, H2 > 0 and H1

H2
≥ cosh θ, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect
to an appropriate choice of the Gauss map and Hk

Hk+1
≥ cosh θ.

Then the hypersurface Σn is a slice.
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2 Preliminaries

In this section, we introduce some basic notations and facts that will appear along
this paper.

Let Mn be a connected n-dimensional (n ≥ 2) Riemannian manifold, I is a 1-
dimensional manifold (either a circle or an open interval of R), and f : I → R is a

positive smooth function. In the product differentiable manifold M
n+1

= −I ×f M
n,

let πI and πM denote the projections onto the factors I and M , respectively.
The class of Lorentzian manifolds which will be our concern here is the one ob-

tained by furnishing M
n+1

with the metric

⟨v, w⟩p = −⟨(πI)∗v, (πI)∗w⟩+ (f ◦ πI)2(p)⟨(πM )∗v, (πM )∗w⟩,

for all p ∈ M
n+1

and all v, w ∈ TpM . Following the terminology introduced in [7],
such a space is called a generalized Robertson-Walker (GRW) Spacetimes, f is known

as the warping function and we shall writeM
n+1

= −I×fM
n to denote it. When the

Riemannian fibre Mn has constant sectional curvature, then −I ×f M
n is classically

called a Robertson-Walker (RW) Spacetimes.
We remark (cf.[22]) that the GRW spacetime −I ×f M

n has constant sectional
curvature κ if and only if it is an RW spacetime for which

f ′′

f
= κ =

(f ′)2 + κ

f2
,

where κ is the (constant) value of the sectional curvature of Mn.
Consider a smooth immersion ψ : Σn → −I×f M

n of an n-dimensional connected
manifold Σn is said to be a spacelike hypersurface if the induced metric via ψ is a
Riemannian metric on Σn, which is also denoted by ⟨ , ⟩. Since ∂t = ( ∂

∂t )(t,x), (t, x) ∈
−I ×f M

n is a unitary timelike vector field globally defined on the ambient space-
time, then there exists an unique timelike vector field N defined on the spacelike
hypersurface Σn which is the same time-orientation as ∂t. By using Cauchy-Schwarz
inequality, we get

(2.1) ⟨N, ∂t⟩ ≤ −1 < 0 on Σn.

We will refer to the normal vector field N as the future-pointing Gauss map of the
spacelike hyperface Σn. The normal hyperbolic angle θ of Σn is the smooth function
θ : Σn → [0,+∞] given by

(2.2) cosh θ = −⟨N, ∂t⟩.

Denoting ∇ and ∇ are the Levi-Civita connection in −I ×f M
n and Σn, respectively.

Then the Gauss and Weingarten formulas for the spacelike hypersurface ψ : Σn →
−I ×f M

n are given by

∇XY = ∇XY − ⟨AX,Y ⟩N, ∇XN = −AX,

for every tangent vector fields X,Y ∈ X(Σ), A : X(Σ) → X(Σ) stands for the shape
operator of Σn with respect to the future-pointing Gauss map N .
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Associate with the shape operator of Σ there are n algebraic invariants which are
the elementary symmetric functions σk of its principal curvature k1, · · · , kn, given by

Sk(p) = σk(k1, k2, . . . , kn) =
∑

i1<···<ik

ki1 · · · kik ,

where k = 1, . . . , n, S0 = I. The kth-mean curvature Hk of the hypersurface is then
defined by (

n
k

)
Hk = (−1)kSk.

Thus H1 = − 1
n tr(A) = H is the mean curvature, when k is even, it follows from

the Gauss equation that Hk is a geometric quantity which is related to the intrinsic
curvature of Σ.

In what follows we will work based on the so-called New transformations Pk :
X(Σ) → X(Σ), which are defined from A, setting by P0 = I (the identity of X(Σ))

and for 1 ≤ k ≤ n, Pk =

(
n
k

)
HkI +A ◦ Pk−1, then we have

tr(Pk) = ckHk, tr(A ◦ Pk) = −ckHk+1,

where ck = (n− k)

(
n
k

)
= (k + 1)

(
n

k + 1

)
.

Associated with each Newton transformations Pk, we consider the second order
linear differential operator Lk : C∞(Σ) → C∞(Σ), given by Lr(f) = tr(Pk◦∇2f). Here
∇2f : X(Σ) → X(Σ) denotes the self-adjoint linear operator metrically equivalent to
the hessian of f , and it is given by ⟨∇2f(X), Y ⟩ = ⟨∇X(∇f), Y ⟩, X, Y ∈ X(Σ).

Observe that

Lkf = tr(Pk ◦ ∇2f) =
n∑

i=1

⟨Pk ◦ (∇Ei∇f), Ei⟩ =
n∑

i=1

⟨∇Ei∇f, Pk(Ei)⟩

=
n∑

i=1

⟨∇Pk(Ei)∇f,Ei⟩ = tr(∇2f ◦ Pk),

where {E1, . . . , En} is a local orthonormal frame on Σ. Moreover, we also have that

div(Pk(∇f)) =
n∑

i=1

⟨(∇EiPk)(∇f), Ei⟩+
n∑

i=1

⟨(Pk(∇Ei∇f), Ei⟩ = ⟨divPk,∇f⟩+ Lkf,

where divPk := tr(∇Pk) =
∑n

i=1(∇EiPk)(Ei). For general k, and provided M
n+1

has constant sectional curvature, it was shown by Rosenberg in [23] that

Lkf = div(Pk(∇f)).

It follows from the formula above we have the operator Lk is elliptic if and only if Pk

is positive definite. Observe that L0 = ∆, then the Laplacian of Σ which is always
an elliptic operator in divergence form. We close this section by quoting two useful
lemmas in which geometric conditions are given in order to guarantee the ellipticity
of Lk when k ≥ 1.
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Lemma 2.1 ([5]). If H2 > 0 on Σn, then P1 is positive definite for a appropriate
choice of the Gauss map N .

Lemma 2.2 ([5]). Let Σn having an elliptic point with respect to an appropriate
choice of the Gauss map. If Hr+1 > 0 on Σn for some 2 ≤ r ≤ n − 1, then Pk is
positive definite for all 1 ≤ k ≤ r.

3 Rigidity result in GRW spacetimes

Let ψ : Σ → −I ×f M
n be a spacelike hypersurface with Gauss map N . The height

function of Σ denoted by h, then we have h is the restriction of the projection
πI(t, x) = t to Σ, that is h = πI ◦ ψ : Σ → I, so that the gradient of h on Σ is
∇h = (∇πI)T = −∂Tt , where ∂Tt ∈ X(Σ) denotes the tangential component of ∂t, i.e.,

∂t = ∂Tt − ⟨N, ∂t⟩N.

Denoting | | as the norm of a vector field on Σ, we have

|∇h|2 = ⟨N, ∂t⟩2 − 1.

We will need the following result of L.J. Aĺıas and A.G. Colares.

Lemma 3.1 ([5]). If ψ : Σn → −I ×f M
n is a spacelike hypersurface immersed in a

GRW spacetime with Gauss map N . Let h = πI ◦ ψ denote the height function of Σ.
Then for every k = 0, . . . , n− 1 we have

(3.1) Lk(h) = −(log f)′(h)(ckHk + ⟨Pk(∇h),∇h⟩)− ⟨N, ∂t⟩ckHk+1

Then from formula (3.1) we get that

(3.2) Lk(h) = − 1

f(h)
[ck(f

′(h)Hk + ⟨N, ∂t⟩f(h)Hk+1) + f ′(h)⟨Pk(∇h),∇h⟩]

In [24] S.T. Yau have the Stokes’ Theorem on an n-dimensional, complete non-
compact Riemannian manifold, then in [15] A. Caminha et al. obtained a suitable
consequence of S.T. Yau’s result, we state it as following, where we denote L1(Σ) be
the space of Lebesgue integrable functions on Σ.

Lemma 3.2 ([15]). Let X be a smooth vector field on the n-dimensional complete
noncompact oriented Riemannian manifold Σn, such that divX does not change sign
on Σn. If |X| ∈ L1(Σ), then divX = 0.

Lemma 3.3 ([15]). Let ψ : Σn → M
n+1

(κ) be a complete oriented hypersurface

immersed in a space form M
n+1

of constant sectional curvature κ, with bounded
second fundamental form. If g : M → R is a smooth function such that |∇g| ∈ L(Σ)
and Lrg does not change sign on Σ, then Lrg = 0 on M .

Along this work, we will assume the fibre Mn of the spacetime is complete and N
will stand for the future-pointing Gauss map of the spacelike hypersurface Σn unless
we change it.
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According to [2] we say that a spacelike hypersurface ψ : Σn → −I ×f M
n is

bounded away from the future infinity of −I ×f M
n if there exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ −I ×f M
n; t ≤ t}.

Analogously, we say that Σn is bounded away from the past infinity of −I ×f M
n if

there exists t ∈ I such that

ψ(Σ) ⊂ {(t, x) ∈ −I ×f M
n; t ≥ t}.

Finally, Σn is said to be bounded away from the infinity if there exists t < t such that
ψ(Σ) is contained in the slab bounded by the slices {t×Mn} and {t×Mn}.

Theorem 3.4. Let M
n+1

= −I ×f M
n be a GRW spacetime,, ψ : Σn → −I ×f M

n

be a complete, connected spacelike hypersurface bounded away from the infinity of M .
Suppose

(3.3)
f

f ′
(h)H1 ≤ − 1

⟨N, ∂t⟩
,

then if |∇h| ∈ L1(Σn), Σn is a slice.

Proof. Since N is the Gauss map such that ⟨N, ∂t⟩ < 0, then from (3.3) we have

1 + ⟨N, ∂t⟩
f

f ′
(h)H1 ≥ 0.

From formula (3.2) we have

∆h = −f
′

f
(h)[n(1 + ⟨N, ∂t⟩

f

f ′
(h)H1) + |∇h|2].

Thus we have div(∇h) = ∆h does not change sign on Σn under the condition that
f ′ ̸= 0. Now, taking into account |∇h| ∈ L1(Σn), we can apply Lemma 3.2 to get
that div(∇h) vanishes on Σn. Therefore, we can conclude that |∇h| is identically zero
on Σn, that is the hypersurface Σn is a slice. �

Theorem 3.5. Let M = −I ×f M
n be a RW spacetime, ψ : Σn → −I ×f M

n

(with n ≥ 2) be a complete, connected spacelike hypersurface bounded away from the
infinity of M . Suppose that mean curvature H1 is bounded on Σn and |∇h| ∈ L1(Σn).
Assume that either
(i) when k = 1, H2 > 0 and

(3.4)
f ′

−f⟨N, ∂t⟩
≤ H2

H1
< 0, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an
appropriate choice of the Gauss map, and

(3.5)
f ′

−f⟨N, ∂t⟩
≤ Hk+1

Hk
< 0.

Then the hypersurface Σn is a slice.
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Proof. (i) when k = 1, from (3.4) we have the mean curvature H1 < 0 is bounded
and H2 > 0 on Σ. From the Cauchy-Schwarz inequality we have

H2
1 ≥ H2,

then we get that there exists a constant c such that

|A|2 = n2H2 − n(n− 1)H2 < c.

Thus |A| is bounded on Σn.
Now we change N to the past-pointing Gauss map, then we obtain that the sign

both H1 and ⟨N, ∂t⟩ are changed, so from Lemma 2.1 we have P1 is positive definite.
Under this condition, from (3.4) we have f ′(h)H + f(h)⟨N, ∂t⟩H2 ≤ 0. Besides, we
also get f ′ < 0, thus f ′(h)⟨P1∇h,∇h⟩ ≤ 0. From formula (3.2) we have

L1(h) = − 1

f(h)
[c1(f

′(h)H1 + ⟨N, ∂t⟩f(h)H2) + f ′(h)⟨P1(∇h),∇h⟩].

Thus we get L1(h) does not change sign on Σn. Now we apply Lemma 3.3 to conclude
that L1(h) vanishes on Σn. Therefore, returning to the expression of L1(h) we get
that ∇h is identically zero on Σn, then Σn is a slice {t} ×Mn.

(ii) When 2 ≤ k ≤ n − 1, from (3.5) we have HkHk+1 < 0 and f ′ < 0, thus
from the hypothesis we can change the N to the past-pointing Gauss map such that
there exists an elliptic point. Under this condition, we have both Hk and Hk+1 are
positive definite, then we apply Lemma 2.2 get that Pj are positive definite and Hj

are positive for every 1 ≤ j ≤ k. Then in a similar way as (i), we can get |A| is
bounded,

f ′(h)Hk + f(h)⟨N, ∂t⟩Hk+1 ≤ 0

and
f ′(h)⟨Pk(∇h),∇h⟩ ≤ 0.

Thus Lkh does not change sign on Σ.
Now we can use Lemma 3.3 to conclude that Lkh vanishes on Σn. Considering the

expression of Lkh in (3.2) and the hypothesis (3.5), we conclude that ∇h is identically
zero on Σn, then Σn is a slice {t} ×Mn. �

Theorem 3.6. Let M = −I ×f M
n be a RW spacetime, ψ : Σn → −I ×f M

n

(with n ≥ 2) be a complete, connected spacelike hypersurface bounded away from the
infinity of M . Suppose that mean curvature H1 is bounded on Σn and |∇h| ∈ L1(Σn).
Assume that either
(i) when k = 1, H2 > 0 and

(3.6) 0 <
H2

H1
≤ f ′

−f⟨N, ∂t⟩
, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an
appropriate choice of the Gauss map, and

(3.7) 0 <
Hk+1

Hk
≤ f ′

−f⟨N, ∂t⟩
.

Then the hypersurface Σn is a slice.
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Proof. (i) when k = 1, from (3.6) we have the mean curvature H1 > 0 is bounded
and H2 > 0 on Σ. From the Cauchy-Schwarz inequality we have H2

1 ≥ H2. Similarly,
we get |A| is bounded and P1 is positive definite respect to the future-pointing Gauss
map N on Σn. Therefore, we get both f ′(h)H1 + f(h)⟨N, ∂t⟩H2 and ⟨P1(∇h),∇h⟩
are non-negative. Besides, from (3.6) we also get f ′ is positive, then it’s easy to get
that L1(h) ≤ 0 on Σ. As a application of Lemma 3.3 we have that L1(h) vanishes on
Σn. Thus, returning consider the expression of L1(h) and the hypothesis we get that
∇h is identically zero on Σn, then we have Σn is a slice {t} ×Mn.

(ii) when 2 ≤ k ≤ n − 1, from (3.7) we have HkHk+1 > 0 and f ′ > 0, from the
hypothesis we have that there exists an elliptic point respect to the future-pointing
Gauss map, making that both Hk+1 and Hk are positive. Now we apply Lemma 2.2
to conclude that Pj are positive definite and Hj are positive for every 1 ≤ j ≤ k.
Then from H1 is bounded and H2 > 0 we have |A| is bounded. Under the condition
above we have that

f ′(h)Hk + f(h)⟨N, ∂t⟩Hk+1 ≥ 0

and
f ′(h)⟨Pk(∇h),∇h⟩ ≥ 0.

Hence, from formula (3.2) we have that Lk(h) ≤ 0 on Σn. From Lemma 3.3 we have
that Lk(h) vanishes on Σn, then in a similar way, we have ∇h is identically zero.
Thus Σn is a slice. �

4 Entire vertical graphs in a GRW spacetimes −I×f

Mn

Let Ω ⊆ Mn be a connected domain of Mn. A vertical graph over Ω is determined
by a smooth function u ∈ C∞(Ω) and it is given by

Σn(u) = {(u(x), x) : x ∈ Ω} ⊂ −I ×f M
n.

The metric induced on Ω from the Lorentzian metric on the ambient space via Σn(u)
is

⟨ , ⟩ = −du2 + f2(u)⟨ , ⟩Mn .

The graph is said to be entire if Ω = Mn. It can be easily seen that a graph Σn(u)
is a spacelike hypersurface if and only if |Du|2Mn < f2(u), Du being the gradient of
u in Ω and |Du|Mn is its norm, both with respect to the metric ⟨ , ⟩Mn in Ω. In this
context, we obtain the following non-parametric version of Theorem 3.3, where the
fibre Mn of the RW spacetime −I ×f M

n is complete.

Corollary 4.1. Let M = −I ×f M
n be a RW spacetime, Σn(u) (with n ≥ 2) be

an entire spacelike vertical graph bounded away from the infinity of M . Suppose that
mean curvature H1 is bounded on Σn and |Du|Mn ∈ L1(Mn). For some constant
0 ≤ α < 1, |Du|2Mn ≤ αf2(u), assume that either
(i) when k = 1, H2 > 0 and

0 <
H2

H1
≤ (1− α)

f ′

f
(h), or
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(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an
appropriate choice of the Gauss map, and

0 <
Hk+1

Hk
≤ (1− α)

f ′

f
(h).

Then the hypersurface Σn is a slice.

Proof. We can obtain the proof in [9] about ∇h ∈ L1(Mn). Furthermore, following
the proof of Theorem 3.3 we can obtain the result. �

Following the same ideas of Corollary 4.1, we also obtain non-parametric versions
of Theorem 3.1 and Theorem 3.2.

Corollary 4.2. Let M = −I ×f M
n be a GRW spacetime, Σn(u) (with n ≥ 2) be

an entire spacelike vertical graph bounded away from the infinity of M . Suppose that
|Du|Mn ∈ L1(Mn). Then for some constant 0 ≤ α < 1, |Du|Mn ≤ αf(u), assume
that

H1
f

f ′
(u) ≤ 1− α,

then the hypersurface Σn is a slice.

Corollary 4.3. Let M = −I ×f M
n be a RW spacetime, Σn(u) (with n ≥ 2) be

a entire spacelike vertical graph bounded away from the infinity of M . Suppose that
mean curvature H is bounded on Σn and |Du|Mn ∈ L1(Mn). Then for some constant
0 ≤ α < 1, |Du|Mn ≤ αf(u), assume that either
(i) when k = 1, H2 > 0 and

(1− α)
f ′

f
(u) ≤ H2

H1
< 0, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an
appropriate choice of the Gauss map, and

(1− α)
f ′

f
(u) ≤ Hk+1

Hk
< 0.

Then the hypersurface Σn is a slice.

5 Applications

In this section, we’ll give some examples which are the applications of Theorem 3.2
and 3.3. The de Sitter space Sn+1

1 are spacetimes obtained into Minkowski space
Rn+2

1 as the hyperquadrics

Sn+1
1 = {p ∈ Rn+2

1 | |p|2 = 1}.

If we choose a unit timelike vector a ∈ Rn+2
1 , then we may consider the vector field

X(p) = a− ⟨p, a⟩p p ∈ Sn+1
1 |a|2 = −1,
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which is the conformal timelike field. Consequently, we can consider Sn+1
1 as the

warped product −R− ×cosh t Sn, where Sn means the Riemannian unit sphere.
In what follows, we will consider a spacelike hypersurface Σn immersed in Sn+1

1 ,
then from theorem 3.2 and formula (2.2), we obtain the following

Corollary 5.1. Let ψ : Σn → Sn+1
1 be a complete, connected spacelike hypersurface

bounded away from the past infinity. Suppose that the mean curvature H of Σn is
bounded and |∇h| ∈ L1(Σn). Assume that either
(i) when k = 1, H2 > 0 and − tanh t ≤ H2

H1
cosh θ < 0, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an

appropriate choice of the Gauss map, and − tanh t ≤ Hk+1

Hk
cosh θ < 0,

Then the hypersurface Σn is a slice.

Now we consider the half Hn+1 of the de Sitter space Sn+1
1 , which models are the

so-called steady state space([21]). From [2] we have that the steady state space admits
the following RW spacetime model:

Hn+1 = −R×et Rn.

Then from Theorem 3.3 and (2.2) we have the following

Corollary 5.2. Let ψ : Σn → Hn+1 be a complete, connected spacelike hypersurface
bounded away from the infinity of Hn+1. Suppose that the mean curvature H of Σn

is bounded and |∇h| ∈ L1(Σn). Assume that either
(i) when k = 1, H2 > 0 and H1

H2
≥ cosh θ, or

(ii) when 2 ≤ k ≤ n − 1, there exists an elliptic point on Σ with respect to an
appropriate choice of the Gauss map, and Hk

Hk+1
≥ cosh θ. Then the hypersurface Σn

is a slice.

Acknowledgements. This work is supported by NSFC (No. 11371076 and
11431009) and the Fundamental Research Funds for the Central Universitie (No.
DUT14ZD208)

References
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