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Abstract. Geometric properties of graphs of solutions for the quartic
interaction PDE are studied in the present work. Two classes of solutions
are considered. One class is represented by soliton solutions, whereas
the other class consists of solutions of a first order PDE system, which
generates the quartic interaction PDE, in the sense of least squares type
action. We prove that for both classes the graphs of solutions are Tzitzeica
flat, i.e., the associated Tzitzeica curvature tensor vanishes. It is also
shown how the quartic interaction PDE can be generated using a least
squares type action.
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1 Recent topics about geometry of PDEs solutions

Geometric properties of solutions for partial differential equations (PDEs) provide
surprising information for specific problems described by the equations. This topic
has been the focus of numerous international conferences, workshops and research
programs for a number of recent years. The directions of research include: convexity
of solutions, blow-up analysis, Sobolev type inequalities, hot spots, shapes of graphs of
solutions etc.

In this paper we are concerned with: (i) solutions of first order PDEs as sub-
manifolds; (ii) Tzitzeica differential geometry for soliton solutions of the quartic in-
teraction PDE; this is a fundamental equation of the Quantum Field Theory related
to the famous Klein-Gordon equation; (iii) the geometry of least squares generators
for quartic interaction PDE.

The paper is structured as follows. In Section 2, we lay out the theoretical con-
siderations, introduce the basic notions, and recall some results from ([7], [8]) which
will be used later.
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In Section 3, we state and prove our first result concerning the geometry of the
Tzitzeica connection on graphs of soliton solutions of the quartic interaction PDE.
More precisely, we prove that the graphs are Tzitzeica flat.

In Section 4, we prove that the quartic interaction PDE is an Euler-Lagrange
prolongation of a first order PDE system. According to the Theorem 4.1, the solutions
of the first order PDE system are also solutions of the quartic interaction PDE. The
surprising fact is that this class of solutions has similar geometric properties with the
class of soliton solutions.

2 Solutions of first order PDEs as sub-manifolds

All relevant mathematical ingredients used in the present work are supposed to be of
class C∞. The advantage of working with this class of objects consist in the fact that
it is invariant under differentiation.

Let (T, k) and (M, g) be semi-Riemannian manifolds of dimension m, and n re-
spectively, with m < n. The indexing of the components of the geometrical objects
corresponding to the manifold T (manifold M) will be done using Greek (Latin) let-
ters. Denote the local coordinates on the manifold T by t = (tα) , α = 1, . . . ,m, and
denote the local coordinates on the manifold M by x =

(
xi
)
, i = 1, . . . , n. The first

order jet manifold J1(T,M), is endowed with the adapted coordinates (tα, xi, xi
α) (see

for instance [3]).
A distinguished tensor field Xi

α(t, x(t)), defined on T ×M (with local coordinates
(tα, xi)), defines a first order normal PDE system

(2.1)
∂xi

∂tα
(t) = Xi

α(t, x(t)).

Suppose that the complete integrability conditions

(2.2)
∂Xi

α

∂tβ
+

∂Xi
α

∂xj
Xj

β =
∂Xi

β

∂tα
+

∂Xi
β

∂xj
Xj

α

are satisfied throughout. The solutions of the PDE system (2.1) correspond to
m−dimensional leaves, which are sub-manifolds of co-dimension n−m, in M , diffeo-
morphic to T . These are the leaves of the foliation of the manifold M , induced by
the integrable distribution D = {Xα} , α = 1, · · · ,m, where Xα =

(
X1

α, · · · , Xn
α

)
.

The geometric properties of the leaves, obtained as above, will be our main interest
in what follows. The source of inspiration are the works [6], [8], [16].

Suppose that the PDE system (2.1) has a solution x(t). Differentiating along the
solutions x(t), and substituting xj

β = Xj
β , yields the second order PDE system

(2.3)
∂2xi

∂tα∂tβ
=

∂Xi
α

∂xj
Xj

β +
∂Xi

α

∂tβ
.

On the other hand, a sub-manifold S : x = x(t), x(t0) = x0, satisfies the Gauss
equations

(2.4)
∂2xi

∂tα∂tβ
(t) = Λγ

αβ(t)x
i
γ(t) + Ωa

αβ(t)N
i
a(x(t)),
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where Na = N i
a∂xi , a = 1, · · · , n−m are unit vector fields normal to S. Replacing the

left hand side member by the right hand side member of (2.3) and using the induced
metric

(2.5) hαβ(t) :=
(
gijX

i
αX

j
β

)
(t, x(t)),

on sub-manifold S, we obtain the components of the (non-metric) Tzitzeica connection

(2.6) Λγ
αβ(t) = hγσ(t)gikX

k
σ

[
∂Xi

α

∂xj
Xj

β +
∂Xi

α

∂tβ

]
(t, x (t)) ,

and the fundamental forms

(2.7) Ωa
αβ(t) = δabgikN

k
b

[
∂Xi

α

∂xj
Xj

β +
∂Xi

α

∂tβ

]
(t, x (t)) .

The components of the Tzitzeica mean curvature vector field, with respect to the
induced metric hαβ , are given by

(2.8) Hi(x(t)) = hαβ(t)Ωa
αβ(t)N

i
a(x(t)).

Remark 2.1. Any PDE can be transformed into a (constrained or not) first order
PDE system, and automatically, we can build the associated Tzitzeica geometry.

To a classical second order PDE, written in the explicit form (see for instance [1])

(2.9) F (t, x(t), xα(t), xαβ(t)) = 0,

where t = (tα), x = (xi), xα = (xi
α), xαβ = (xi

αβ), α = 1, · · · ,m, i = 1, · · · , n, one
may associate a constrained first order PDE system

(2.10)


∂xi

∂tα
(t) = ξiα(t),

F (t, x(t), ξα(t),
∂ξα
∂tβ

(t)) = 0.

The associated ”least squares type Lagrangian density” (see Section 4 for more
details), with respect to the metric tensors (gij) and (hαβ), is

L =
1

2
hαβgij

(
xi
α − ξiα

) (
xj
β − ξjβ

)
+

1

2
F 2(t, x(t), ξα(t), ξαβ(t)).

As an alternative approach, one might consider the Lagrangian density

Lλ =
1

2
hαβgij

(
xi
α − ξiα

) (
xj
β − ξjβ

)
+

1

2
λF (t, x(t), ξα(t), ξαβ(t)),

where λ is a Lagrange multiplier (see, for instance, [2]).

Remark 2.2. If the initial second order PDE is given in the normal form

(2.11) xαβ = Fαβ(t, x(t), xα(t)), α ≤ β,
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then the corresponding first order PDE system is

(2.12)


∂xi

∂tα
(t) = ξiα(t)

∂ξiα
∂tβ

= F i
αβ(t, x(t), ξα(t)).

In this case, the corresponding ”least squares type Lagrangian density”, becomes

L =
1

2
hαβgij

(
xi
α − ξiα

) (
xj
β − ξjβ

)
+

1

2
hαµhβλgij

(
ξiαβ − F i

αβ

) (
ξjµλ − F i

µλ

)
.

We also should keep in mind the complete integrability conditions

∂2x

∂tγ∂tβ
=

∂2x

∂tβ∂tγ
,

∂2ξα
∂tγ∂tβ

=
∂2ξα
∂tβ∂tγ

, α, β, γ = 1, · · · ,m.

Remark 2.3. When the initial second order PDE system is pseudo-linear, i. e.,

(2.13) hαβ(t)xi
αβ(t) + F i(t, x(t), xα(t)) = 0,

one may associate the first order PDE system

(2.14)



∂xi

∂tα
(t) = ξiα(t)

∂ξiα
∂tβ

=
∂ξiβ
∂tα

hαβ(t)
∂ξiα
∂tβ

(t) + F i(t, x(t), ξα(t) = 0,

together with the ”least squares type Lagrangian density”

L =
1

2
hαβgij

(
xi
α − ξiα

) (
xj
β − ξjβ

)
+

1

2
hαµhβλgij

(
∂ξiα
∂tβ

−
∂ξiβ
∂tα

)(
∂ξjα
∂tβ

−
∂ξjβ
∂tα

)
+
1

2
gij

(
hαβ ∂ξ

i
α

∂tβ
+ F i

)(
hαβ ∂ξ

j
α

∂tβ
+ F j

)
.

3 Tzitzeica geometry of solitons associated to
quartic interaction PDE

In the context of Quantum Field Theory, a classical free scalar field is a solution of the
Klein-Gordon equation, which is a relativistic analogue of the Schrödinger equation.

The Klein-Gordon equation can be altered in such a manner that the solutions of
the modified version, which is called quartic interaction PDE, are fields with quartic
interaction in Quantum Field Theory (see for example [5]).

In this section, we are interested in the geometric properties of graphs of soliton
solutions for quartic interaction PDE, as four-dimensional submanifolds immersed in
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the product manifold of (T, k) and (R, δ = 1), where by (T, k) we denote the four-
dimensional Minkowski space-time, with the metric signature (−+++).

Let
u : T −→ R, t =

(
t1, t2, t3, t4

)
7−→ u

(
t1, t2, t3, t4

)
.

The quartic interaction PDE (see for example [5]) is

(3.1) u11 − u22 − u33 − u44 = µ2u− λu3,

where µ is the mass term, λ is the (strictly positive) coupling constant, indices means
partial derivatives and whose solutions are real valued functions (scalar fields) u.

Let us consider the soliton solutions, in implicit form, given by (see for example
[4])

(3.2)

∫ [
C1 +

2

k21 − (k22 + k23 + k24)

∫
f(u)du

]−1/2

du = kαt
α + C2,

where f(u) = µ2u − λu3 and C1, C2, kα, α = 1, 2, 3, 4, are some constants such that
k21 ̸= k22 + k23 + k24.

Denoting by F (u) the left hand side member of the equation (3.2), and taking the
partial derivatives, we obtain

(3.3)
∂

∂tα
F (u) =

∂F

∂u
uα = kα =⇒ uα = kα

1
∂F
∂u

= kαY (u), α = 1, 2, 3, 4,

where Y (u) =
1
∂F
∂u

.

The product manifold (M, g) = (T ×R, k+δ), with coordinates (t1, t2, t3, t4, u), is
a Lorentzian manifold. The graphs of solutions are integral manifolds of the smooth
integrable distribution D = {Y1, Y2, Y3, Y4}, spanned by

Y1 = (1, 0, 0, 0, Y 5
1 ), Y2 = (0, 1, 0, 0, Y 5

2 ),
Y3 = (0, 0, 1, 0, Y 5

3 ), Y4 = (0, 0, 0, 1, Y 5
4 ),

defined on the manifold M , where

(3.4) Y 5
α (x(t)) = kαY (u(t)).

Computing the induced pseudo-metric, on an integral sub-manifold of the distribution
D, using (2.5), yields

(3.5) (hαβ) =


−1 + k21Y

2 k1k2Y
2 k1k3Y

2 k1k4Y
2

k2k1Y
2 1 + k22Y

2 k2k3Y
2 k2k4Y

2

k3k1Y
2 k3k2Y

2 1 + k23Y
2 k3k4Y

2

k4k1Y
2 k4k2Y

2 k4k3Y
2 1 + k24Y

2

 .

The contravariant components are

(3.6)
(
hαβ

)
=

1

∆h


1 + c1Y

2 −k1k2Y
2 −k1k3Y

2 −k1k4Y
2

−k2k1Y
2 −1 + c2Y

2 k2k3Y
2 k2k4Y

2

−k3k1Y
2 k3k2Y

2 −1 + c3Y
2 k3k4Y

2

−k4k1Y
2 k4k2Y

2 k4k3Y
2 −1 + c4Y

2

 ,
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where
c1 =

(
k22 + k23 + k24

)
, c2 =

(
k21 − k23 − k24

)
,

c3 =
(
k21 − k22 − k24

)
, c4 =

(
k21 − k22 − k23

)
.

The determinant associated to the previous pseudo-metric is

∆h = −1−
(
k24 + k23 + k22 − k21

)
Y 2.

Hence, we shall impose k24 + k23 + k22 > k21, in order for ∆h < 0 to hold.
We have the following result concerning the Tzitzeica curvature of an integral

manifold of the distribution D.

Theorem 3.1. Let S be an integral manifold of the distribution D. Then

i) the components of the Tzitzeica connection Λ are

(3.7) Λγ
αβ = hγσY 5

σ

∂Y 5
α

∂u
Y 5
β = (hγσkσ) kαkβ (Y )

2 ∂Y

∂u
,

ii) the curvature tensor of the manifold (S,Λ) is identically zero.

Proof. i) Noticing that the vector fields depend only on the last coordinate, and
making the substitution Y 5

α = kαY , from (2.6), one obtains (3.7).
ii) The curvature tensor of the Tzitzeica connection is

Rγ
σαβ =

∂Λγ
σβ

∂tα
− ∂Λγ

σα

∂tβ
+ Λη

σβΛ
γ
ηα − Λη

σαΛ
γ
ηβ , α, β, σ, η = 1, 2, 3, 4.

Substituting (3.7), we have

Rγ
σαβ =

∂

∂tα

[
(hγηkη) kσkβ (Y )

2 ∂Y

∂u

]
− ∂

∂tβ

[
(hγνkν) kσkα (Y )

2 ∂Y

∂u

]

+

[
(hηνkν) kσkβ (Y )

2 ∂Y

∂u

] [
(hγµkµ) kηkα (Y )

2 ∂Y

∂u

]

−
[
(hηνkν) kσkα (Y )

2 ∂Y

∂u

] [
(hγµkµ) kηkβ (Y )

2 ∂Y

∂u

]
.

Since the last two terms cancel each other, and using the fact that
∂

∂tα
= kαY

∂

∂u
,

one obtains

Rγ
σαβ = kσkβkαY

∂

∂u

[
(hγηkη) (Y )

2 ∂Y

∂u

]

− kσkαkβY
∂

∂u

[
(hγνkν) (Y )

2 ∂Y

∂u

]
= 0.

�

Remark 3.1. It is worth noticing that the above results do not depend on the
function Y (u(t)) but only on the fact that Y 5

α (x(t)) = kαY (u(t)). Thus, it should
hold in other cases too.
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Remark 3.2. The unit vector field N(t) =
1

l
(k1Y,−k2Y,−k3Y,−k4Y, 1), where

l =
√
−∆h , is orthogonal to any integral manifold of the distribution D. Hence, by

direct computation, from (2), we obtain the components of the second fundamental
form

(3.8) Ωαβ = kαkβ
1

2l

∂
(
Y 2
)

∂u
.

Thus, the components of the Tzitzeica mean curvature vector field, by direct compu-
tation, are

(3.9) Hi ((t)) =
1

2l

∂
(
Y 2
)

∂u

[
Y 2

(
k21 + k22 + k23 + k24

)
∆h

+
(
k22 + k23 + k24 − k21

)]
N i(t).

4 The geometry of least squares generators
for quartic interaction PDE

In the present section we shall study the geometry of another class of solutions of
the quartic interaction PDE, which have a close connection to the soliton solutions.
More precisely, we shall study the Tzitzeica geometry corresponding to a first order
PDE system which is a generator, in the sense of geometric dynamics, of the quartic
interaction PDE. The classical approach of geometric dynamics ([10]-[15]) consists in
extending normal first order PDE systems to second order Euler - Lagrange type PDE
systems; the solutions of the first order systems are included in the set of extremal
points of least squares type Lagrangians (see [8]). In this respect, we recall the
following key result ([7] Theorem 2.3, [10]).

Theorem 4.1. With the above notations, we have that each solution of the PDE
system (2.1) is an extremal for the Lagrangian

(4.1) L =
1

2
hαβgij(x

i
α −Xi

α)(x
j
β −Xj

β)
√
|h|.

Note that the converse assertion is not true.
Let, as above, (T, k) be the Minkowski space and (M, g) = (T × R, s + δ), and

consider the immersion (graph map)

(4.2) x : T → M,
(
t1, t2, t3, t4

)
7−→

(
t1, t2, t3, t4, u (t)

)
,

i.e. xi (t) = ti, i = 1, 2, 3, 4, x5(t) = u(t).

Let X5
α(x(t)) = kαX(u(t)), α = 1, 2, 3, 4, where

(4.3) X(x(t)) =
1√

2λ(k22 + k23 + k24 − k21)

(
λ (u(t))

2 − µ2
)
.

and kα are nonzero real numbers such that k21 < k22 + k23 + k24.
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We introduce the first order normal PDE system

(4.4)


∂xi

∂tα
= δiα = Xi

α(x(t)), i, α = 1, 2, 3, 4,

∂x5

∂tα
= X5

α(x(t)).

The associated ”least squares type Lagrangian” (4.1), corresponding to the metric
tensors (gij) and

(
hαβ

)
, respectively, becomes

(4.5)

L =
1

2

[
hαβgij

(
xi
α −Xi

α

) (
xj
β −Xj

β

)
−
(
x5
1 −X5

1

)2
+
(
x5
2 −X5

2

)2
+
(
x5
3 −X5

3

)2
+
(
x5
4 −X5

4

)2]
α, β, i, j = 1, · · · , 4,

(recall that k11 = g11 = −1, k22 = g22 = k33 = g33 = k44 = g44 = 1, g55 = 1, and
non-diagonal terms are zero).

The connection between the first order PDE system (4.4) and the quartic interac-
tion PDE (3.1) becomes clear by the following

Proposition 4.2. i) The quartic interaction PDE (3.1) is an Euler-Lagrange pro-
longation of the system (4.4), with respect to the manifolds (T, k) and (T ×R, k+ δ),
respectively.

ii) There exist infinitely many suitable geometric structures and infinitely many
vector fields which realize the above prolongation.

Proof. Writing the Euler - Lagrange equation

∂L

∂x5
− ∂

∂tα
∂L

∂x5
α

= 0,

with respect to the last coordinate function x5(t) = u(t), one obtains

(4.6) X5
1

∂X5
1

∂x5
−

4∑
α=2

X5
α

∂X5
α

∂x5
=

∂2x5

∂t1∂t1
−

4∑
α=2

∂2x5

∂tα∂tα
.

Making the corresponding substitutions yields

µ2u− λu3 = u11 − u22 − u33 − u44,

which is precisely the quartic interaction PDE (3.1).
In order to prove ii), it is enough to choose as the component g55 any strictly

positive constant. �

Let D′ = {X1, X2, X3, X4} be the distribution generated by the smooth vector
fields

X1 = (1, 0, 0, 0, X5
1 ), X2 = (0, 1, 0, 0, X5

2 )
X3 = (0, 0, 1, 0, X5

3 ), X4 = (0, 0, 0, 1, X5
4 ),
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defined on the manifold M . The Frobenius integrability conditions reduce to

(4.7)
∂X5

α

∂x5
X5

β =
∂X5

β

∂x5
X5

α, α, β = 1, 2, 3, 4,

which means that the corresponding distribution is integrable.
The geometry of the integral sub-manifolds of the integrable distribution D′ can

be studied precisely as in the previous section. The induced metric tensor on integral
manifolds of the distribution D′, as well as its inverse, are precisely as in (3.5) and
(3.6), respectively, with X instead of Y .

Using the Remark 3.1, one obtains the following, similar to (3.1),

Theorem 4.3. Let S′ be an integral manifold of the distribution D′. Then

i) the components of the Tzitzeica connection Λ) are

(4.8) Λγ
αβ = hγσX5

σ

∂X5
α

∂u
X5

β = (hγσkσ) kαkβ (X)
2 ∂X

∂u
,

ii) the curvature tensor of (S′,Λ) is identically zero.

5 Conclusions

In the present paper we considered geometric objects which correspond in a natural
way to PDEs and their solutions. These objects provide, very often, insights for the
qualitative study of equations. One such object is the Tzitzeica connection together
with its associated curvature tensor, which vanishes on graphs of the two classes of
solutions we had considered.

The present work also provides an example of how the tools of geometric dynamics
can be useful when we deal with geometric properties of graphs of solutions of PDEs.

A starting point for further research is the Remark 3.1, according to which, the
result of Theorem 3.1 is valid for a larger class of equations.
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