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Abstract. Let c(t) be a curve in a space form Mn
λ of sectional curvature λ.

Let P0 be a totally geodesic hypersurface of Mn
λ through c(0) and orthog-

onal to c(t). Let D0 and C0 be a domain and a hypersurface, respectively,
of P0. Let D and C be, respectively, the domain and the hypersurface of
Mn

λ obtained by a motion along c(t). We show that, after some rotation of
D0 and C0, the Frenet motion gives the supremum and the infimum value
of vol(D) and a lower bound of vol(C), when the centres of mass of D0

and C0 are not at c(0) (and, in the case of vol(C), c(t) is a plane curve).
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1 Introduction

In [10], H. Weyl gave some nice formulae for the volumes of a tube and a tubular
hypersurface around a submanifold P of the Euclidean space and the sphere. A
consequence of these formulae is that these volumes depend only on the intrinsic
geometry of P and the radius of the tube (this last quantity encodes all the information
on the geometry of the section of the tube). See [7] for a modern approach and further
references.

In [8], A. Gray and the second author initiated a way, via Pappus type theorems,
to get a deeper understanding of these formulae. The starting point was the com-
putations by W. Goodman and G. Goodman in [6] (completed by L. E. Pursell and
H. Flanders in [9] and [5]) generalizing Pappus formulae for the volume of a domain
(or a surface) in R3 obtained by the motion of a plain domain (or a plain curve)
along a curve in R3. In [8], all these formulae where generalized to simply connected
space forms Mn

λ of constant sectional curvature λ and arbitrary dimension n. Given a
curve c(t) in Mn

λ, let P0 be the totally geodesic hypersurface of Mn
λ through c(0) and

orthogonal to c(t), let D0 be a domain of P0 and let C0 be a hypersurface of P0, and
let D and C be, respectively, the domain and the hypersurface of Mn

λ obtained by a
motion along c(t) of D0 and C0 respectively. In [8] it is shown that:

(a) vol(D) depends only on the geometry of D0, the length and the first curvature
of c(t), and not on the other i-th curvatures; but, generally, vol(D) depends on the
motion along c(t).
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(b) if the centre of mass of D0 is on the curve, then vol(D) does not depend on
the motion nor on the curvature of c(t), only on the length of c(t) and the geometry
of D0;

(c) for parallel motions, it is still true for vol(C) that it depends only on the length
of c(t) and the geometry of C0 when c(0) is the centre of mass of C0.

In [1], X. Gual and the authors studied vol(C) in more detail, and showed, among
others, that,

(d) For generic C0, but with the centre of mass on the curve, vol(C) depends on
the motion, but the parallel motion gives the minimum value of vol(C).

In this paper we shall investigate a bit more the case when the centre of mass is
not on the curve. In this situation, as noted above in b), even vol(D) depends on the
motion. Then it is natural to ask if (like for case (d)) there is some motion where
vol(D) attains its minimum, and a similar question can be stated for vol(C).

We shall show that, in general, vol(D) does not attain its minimum value, but we
shall obtain sharp lower and upper bounds of vol(D) which are given by the volume
of a domain obtained by a Frenet motion of a domain RD0 obtained by a rotation R
of D0 in P0 (see Theorem 3.1). Then, Frenet motion plays for D (when the centre of
mass is not at c(t)) a role similar to parallel motion for C when the centre of mass is
on c(t).

For vol(C), when the centre of mass of C0 is not on c(t), we shall get a lower bound
only for plane curves (Theorem 3.2). The restriction to plane curves is because, in
order to get lower bounds, the parallel motion still has its role, like when the center
of mass was on c(t), and, moreover, we have to mix it with the role of Frenet motion,
and only on plane curves a motion can be parallel and Frenet at the same time. It
remains open to see if this lower bound is sharp (see the remark after Theorem 3.2)
and to find upper and lower bounds for vol(C) for a generic curve c(t).

The corresponding results for the complex case were published in [3]. Later we
realized that properties on the volume of a tube have some analog on the first eigen-
value of the laplacian (cf. [2] and [4]). Then we have written this paper with the hope
of obtaining also analog results on the first eigenvalue in a future work.

2 Preliminaries

First, we shall establish some notation and definitions, partially taken from the papers
by Gray-Miquel [8] and by Domingo-Gual-Miquel [1].

We shall consider C∞ curves c : I = [0, L] −→ Mn
λ parametrized by their arc-

length t. We shall suppose that c is an embedding from [0, L] into Mn
λ if c(0) ̸= c(L)

or induces an embedding from S1 into Mn
λ if c(0) = c(L). By N c(I), we shall denote

the normal bundle of c(I) in Mn
λ, and Pt will denote the totally geodesic hypersurface

of Mn
λ tangent to {c′(t)}⊥.

Given a smooth orthonormal frame {E2(t), ..., En(t)} of the normal bundle of
c(t), the motion along c associated to this frame is the smooth map
φ : {c′(0)}⊥ × I → N c(I) defined by

(2.1) φ

(
n∑

i=2

µiEi(0), t

)
=

n∑
i=2

µiEi(t),
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or, equivalently, the smooth map ϕ : P0 × I −→ M, defined by

(2.2) ϕ(expc(0) µ, t) = expc(t) φ(µ, t) for every µ ∈ {c′(0)}⊥.

Such a motion, denoted by φ or ϕ indistinctly, defines two families of isometries

φt : Tc(0)P0 −→ Tc(t)Pt, φt(µ) = φ(µ, t) and ϕt : P0 −→ Pt, ϕt(x) = ϕ(x, t).

They are related by

(2.3) φt = ϕt∗c(0) and ϕt(expc(0) µ) = expc(t) φt(µ).

A smooth orthonormal frame {Ei(t)}ni=2 on c(t) is called a weak Frenet frame if
E2(t) = f2(t), the standard normal vector of c(t). That is, a weak Frenet frame is
a orthonormal C∞ frame {f2(t), . . . , fn(t)} satisfying ∇c′(t)c

′(t) = k1(t)f2(t), where
k1(t) is the first curvature of the curve.

A weak Frenet motion is a motion associated to a weak Frenet frame. It will be
denoted by ϕF or φF .

Let D be the connection induced on the normal bundle N c(I) by the Levi-Civita
connection on Mn(λ). A parallel motion is a motion associated to a D-parallel frame
along c; it is unique along any given curve.

Let us denote by B0 a domain D0 or a hypersurface C0 contained in P0 and such
that the exponential map restricted to φ(exp−1

c(0)(B0) × I) is a diffeomorphism. The

set B = ϕ(B0 × I) (domain D or hypersurface C) is called the set obtained by the
motion ϕ of B0 along c(t), and we denote Bt = ϕt(B), whereas ωt will be the volume
element of Bt.

For every λ ∈ R, sλ : R → R will denote the solution of the equation s′′ + λs = 0
with the initial conditions s(0) = 0 and s′(0) = 1; and cλ = s′λ.

For every x ∈ P0, Nx(t) will denote the unit vector tangent at c(t) to the mini-
mizing geodesic γxt from c(t) to ϕt(x).

r : Pt −→ R will denote the function defined by r(ϕt(x)) = dist(c(t), ϕt(x)) =
dist(c(0), x) = r(x).

τxt will denote the parallel transport in Pt from c(t) to ϕt(x) along γxt.
In Gray-Miquel [8], the following formula has been proved

(2.4) vol(D) = L

∫
D0

cλ(r)σ0 −
∫ L

0

k1(t)

(∫
Dt

sλ(r)N2(t)σt

)
dt,

where σt is the volume element of Dt, and N2(t)(ϕt(x)) = ⟨Nx(t), f2(t)⟩.
And, in Domingo-Gual-Miquel [1], has been obtained that

(2.5)

vol(C) =
∫ L

0

∫
Ct

√⟨
τxt

DNx

dt
(t), ξt

⟩2

sλ(r)2 + (cλ(r)− sλ(r)N2(t)k1(t))2 ηt

 dt,

where ηt is the volume element of Ct, and ξt is the outer unit normal vector field of
Ct.

As a consequence of (2.5) we have the inequality
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(2.6) vol(C) ≥ L

∫
C0

cλ(r)η0 −
∫ L

0

k1(t)

(∫
Ct

sλ(r)N2(t) ηt

)
dt,

and the equality holds in (2.6) if the motion φ is parallel.

3 The theorems.

Theorem 3.1. . Let c(t) be a curve in Mn
λ having a weak Frenet frame, and let D0

be a domain of P0. There are two isometries Rm and RM of P0 with c(0) as a fixed
point such that, for every motion ϕ along c(t),

(3.1) vol((RMD)F ) ≥ vol(D) ≥ vol((RmD)F ),

where (RMD)F = ϕF ((RMD) × I), a ∈ {m,M}. Moreover, these bounds are sharp
(that is, they give the supremum and the infimum for vol(D) among all the D obtained
by a motion of D0 along c(t)).

Proof. First, let us remark that, as a consequence of formula (2.4), all the domains
(RaD)F obtained from a given domain RaD0 by a weak Frenet motion along a given
curve c(t) have the same volume, then the bounds in Theorem 1 are well defined.

Let us define the function of D0

(3.2) Mom(D0) =

∫
D0

sλ(r)N2(0)σ0.

Let us denote by Isc(0) the connected component containing he identity of the
group of isometries of P0 with c(0) as a fixed point. We shall identify the group
SO(n − 1) with Isc(0) in the usual way R ∈ SO(n − 1) 7→ R ∈ Isc(0) defined by
R expc(0) X = expc(0) RX. Having account that r ◦R = r, we have

Mom(RD0) =
∫
RD0

sλ(r) ⟨Nx(0), f2(0)⟩ R−1∗σ0

=
∫
D0

sλ(r) ◦R ⟨Nx(0), f2(0)⟩ ◦R σ0 =
∫
D0

sλ(r) ⟨RNx(0), f2(0)⟩ σ0.

It follows from this expression that the map

(3.3) F : Isc(0) −→ R defined by F (R) = Mom(RD0)

is continuous, then, since SO(n − 1) is compact, F attains its maximum at some
Rm ∈ SO(n− 1) ≡ Isc(0) and its minimum at some RM ∈ SO(n− 1).

Let R(t) ∈ SO(n−1) be the isometry of Tc(0)P0 satisfying R(t)−1f2(0) = ϕ−1
t∗ f2(t).

Now, let’s compute∫
Dt

sλ(r) ⟨Nx(t), f2(t)⟩ σt =
∫
D0

sλ(r)
⟨
Nx(0), ϕ

−1
t∗ f2(t)

⟩
σ0

=

∫
D0

sλ(r) ⟨R(t)Nx(0), f2(0)⟩ σ0 = Mom(R(t)D0).(3.4)



The role of Frenet motion 31

But, since Rm and RM are the maximum and the minimum, respectively, for F , we
have

(3.5) Mom(RMD0) ≤ Mom(R(t)D0) ≤ Mom(RmD0).

From (2.4), (3.4) and (3.5), it follows that

vol(D) = L
∫
D0

cλ(r)σ0 −
∫ L

0
k1(t)Mom(R(t)D0)dt

≥ L
∫
D0

cλ(r)σ0 −
∫ L

0
k1(t)Mom(RmD0).(3.6)

But, under the conditions of Theorem 1, the last expression is just vol(RmD)F ),
because, in a Frenet motion,

∫
D0

sλ(r)N2(0)σ0 =
∫
Dt

sλ(r)N2(t)σt. This finishes the

proof of the inequality in the right side in (3.1). The proof of the inequality in the
left side is similar, using RM instead of Rm.

Now, let us prove that the bounds are sharp. We want to show that, for every
ε > 0 there is a motion ϕε satisfying

(3.7) |vol(ϕε(D0 × I))− vol(RaD0)
F | < ε, a ∈ {m,M}.

Let 0 < t0 < t1 < L. Let us consider a C∞ map R : [0, L] −→ SO(n−1) satisfying
R(t) = R−1

a for t ∈ [t0, t1] and R(0) = Id = R(L). This map R(t) can be constructed
as follows. Under the action of Ra, Rn−1 decomposes as the direct sum of planes Hi

such that Ra restricted to Hi is a rotation of angle αi and a subspace H on which
Ra is the identity. For every i we can construct, by the standard procedure, a C∞

real function θi satisfying θi(t) = αi for t ∈ [t0, t1] and θi(0) = 0 = θi(L). Then , we
define R(t) equal to the rotation of angle θi(t) when restricted to each plane Hi and
equal to the identity when restricted to H.

Now, choose a weak Frenet frame {f1(t), ..., fn(t)}, and define ϕε as the motion
associated to the frame E1(t) = f1(t) and Ei(t) = R(t)fi(t). Then, for t ∈ [t0, t1],

φε

(
n∑

i=2

µifi(0), t

)
=

n∑
i=2

µiEi(t)

= R(t)

n∑
i=2

µifi(t) = φF (R(t)

n∑
i=2

µifi(0), t),

that is,

(3.8) φε
t (µ) = φF

t (Ra(µ)) for t ∈]t0, t1[.

Then, using the upper and lower bounds just proved of Theorem 1,

|vol(ϕε(D0 × I))− vol(RaD0)
F |

= |vol(ϕε(D0 × [0, t0]))− vol(ϕF ((RaD0)× [0, t0]))|
+|vol(ϕε(D0 × [t1, L]))− vol(ϕF ((RaD0)× [t1, L]))|

≤ |vol(ϕF ((RMD0)× [0, t0]))− vol(ϕF ((RmD0)× [0, t0]))|
+|vol(ϕF ((RMD0)× [t1, L]))− vol(ϕF ((RmD0)× [t1, L]))|
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Since

vol(ϕF ((RaD0)× ([0, t0] ∪ [t1, L]))

= (t0 + L− t1)
∫
D0

cλ(r)σ0 −Mom(RaD0)
(∫ t0

0
k1(t)dt+

∫ L

t1
k1(t)dt

)
is a continuous function on t0 and t1, we may choose t0 and t1 small enough to have
(3.7), as wanted. ⊔⊓

Remark 3.1. (1) It is obvious from the proof that the isometries Rm and RM depend
only on D0 and its position respect to c(0) in P0.

(2) We can ask if the sharp lower bound given by Theorem 1 is a minimum.
This would require that the inequality (3.6) be an equality. If c(t) is not a geodesic,
k1(t) ̸= 0. Since k1(t) ≥ 0 and Mom(R(t)D′) ≥ Mom(RmD′) for every t, the equality
in (3.6) implies the existence of an interval I such that Mom(R(t)D′) = Mom(RmD′)
for every t ∈ I, which requires some symmetries on D′ if R(t) ̸= Rm. Then, in general,
the infimum given by (3.1) is not a minimum. The same argument works for the
supremum.

Theorem 3.2. . Let c(t) be a plane curve (i.e., a curve in Mn
λ contained in a geodesic

plane) having a weak Frenet frame, and let C0 be a hypersurface of P0. There is an
isometry R of P0 with c(0) as a fixed point such that, for every motion ϕ along c(t),

(3.9) vol(C) ≥ vol((RC)F ).

Proof. First we remark that, although, for a general curve, vol((RC)F ) depends on the
weak Frenet motion chosen, the bound of this theorem is again well defined because,
for a plane curve, a weak Frenet motion is a parallel motion, and this is unique on a
given curve.

From (2.6), to find a lower bound for vol(C) it is enough to obtain a lower bound
of

(3.10) LBV (C) := L

∫
C0

cλ(r)η0 −
∫ L

0

k1(t))

(∫
Ct

sλ(r)N2(t) ηt

)
dt.

The same arguments given in the proof of Theorem 1, changing D by C and σ by η
everywhere give that there is some R ∈ Isc(0) satisfying that

(3.11) LBV (C) ≥ L

∫
C0

cλ(r)σ0 −
∫ L

0

k1(t)Mom(RC0).

In general, (3.11) gives an universal lower bound for any motion and any curve c(t).
But, when the curve c(t) is plane, Frenet and parallel motions coincide, and the right
side of (3.11) is the volume of the hypersurface obtained by the Frenet motion of
RC0 along c(t), as follows from (2.5) and the argument at the end of the proof of the
inequality on the right of Theorem 1. This finishes the proof of inequality (3.9). ⊔⊓
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Remark 3.2. (1) Like in Theorem 1, the isometry R depends only on D0 and its
location respect to c(0) in P0.

(2) The condition that c(t) has a weak Frenet frame cannot be dropped out, as
can be shown by considering a motion along a plane curve c : I −→ R3 strictly convex
in [0, t[ and strictly concave in ]t, L], t ̸= 0.

(3) The proof of the sharpness of inequalities given in Theorem 1 does not work
to prove that inequality (3.9) is sharp. An analytic reason is that the idea of the
proof of Theorem 1 is to approximate the hypersurface (RC)F by a hypersurface Cε

obtained from C0 by a motion ϕε associated to a frame obtained from a weak Frenet
frame by isometries R(t) constructed using some C∞ functions θi. Then, if we want
that vol(Cε) be near to vol((RC)F ), we need that DNx

dt (t) be near to 0, but DNx

dt (t)
involves the derivatives of the functions θi which can go to ∞ faster than 1/t when
t goes to 0. Geometrically, when t0 goes to 0 and t1 goes to L, ϕε goes to a motion
which takes C0 onto RC0 on time 0, then follows the Frenet motion ϕF and, just on
time L, takes RC0 onto C0. The resulting hypersurface is the union of (RC)F and the
domain of P0 obtained by the action on C0 of all the isometries S which, restricted to
H are the identity and, restricted to Hi are rotations of angles βi, with 0 ≤ βi ≤ αi;
then lim

(t0,t1)→(0,L)
vol(ϕε(C0 × [0, L])) ̸= vol((RC)F ).

Then the question arises: “find a sharp bound for vol(C)”. By the reasons given
above we think that, even for plane curves, the bound given by (3.9) is not the best
one.
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