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Abstract. We consider auto-parallelizable vector fields (i.e., those vec-
tor fields ξ for which there exists a linear connection whose auto-parallel
curves are the trajectories of ξ) in order to deal with the geometrization
of a vector field on a differentiable manifold. This approach extends our
studies [15] and [16], about the geometrization of geodesible vector fields
(i.e. auto-parallel vector fields with respect to the Levi-Civita connection
of a Riemannian metric).
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1 Introduction

Newtonian Dynamics settled a scientific paradigm which lasted more than 300 hun-
dreds years; the widespread opinion is that it fixes a priori a ”geometry” (e.g. the
Euclidean one on R3) and a ”force” (e.g. a ”gravitational” vector field ξ); one looks
for the trajectories of particles, whose ”acceleration” (i.e. ”covariant derivative”) is
equal to that ”force” (via the Newton’s second law). The (avant la lettre) geodesics
do not appear but in the general statement of the Newton’s first law.

The great success of this approach is shaded by some problems of invariance (co-
variance), its failure in the electromagnetic realm and in the large scale Universe,
together with the fact that the solutions do not satisfy (in general) the Geodesic
Principle, but only the Fermat Principle.

However, it seems that the simultaneity of the geometric and of the physical
hypotheses is a postumous misconception. In Newton’s words, only Mechanics comes
a priori and Geometry follows, as an a posteriori approach:

”The description of right lines and circles, upon which geometry is founded, belongs
to Mechanics. Geometry does not teach us to draw these lines, but requires them to
be drawn.” ([11])

Unfortunately, in Newton’s time, only Euclidean geometry was available as a mod-
elization tool for Mechanics.
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In the Modified Newtonian Dynamics (e.g. [8], [4]), some small changes are made
at the level of the Newton’s second law, by introducing an interpolating function; the
philosophy remains the same, as previously.

Analytical Mechanics replaces the a priori geometrical tools with some a priori
(artificial) functions (the Lagrangian or the Hamiltonian), transferring the problem
on much bigger spaces.

In the Theory of Relativity, an a priori dynamics is encoded in a (0,2)-tensor field
T , and one searches a Lorentzian geometry, (”exact”) solution of a complicated system
of PDEs (the Einstein’s equations). There are no direct connections between the
geodesics and an eventual ”force” field ξ (encoded in T ) and the covariant character
of ξ is questioned. The recent debate (cf. [1], [7]. [17]) about the character of the
Geodesic Principle (axiom vs. theorem) complicates even more the search for better
geometrizations and axiomatizations for the Theory of Relativity.

In a series of papers, we adopted a slightly different viewpoint.In [12]-[16] we give
a historical account for and we study the following problem: given a differentiable
manifold M and ξ a (nowhere vanishing) vector field on M , find an adapted Rie-
mannian metric g on M , such that the trajectories of ξ be geodesics of g. Two main
difficulties were pointed out: firstly, there are obstructions to the existence of such
adapted metrics; secondly, in case such metrics exist, their analytic (and global) form
might be tedious to find. Enlarging the search from Riemannian metrics to semi-
Riemannian (indefinite) metrics provides additional difficulties. Several applications
were suggested, including the important case when ξ is the Newtonian gravitational
vector field.

In this paper, we extend the framework of this generalized ”geodesic principle”:
instead of looking for adapted metrics on M , we look for linear connections ∇ such
that ξ be auto-parallel with respect to ∇ (i.e. the trajectories of ξ be auto-parallel
curves with respect to ∇). We prove that such connections always exist (§2). The
approach extends the geometrization made by E.Cartan in his two ample memoirs [2]
and [3], for the Newtonian vector field, and known as the Newton-Cartan theory (see
[10],[7] for details and further references).

A second geometrization for a vector field ξ will be provided by all the connections
with respect to which ξ is ”invariant”, that is ξ is an afine collineation. This is a
stronger condition and we find obstructions to this property.

On Lie groups, we consider the case when ξ and/or the connections are left in-
variant (§3). We also include some results for the Newtonian gravitational vector
field (§4); more details and properties for this important example will be studied in
a forthcoming paper.

2 Adapted connections for vector fields

Let M be an n-dimensional differentiable manifold and ξ a vector field on M . We
say that ξ is auto-parallelizable if there exists a connection ∇ on M , such that the
trajectories of ξ be auto-parallel curves of ∇, i.e.,

(2.1) ∇ξξ = 0
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The set of all these connections will be denoted by C(M, ξ) and is a kind of (differen-
tial affine) moduli space adapted (associated) to ξ. Denote Cs(M, ξ) and Cd(M, ξ),
Cd+(M, ξ) the subsets of the symmetric, divergence-free (i.e. the divergence of ξ
w.r.t. these connections vanishes), respectively with non-negative divergence adapted
connections (i.e. the divergence of ξ w.r.t. these connections is non-negative). For
a fixed ∇ ∈ C(M, ξ), the vector field ξ is called auto-parallel with respect to ∇, or
∇-autoparallel. We highlight the following problems:

Problem 2.1. Given a manifold M and a (fixed) linear connection ∇ ∈ C(M),
find/characterize the vector fields ξ such that ∇ belongs to C(M, ξ), and, eventually,
to Cs(M, ξ), Cd(M, ξ), Cd+(M, ξ).

Problem 2.2. Given a manifold M and a (fixed) vector field ξ, characterize the sets
C(M, ξ), Cs(M, ξ), Cd(M, ξ), Cd+(M, ξ).

Problem 2.3. Given a manifold M , does there exist a (nowhere vanishing) vector
field ξ with non-void C(M, ξ) (and, eventually, non-void Cs(M, ξ), Cd(M, ξ) and/or
Cd+(M, ξ)) ?

Remark 2.4. (i) The sets C(M, ξ), Cs(M, ξ) and Cd(M, ξ) are differentiable in-
variants and affine modules. The sets C(M, ξ) and Cs(M, ξ) are closed w.r.t. the
operations of transposition and symmetrization.

The set Cd+(M, ξ) is not closed w.r.t. transposition and symmetrization. More-
over, it may be void. Its ”border” is Cd(M, ξ).

The set Cd+(M, ξ) is a differentiable invariant, it is convex but it is not an affine
module.

(ii) Denote CLC(M, ξ) the set of Levi-Civita connections of the Riemannian met-
rics on M , which are in Cs(M, ξ). Unlike Cs(M, ξ) (cf. Prop.2.5.), the set CLC(M, ξ)
may be void (see [12]-[16]).

(iii) If ξ is a parallel vector field with respect to some linear connection ∇ on
M , then it is also ∇-auto-parallel. For the existence of (complete) parallel vector
fields, there exist however strong topological obstructions (see for example [18] and
references therein).

(iv) If a vector field ξ on M has singularities, then the set Cs(M, ξ) might be void.
For example, consider ξ = x∂x in R2.

As some manifolds do not admit non-singular vector fields (due to topological
restrictions), it follows that such manifolds do not have any auto-parallelizable vector
field.

(v) Suppose M is a parallelizable manifold and ξ is a nowhere vanishing vector
field on M . Then Cs(M, ξ) is nonvoid.

Indeed, denote E1,..., En a parallelization of M , where E1 = ξ. We know there
exist three linear connections ∇−, ∇+, ∇0, uniquely defined by ∇−Ei

Ej = 0, ∇+
Ei
Ej =

[Ei, Ej ], ∇+
Ei
Ej = 1

2 [Ei, Ej ],for every i, j = 1, n. (Here ∇−, ∇+, ∇0 are the Cartan-
Schouten connections on M). It follows that each such connection parallelizes ξ. In
particular, ∇0 is symmetric.

Proposition 2.5. Suppose ξ be a nowhere vanishing vector field on a differentiable
manifold M . Then there exists a connection Cs(M, ξ)

⋂
Cd(M, ξ) .
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Proof. Locally, a coordinates system (x1, ..., xn) may be chosen such that ξ = ∂1. The
equation (1) is then, locally, solvable, due to the Remark 2.4.,(iv). The same line of
reasoning proves that, locally, there exists an adapted linear connection for ξ, which
is symmetric and makes ξ divergence-free. On another hand, Cs(M, ξ) and Cd(M, ξ)
are closed w.r.t. affine combinations. An argument using the partition of unity ends
the proof. �

Remark 2.6. We study now another kind of moduli spaces, associated to vector
fields, via some other kind of invariance.

Let ξ be a (non-null) vector field on M and ∇ ∈ C(M). We say ∇ is Lξ-invariant
(or ξ is an affine collineation w.r.t. ∇, or ξ is an affine vector field w.r.t. ∇) if

(2.2) Lξ∇ = 0

Denote by C2(M, ξ) the set of all Lξ-invariant connections.

In particular, when ∇ is the Levi-Civita connection of a Riemannian metric g on
M , and if ξ is a Killing vector field on (M, g), then ξ is also an affine vector field
w.r.t. ∇.

Remark 2.7. (i) Obviously, the null vector field would invariate any linear connec-
tion. The operator Lξ∇ : X (M)×X (M)→ X (M) is a tensor field of type (1,2) and
(2) may be also written as

[ξ,∇XY ]−∇[ξ,X]Y −∇X [ξ, Y ] = 0

(ii) In general: given a vector field ξ, there does not exist a Lξ-invariant connection
∇; given a linear connection ∇, there does not exist a (non-null) affine vector field ξ
w.r.t. it. So, we have the following natural problems:

Problem 2.8. Given a manifold M and a linear connection ∇ ∈ C(M), characterize
the vector fields which invariate ∇. (This is a classical problem, with many known
results concerning the affine collineations of linear connections.)

Problem 2.9. Given a manifold M and a vector field ξ, characterize the set C2(M, ξ).

Problem 2.10. Given a manifold M , does there exist a non-trivial vector field ξ with
non-void C2(M, ξ) ?

(Similar questions may be put: for invariant symmetric connections; for connections
with respect to which ξ has null divergence or non-negative divergence, etc).

Remark 2.11. (i) Fix a vector field ξ. The condition (2.2) is not closed to transpo-
sition, symmetrization or affine combinations of connections.

(ii) Let’s fix a nowhere vanishing vector field ξ. Locally, a coordinates system (x1, ..., xn)
may be chosen such that ξ = ∂1. The equation (2.2) (with unknowns the coefficients
of the connection) is solvable in this coordinates system. So, the difficulty in finding
the Lξ-invariant connections has global reasons, not local.

(iii) Consider ∇ the canonical connection on M := R2. The vector field ∂1 preserves
∇, but (x1)2∂1 does not.
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Definition 2.12. (Generalization) Let ξ be a nowhere vanishing vector field on a
differentiable manifold M and k a positive integer. Denote by C3(M, ξ, k) the set of
all the linear connections, such that

(2.3) (Lξ)
k(∇ξξ) = 0

and by C4(M, ξ, k) the set of all the linear connections, such that

(2.4) ∇kξξ = 0.

For k ≥ 2, the study of these linear connections and extended moduli spaces C3(M, ξ, k)
and C4(M, ξ, k) is beyond the goal of the present paper; they will appear, briefly, only
in §4, in a remark concerning the Newtonian gravitational vector field.

3 Adapted invariant connections for invariant
vector fields on Lie groups

Let G be a n-dimensional Lie group and ξ a vector field on G. One knows that if ξ is
nowhere vanishing, then Cs(M, ξ) 6= f� . We have then the following new problems.

Problem 3.1. Does there exist a left-invariant connection ∇ ∈ Cs(M, ξ) ?

In general, the answer is negative. Take, for example, the Lie group R2 and ξ =
(x2 + 1)∂x in Cartesian coordinates. Then any connection ∇ ∈ C(G, ξ) must satisfy
∇∂x∂x = − 2x

x2+1∂x. Thus, ∇ cannot be left-invariant.

Problem 3.2. If ξ is left-invariant, does there exist a left-invariant (or a bi-invariant)
connection ∇ ∈ Cs(G, ξ) ?

The answer is affirmative. If ξ is the null vector field, the proof is obvious. Suppose
ξ never vanishes. Since G is parallelizable, we may chose a parallelization given by a
basis { E1,..., En } of the Lie algebra L(G), where E1 = ξ. Then, Remark 2.4., (v)
provides the Cartan-Schouten connection ∇0 in Cs(G, ξ). Moreover, this connection
is bi-invariant.

A converse statement is false: take, for example the vector field ξ := x∂y, which is
not left invariant on R2, but is auto-parallel with respect to the canonical bi-invariant
connection.

Remark 3.3. (i) In [13], [14] and [15] we defined some new invariants associated to
Lie groups, via the left invariant pseudo-Riemannian metrics adapted to left invariant
vector fields (the geodesic heights, the geodesic ”fingerprint”). In the differential affine
framework, for left invariant adapted connections, these invariants are redundant, so
we have to find new ones, from different arguments.

(ii) The sets of left invariant connections in C(G, ξ)
⋂
Cd(G, ξ) and C(G, ξ) admit

structures of real vector spaces, of dimension n3 − n− 1 and n3 − n, respectively.

The set of bi-invariant connections in C(G, ξ) admits a structure of real vector
space, of dimension at least 1. Its maximal dimension (with respect to all left invariant
vector fields) will be denoted by m1(G). On compact Lie groups, the spaces of bi-
invariant connections were classified by Laquer ([5], [6]). Then one may classify the
compact Lie groups by using this new invariant m1, via the following
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Theorem 3.4. Let G be a compact Lie group with L(G) = ζ ⊕ g1⊕ ...⊕ gq, where its
center ζ has dimension p, and where gi are simple ideals in L(G); suppose there are
exactly r ideals su(n), ( n ≥ 3 ), among them.

Then the maximal dimension m1 of a space of bi-invariant connections in C(G, ξ),
for non-null ξ ∈ L(G), satisfies the inequalities 1 ≤ m1 ≤ p3 + 3pq + q + r.

Remark 3.5. (i) In order to find other new invariants from left invariant vector
fields, we start with the left (and bi-) invariant connections which are invariant w.r.t.
left invariant vector fields (cf. Remarks 2.6. and 2.7).

(ii) Let ∇ be a bi-invariant connection on G. Then ∇ is ξ-invariant, with respect to
any ξ ∈ L(G). In particular, this happens for the Cartan-Schouten connections ∇−,
∇+, ∇0.

We remark that (2.2) is a refinement of the property of a linear connection on G
to be bi-invariant.

(iii) Let ξ be a left invariant vector field. The set of ξ-invariant left-invariant connec-
tions is a vector subspace of dimension at most n3. We denote d(ξ) its dimension.
Obviously, for a 6= 0, d(ξ) = d(aξ).

Denote by m2(G) = max{d(ξ) | ξ ∈ L(G)}. Then one may classify the Lie groups
following this new invariant m2.

(iv) Denote by m3(G) the maximal number of linearly independent vector fields
ξ1, ..., ξm3 ∈ L(G), such that there exists a left invariant metric connection, simul-
taneously ξi-invariant, for all i = 1,m3(G). Then one may classify the Lie groups
following this new invariant m3.

If G admits bi-invariant metrics, then m3(G) = n. (This happens if, and only if,
G is a direct product of a compact group with some Rk, cf. [9]).

4 Adapted connections for the 2-bodies problem:
the Newtonian gravitational field

Let M = R2\{0} and m be a positive constant (with signification of mass); denote by
(r, ϕ) the polar coordinates on M and by ξ = −mr−2∂r the ”Newtonian gravitational
vector field” on M . (We restrict ourselfs to gravitational interpretations, but similar
considerations may be made for the Coulomb vector fields).

In [15] and [16] we studied CLC(M, ξ). In what follows, we extend the study to
Cs(M, ξ).

Remark 4.1. (i) ([15]) The Euclidean metric h onM has the well-known components:
h11 = 1 , h12 = 0 , h22 = r2. The (only non-vanishing) Christoffel coefficients (of
the Levi-Civita connection) are: Γ1

22 = −r , Γ2
12 = Γ2

21 = r−1. The canonically
parametrized geodesics are (”lines”) of the form γ(s) = (r(s), ϕ(s)), with r2(s) =
s2 + a2 , ϕ(s) = b+ arctg sa , where a and b are arbitrary real constants.

(ii) More generally, an arbitrary left-invariant connection∇ on M has the following
coefficients:

(ii)1 in Cartesian coordinates (x1, x2)= (x, y), all |ijk| , for i, j, k = 1, 2, are arbi-
trary real numbers;
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(ii)2 in polar coordinates (r,ϕ)=(y1, y2),all ˜|ijk| , for i, j, k = 1, 2, are linear com-

binations (with real coefficients) of cos3ϕ, sin3ϕ, cos2ϕsinϕ, cosϕsin2ϕ, modulo an
eventual multiplication with 1

r , 1
r2 , r2 or r. We have

˜|111| = cos3ϕ |111| +cos2ϕsinϕ |211| +cosϕsin2ϕ |122| +sin3ϕ |222| +

+cos2ϕsinϕ(|112| + |121|) + cosϕsin2ϕ(|212| + |221|)

˜|211| =
1

r
{cos3ϕ |211| −cos2ϕsinϕ |111| +cosϕsin2ϕ |222| −sin3ϕ |122| +

+cos2ϕsinϕ(|212| + |221|)− cosϕsin2ϕ(|112| + |121|)}
˜|122| = r2{cosϕ(sin2ϕ |111| +cos2ϕ |211| −cosϕsinϕ |112| −sinϕcosϕ |121|)+

+sinϕ(sin2ϕ |211| +cos2ϕ |222| −cosϕsinϕ |212| −cosϕsinϕ |221|)} − r
˜|222| = r{−sinϕ(sin2ϕ |111| +cos2ϕ |211| −cosϕsinϕ |112| −sinϕcosϕ |121|)+

+cosϕ(sin2ϕ |211| +cos2ϕ |222| −cosϕsinϕ |212| −cosϕsinϕ |221|)}
˜|112| = r{−sinϕcos2ϕ |111| −sin2ϕcosϕ |211| +cos3ϕ |112| +cos2ϕsinϕ |212| −

−sin2ϕcosϕ |121| −sin3ϕ |221| +sinϕcos2ϕ |122| +sin2ϕcosϕ |222|}
˜|212| = sin2ϕcosϕ |111| −sinϕcos2ϕ |211| −cos2ϕsinϕ |112| +cos3ϕ |212| +

+sin3ϕ |121| −sin2ϕcosϕ |221| −sin2ϕcosϕ |122| +sinϕcos2ϕ |222|
˜|121| = r{sinϕcos2ϕ(− |111| + |122| + |221|) + sin2ϕcosϕ(− |112| − |211| + |222|)+

+cos3ϕ |112| −sin3ϕ |212|}
˜|221| = −sinϕcos2ϕ(|121| + |211| − |222|) + sin2ϕcosϕ(|111| − |212| − |122|)+

+cos3ϕ |221| +sin3ϕ |112| +r−1

In particular, the canonical linear connection on M , given in (i), is left invariant and

∇∂r∂r = 0 , ∇∂ϕ∂r = ∇∂r∂ϕ =
1

r
∂ϕ , ∇∂ϕ∂ϕ = −r∂r

The previous calculations are based on the following obvious formulae:

r =
√
x2 + y2 , x = rcosϕ , y = rsinϕ

and
∂x = cosϕ∂r − r−1sinϕ∂ϕ , ∂y = sinϕ∂r + r−1cosϕ∂ϕ

∂r =
x√

x2 + y2
∂x +

y√
x2 + y2

∂y , ∂ϕ = −y∂x + x∂y

∂r = cosϕ∂x + sinϕ∂y , ∂ϕ = −rsinϕ∂x + rcosϕ∂y

(iii) For the Newtonian vector field ξ on M , we calculate the (classical) divergence
divξ = mr−3; we remark that the sign is positive. This fact is specific to the dimen-
sion 2. The Newtonian vector field in R3 is divergence-free; in Rn, with n ≥ 4, its
divergence function is negative.
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In what follows, we shall consider adapted connections for ξ and we shall compare
them with the previous ones.

Remark 4.2. (i) Denote |ijk| the coefficients,in polar coordinates, for an arbitrary
linear connection ∇ ∈ Cs(M, ξ). From (2.1) we deduce, as only constraints, that

(4.1) |111|= 2r−1 , |211|= 0

The coefficients |112| , |212| , |222| , |122| are arbitrary.

(ii) If, moreover, ∇ ∈ CLC(M, ξ), then we have additional constraints ([16]): there
exists γ = γ(r, ϕ), a nowhere vanishing differentiable function and a differentiable
function β = β(ϕ), such that

|112|= −2mβr−3 +mβγ−1r−2∂rγ

|212|= γ−1∂rγ − 2r−1 , |222|= γ−1∂ϕγ −mβγ−1r−2∂rγ + 2mβr−3

|122|= mβγ−1r−2∂φγ −mβ′r−2 + 2m2β2r−5+

+2m4γ2r−9 −m2β2γ−1r−4∂rγ −m4γr−8∂rγ

We remark that r2 |112|= −mβ |212|. Thus, we can construct symmetric linear
connections in C(M, ξ), which are not in CLC(M, ξ), by taking:

|111|= 2r−1 , |211|=|212|=|221|= 0 , |112|=|121|6= 0

with arbitrary |122| and |222|.
(iii) Suppose (4.1) and |112|=|212|=|222|=|122|= 0. Then, the auto-parallel curves of

∇ are given by
[r(t)]3 = at+ b , ϕ(t) = ct+ d

with arbitrary a, b, c, d ∈ R.
Consider only non-degenerated auto-parallel curves, i.e. with a2 + c2 > 0. The

first family of curves contains the (segments of) radial curves: (c = 0), i.e.,

[r(t)]3 = at+ b , ϕ(t) = d

The second family contains the (arcs of) circles: (a = 0), i.e.

[r(t)]3 = b , ϕ(t) = ct+ d

The third family of generic curves (a 6= 0, c 6= 0) contains bounded ”spirals”, given
by implicit equations of the form r3 = Aϕ+B, with arbitrary constants A 6= 0, B.

By direct computation, we have the following results.

Proposition 4.3. Let ξ = f(r)∂r a ”Newtonian-like” vector field on M , for an
arbitrary derivable real valuated function f . Then, there do not exist left invariant
connections in C(M, ξ) .

Proposition 4.4. Let ξ = −r−2∂r a Newtonian vector field on M . Then, the linear
connections w.r.t. which ξ is parallel are exactly those whose components satisfy:

|111|=
2

r
, |121|=|221|= 0
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(the remaining components being arbitrary ).

Remark 4.5. For M and ξ defined previously, the coefficients of a linear connection
∇ ∈ C4(M, ξ, 2) must satisfy the following ODE system

r2(∂r(|111|) + (|111|)2+ |112||211|)− 6r |111| +10 = 0

r∂r(|211|)− 6 |211| +r |211| (|111| + |212|) = 0

In general, consider ∇ ∈ C4(M, ξ, n), with n ≥ 2. The coefficients |ijk| (with

i, j, k = 1, 2) are functions of (r, ϕ) and must be determined as solutions of a system
of two differential equations of degree n − 1, all the derivatives being done w.r.t the
first variable r. The system is (obviously) compatible, having (4.1) as a particular
solution.
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