Gauge theory on contact metric manifolds

A. Manea,

Abstract. In this paper we develop the gauge theory on a contact man-
ifold. We consider a Lagrangian which is supposed to be invariant under
a global action of a Lie group and we obtain the equation of motion and
the conservation laws. In order to get a local gauge invariant Lagrangian,
we introduced some gauge fields and determine what form have to take
such an invariant Lagrangian.
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1 Introduction

This paper is about Lagrangians depending by r scalar fields on a contact metric
manifold. It answers at the question: ”What have to be the form of a Lagrangian to be
invariant at the local action of a Lie group, also called infinitesimal transformation?”.

The concept of a non-abelian gauge theory as a generalization of Maxwell’s theory
of electromagnetism, was introduced by Yang and Mills. A brief survey of interac-
tion between the work of physics community and the mathematicians about gauge
theory and differential manifolds could be found in [9]. In monographies [7], [8] were
given the basics facts and tehnics of gauge field theories. Some topological aspects
of gauge theory on contact 3-manifolds were studied in [10], [14], [15]. The topic
of gauge-invariant Lagrangians in complex geometry was discussed in [11], [12], [13].
The gauge-invariance of Lagrangians and the gauge fields for tangent bundle and for
foliated manifolds are the subjects of [1], [5], respectively.

Following the general case of foliated manifolds from [5], for a Lagrangian invari-
ant at coordinates transformation, in this paper we express the equation of motions
and the conservation laws for the scalar fields using some adapted connections on
a contact manifold. So, the first section of the paper is devoted to determine the
adapted connections. In the second section we consider a Lagrangian invariant at the
coordinate transformation and we study what form it has to take for being invariant
at global action of a Lie group, in subsection 2.1, then to be invariant at local action,
in subsection 2.2. Here we need to introduce some new fields, called gauge fields, to
ensure the local invariance. The last subsection is devoted to study the behaviour of
gauge fields at local action of the Lie group.
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2 Contact metric manifolds

2.1 An adapted frame field on a contact metric manifold

Let M be a (2n + 1)-dimensional manifold and (¢, &,n) an almost contact structure
on M. That is, ¢ is a tensor field of type (1, 1), £ a vector field, called the Reeb vector
field on M, and n a 1-form on M, such that

(2.1) P=-I+n®¢ nE) =1

Moreover, if the (2n41)-form nA(dn)™ doesn’t vanishes everywhere on M then (M, n)
is a contact manifold.

A Riemannian metric compatible with the almost contact structure (¢,€,7) is a
Riemannian metric g on M such that

(2.2) 9(PX,9Y) = g(X,Y) —n(X)n(Y), VX, Y e (TM).

A manifold M endowed with an almost contact structure and a Riemannian metric
compatible with it is called an almost contact metric manifold.

There are well-known the following properties which derive from the conditions
(2.1) and (2.2):
(2.3)
(@) @€=0,() ¢ =-p,(c) nop=0,(d) nX)=g(X,), (e) dn(X)=0,

for every X € T'(T'M). Also, if the almost contact metric manifold is contact, then
we have

(2.4) (X, Y) = 6(X,Y), ¥X,Y € [(TM),
where ¢ is the fundamental (or Sasaki) 2-form on M given by
(25) $(X,Y) = g(X,pY), VXY € D(TM).

Moreover, the almost contact metric manifold is said to be: K —contact if it is contact
and ¢ is Killing; normal if [¢, ¢] + 2dn ® £ = 0; Sasakian if it is contact and normal.
If M is Sasakian manifold then it is K—contact [6].

Also, we consider the contact distribution D defined by the subspaces

D, = {X:z: e T, M | nz(X:L’) = 0}7

which is the transversal distribution to the characteristic foliation F¢ (1-dimensional
foliation determined by the Reeb vector field £). Then, the structural distribution of
characteristic foliation F¢ is TF¢ := (§) = {f¢| f € C(M)}.

According to the general theory of foliations, [17, 18, 19], we can choose a local
coordinate system (U,z = (2°,2%)), i € {1,...,2n}, adapted to foliation F¢, that is
£=0/02" on U.

Then, by n(¢) = 1, we deduce that

x’L

(2.6) n:dx0+nidxi7ni:n<((;9.) ,Vie{l,...,2n}.
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This allows us to consider on U the local basis {[“)/89007 6/5:13"}7 i=1,...,2n, called
adapted to F¢, where

] 0 0
27 5~ o o
Obviously, the set {6/dz%}, i € {1,...,2n} is a local basis in I'(D|y), and the dual
basis of {9/0z°,6/62'} is

vie{l,...,2n}.

(2.8) {777 dzt,da?, .. ., dxzn} )

In the following we shall evaluate the Lie brackets for the vector fields from the
adapted basis {9/0z°,6/62"}. By relation (2.3)(e) and

2dn(X,Y) = X(n(Y)) =Y (n(X)) = n[X,Y],VX,Y € D(TM),
it follows n[¢, X] = —€¢(n(X)). So, for any X € I'(D), we have [£, X] € T'(D). That

means a 5
{axo’ (sx} €1(D).

On the other hand, a direct computation give us

[5 a}_am 9

52t 020 | — 920 920

‘We obtain that

(2.9) [ 0 0 2 ),

31‘0’5‘%1:| :07 ni:ﬁi(xlax yeeny L

Then, for §/5x* from (2.7), we can compute

o] (m ) o
Szt 6xd | \Oxd  Oxt) Hx0’

Also, we have the relations (2.4), (2.5) and (2.6), which express locally that

1) 1) - 1 8771 . 8nj - o k
210 (5 55) =3 (s~ o) = o = et

where we put

_ (0 ¢ ON_ 0 (0O

Obviously, ¢;; = —¢;; and g;; = g4, for all 4,5 € {1,...,2n}. Hence, we obtain

) ) 0
(2.12) {ax 59;} = 205,00

By second relation (2.9) and (2.10) we remark that function ¢;; doesn’t depends by
20, for every i,j € {1,...,2n}. In the end of this subsection, we notice that the
metric g can be expressed with respect to adapted cobasis {dx?,n}, i € {1,...,2n} in
the form

(2.13) g= gijdﬂci ®dx? +n .
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2.2 Adapted connections on a contact metric manifold

Let us consider a contact metric manifold (M, £, 7, g) as in the previous subsection
and the Reeb foliation F¢ on it, generated by €. According to the orthogonal decom-
position TM = D @ (£), we consider the projection morphisms v and h of I'(T'M) on
I'((£)) and T'(D), respectively.

According to the general theory of adapted connections on semi-Riemannian fo-
liations, see [5], an adapted connection for the foliation F¢ (that means a linear
connection on M which induces linear connections on both distributions D, (£)), is
given by

(2.14) VxY = hVxhY +vVxoY + h(Q(X,hY)) + v(Q(X,vY),

for any X,Y € I'(T' M), where V is an arbitrary linear connection on M and @ is an
arbitrary tensor field of type (1,2) on M.

In order to find some adapted connection on the contact metric manifold M, we
shall use relation (2.14) for V the Levi-Civita connection of the metric g. Firstly, we
compute the local coefficients of V with respect to adapted local frame {8/ 0z, 6/0x¢ },
using the well-known Koszul formula

29(VxY,Z) = X(g(Y, Z))—l—Y(g(Z,X))—Z(g(K X))—Fg([X, Y]’ Z)—g([Y, Z],X)+g([Z, X],Y),

and we obtain the following local expression of v:

S S dgi;
(2.15) Vo % = Voo it = (39955 - o) 5,
<~ 9
Vit o =0
where
1 OGni Ogn; 0gi;
2.16 FE = Zgkh : J Y
( ) i~ 99 dx7 oxt dxh

and (g%) is the inverse matrix of (g;;) given in (2.11).

2nx2n 2nx2n

«
For an adapted connection YV, we denote its local coefficients by

@

«
6 _pk 8 5k s
Vs v =h wm Vit wr =D 5w

(2.17)

a o a
fé) 2] fé) e}
Vs oz0 =L; ox9 V_a Oz0 =C ox0 *

Sxt

Following some idea from [5], we consider four adapted connections on the contact
metric manifold as follows.
The first adapted connection on the contact metric manifold M is defined by

1 ~ ~
(2.18) Vx Y =hVxhY +0vVx0Y, VX,YEF(TM).
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We notice that every vector field Y € I'(TM) admits a decomposition with respect
to the adapted basis {0/92°,6/6z"} in the form

5 o 0
5o T g

(2.19) Y =Y'

where, from §/6z° € I'(D) = Kern, we have Y° = n(Y), so the projections of Y on
['((£)) and T'(D) respectively, are given by

B 6

It results the following local form for (2.18):

]

1 Kl s
(2.21) Vx Y = X(n(Y)) +Y Vo

0x0

- 9 i\ 0

Using (2.21), by direct computation, we obtain the local coefficients of the first

1
adapted connection V as

29 920 ~ P =0

1 1
k_ ok k_
(2.22) Ft=FF, Di=

R

The second adapted connection is defined by

2 ~ ~ ~ ~
(2.23)  Vx Y =hVxhY — hVpyoX +0Vx0Y —oV,yhX, VX, Y € I(TM),

and, by direct computation, its local coefficients are

2 2 2
(2.24) FE=Ff, Df=0, Li=C=0.

279

The third adapted connection is defined by
3 1
(2.25) Vx Y =VxY+hQwX,LY), VXY el(TM),
where the tensor field ) is defined by
9 (hQuX,hY),hZ) = g (v[hY, hZ],0X)

Denoting by a¥ the local components of the projection on I'(D) of the vector field
Q (8/8x0, 5/5;&), the above condition give us a¥ = ¢¥, so we obtain

o 6 1)
o) A
@ (6950’ 5w’> e
By direct computation, the local coefficients of the third adapted connections are

Kl Agui

3 3 1 3
2.26 FE=FF DF=Z ko Li=C=0.
(2.26) g i= 359" 50 TP C

R
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Finally, the fourth adapted connection on the contact metric manifold M, is defined

1 3
as the average connection between V and V, that is

4 1 1 3
(2.27) VXY2<VX Y+ Vx Y>, VX,Y € I(TM),

N 4
and it has the same local coefficients with V, excepting DF= gkl%.

Remark 2.1. (i) The horizontal coefficients of all four adapted connections coin-

@
cides, that is Fi’;-: FZ];, a€{1,2,3,4}.
1
(ii) The first adapted connection V is just the Schouten-Van Kampen connection
associated to the Reeb foliation F¢, see for instance [3], p.107.

2

(iii) The second adapted connection V is just the D-connection on a contact metric
manifold (introduced in [2]). Also, it can be viewed as the Vranceanu connection
or Vaisman connection associated to the Reeb foliation F, see [3, 18].

2 4
(iv) If M is K-contact, then dg;;/02° = 0, and then V=V.

In the next section the adapted connections % will be used to express the Euler-
Lagrange equation for a Lagrangian on a contact manifold.

We finish this subsection with some considerations about basic connections (with
respect to Reeb foliation) on a contact manifold. Generally speaking, on the foliated
manifold (M, F) there is an adapted atlas whose coordinate system on the open set
UcMis (xl) = (%, 2"), where a € {1,...,q}, u € {g+1,...,m}, such that the
points in the same leaf LNU have their first ¢ coordinates equal, and are distinguished
by their last (m — ¢) coordinates. Locally, the structural bundle F' is spanned by
{0/02*}, ue {qg+1,...,m}.

Also, if we consider the canonical exact sequence associated to the foliation given
by the integrable subbundle F', namely

0— F 5 TM ™5 QF — 0,
then we recall that a connection V on the normal bundle QF is said to be basic if
(2.28) VxY = mop[X,Y]

for any X € I'(F), Y € I'(TM) such that WQF(?) =Y. Obviously, the right-hand
side of (2.28) does not depend by choice of vector field Y, because the integrability
of F.

Now, returning to the contact metric manifold M endoweed with the characteristic
foliation F¢, and taking into account that QF; = D, a linear connection V on M is
basic if and only if

(2.29) Voo Y:h[a 17],
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where Y € (T M) such that h(Y) =Y. Locally, let Y = Y°9/0z° + Y§/6z". Then
h(Y) = Y% /6x" and relation (2.29) locally becomes

oY &
+Y*Di = ,
Ox0 kT 9a0
where D}AC are transversal (horizontal) components of V 2 6;; . But the above equality

means

Proposition 2.1. The connection V is basic if and only if all horizontal components
of V%% vanish.
1 2 3 4

Concerning now to adapted connections V, V, V and V, respectively, their locally
coefficients given in (2.22), (2.24) and (2.26) show that

Proposition 2.2. From the four defined above connections, only the second connec-

2
tion, V, is basic with respect to the characteristic foliation F¢ determined by the Reeb
vector field €.

3 Invariance of Lagrangians on a contact metric
manifold

In [5], the equation of motion for r scalar fields Q*, A € {1,...,r}, on a semi-
Riemannian foliated manifold (M, F, g), are expressed using covariant derivative with
respect to the Vranceanu connection on that manifold. In this section we apply
that idea for the case of the contact metric manifold (M, &, 7, g), endowed with the
characteristic foliation F¢.

We start with a Lagrangian depending by r scalar fields Q4 = Q4(z), A €
{1,...,7}, on the contact metric manifold (M, ¢, n, g), that is

(3.1) clo) = £ (@) 0. G2 ).

which is invariant under the coordinate transformations on M.

Let us consider the function H, locally defined by H(x) = +/|det(g;;(x))|, 3,j €
{1,...,2n}. From direct computation, we have the following transformation law in
the intersection U N U # & of two domains of local chart of M

ﬁ:

det (g;)‘ H,ije{l,...,2n}.
Then
(3.2) Lo(z) = H(z) - L(2),

is a Lagrangian density on M. Thus, the functional

(3.3) IQ) = [ Lo(x)dz' A...ANd2*™ A,
Q
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where 2 is a compact domain of M, does not depend of the coordinates on M.

As usual, we assume that the equations of motion for the fields Q“(z) follow from
the variational principle 6(I(£2)) = 0. Hence, the Euler-Lagrange equations for fields
Q4 are

(3.4) 0Ly 0 0Ly 0 0Ly 0
. 904 9\ 2fo02N | T 90\ Sla0aN | T
oQ ox a(%%) ox a(%%o)
Taking into account the relation (2.7), we obtain (from (3.1))
oL oL oL
(3.5) S = S 504 !

o() o(a) F e Mo ()

Then, the equations (3.4) become

(3.6) 0Ly ) 0Ly 0 0Ly | 0
: AT soa SOA T 5.0 904\ 29 —ct | T
8@ ox a(ﬁl) ox 8(530) 5o

and, from (3.2), we get
oL ) 9 oL
- {BQA ~ 5z <8(6QA)) Yy (a(%)éégf_ct>}
(3.7) ’
_ OH 0L _ |\ OH L | .
Szt 8(5(5:?) 0z 8(%) %:ct
Now we denote
(3.8) QY = oL 9 oL ,i€{l,...,2n}.

I C NI

From the changing rules for horizontal vector fields, that is

5 0 kB
Szt Ozt 679’
it follows that Q% are components of r horizontal vector fields
)
hQa = QY —.
Qa =@}, 500

Taking into account relations (2.17), the covariant derivatives of Q%, Q% with

respect to an adapted connection %, a=1,2,3,4, given locally in subsection 2.2 are

5@ 0Q% 5Ql Ji 0Q% 0 _ 0Q%

QA\J +QAF1€37 QA|0_ +QA k> QA\O = 50 Al T i

Then, the equation (3.7) could be rewritten in the form

o 1 6H 1 0H
agr ~ @ ~ Y = (Hazi - )QA+H8 5O

(3.9)
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But, by direct calculus, we have
LOH 1S LOH 1O
Hoéxt 27 6zt HOx0 27 0297
(2.16) it follows

On the other hand, taking into account the relations
; 1 6H
Fl =
Y Hox

Hence, we obtain that the equation of motion for the scalar fields Q# have the form

oL , o
(3.10) 78@/“ - Qf4|i - QA\O =
where the covariant derivatives of Q%, QY are taken with respect to one of the adapted
connections introduced in subsection 2.2.

1 .,0g;
= s 2935 10
29" 90 @,

Remark 3.1. If M is K-contact then the equation of motion for the scalar fields Q4
simplify in the nice form

oL ;

3.1 Globally gauge invariance

In this section we study the invariance of the Lagrangian (3.1) under the action of an
arbitrary m-dimensional Lie group G on the physical fields Q“(x). We also consider
that G admits a r-dimensional representation p.

A Lie group G is essentially uniquely determnined by its Lie algebra, defined by
the basis {X,}, a € {1,...,m}. The representation p assigns to every vector field X,
ar x r-matrix ([Xo|a)rxr A, B € {1,...,7}. There are well known relations

[Xava] = chXm ch = 70}?{13

a a

where the structure constants C, obey the Jacobi identity

CanCiie + CieClia + CeaClyp = 0.

Moreover, the matrices generators are satisfying
(3.12) [Xal5[X0]E — [Xe]5[Xa]E = Cop[Xcle-

Now, according to [3, 5], the group G being given, for any vector field X = £*X, on
G, a global gauge action of G on the scalar physical fields Q4 (z), A € {1,...,r}, is
given by the infinitesimal transformations

(3.13) Q" (z) = QM (x) +8(Q%(2)), Q" (x)) = e[ Xa]5Q" (x).
Applying the operators 6/dz* and 9/9x° to (3.13), we obtain

S 1A S A Fy A S A S B
5%1: = 521‘ +5(£,13)7 5( ! ):Ea[Xa]Jg =

ozt ozt
(3.14)
) 1A F) A E] A o A o B
acfcﬂ = a?co +5<620>7 5(620 ) = e[ X3 aci-ﬂ :
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Now, we suppose that the Lagrangian (3.1) is globally gauge G-invariant, that is,
L is invariant under the infinitesimal transformations (3.13) and (3.14) This means
that £ = 0, or equivalently, £ does not depend by . It follows that

oL  6QF oL Qe
1 By . X5 =
@19 |+ (sar) b (aar) gt gt | R 70
or, equivalently
QP Qe
(3]‘6) |: QAQB +QA Sr i +Q?4 ax0:| [X(L]g = 07

with the notations (3.8).
From relation (3.10) it follows

oL ; 99;s
5O KBQ" = Qi [XJ3Q" + Q4 [XJ3Q” + 5o S QhIX 130",

Then it is natural to consider the scalar fields
Jé = _QfA[Xa]gQBv Jg = _Q%[Xa]gQB’

which are components of m horizontal vector fields hJ, = Ji§/dz%, and m colin-
ear vertical vector fields vJ, = JO¢, called horizontal currents and vertical currents,
respectively.

Taking into account relations (2.17), the covariant derivatives of J¢, JO with re-

(3.17)

(03
spect to an adapted connection V, a = 1,2,3,4, given locally in subsection 2.2, are
given by

i §Ji & 0 aJ?
aly = 5J+JFkJ’Jalo:3xo‘
But, we have
5T 8Q s 4 0QF
SxJ = 517;4 [Xa]éQB - QA[XG]g Sxi
gy _ 0QY% 40Q°

20 - 920 [ G]BQB _QA[XU«]B 920’
and replacing (3.17) in (3.16) and, using also the expressions of covariant derivatives

. (0%
of fields @y, Q% with respect to the same connection V, we obtain the conservation
laws

) 09
(3.18) Ju, + o, = 59°° g] 5 QUlXaEQ".

alo — 2
According to the terminology from [3, 5], the vector fields h.J, and vJ, will be called
called the horizontal and the vertical currents on the contact metric manifold M,
respectively.

Remark 3.2. If M is K-contact then the above conservation laws reduce in the
simple form

(3.19) Lo TY, =0

al
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3.2 Locally gauge invariance

A group of global transformations is characterized by the parameters €* being in-
dependent by the coordinates (z°,2°). In this subsection we suppose now that the
parameters of the group are coordinates dependent, that means that the action of G
on fields @4 (z) is local. In this situation, the scalar fields Q“(x) transform according
to

(3.20) Q4 () = Q42)+ 5 (Q4(2)) . § (R4 (2)) = £*(2) [Xa]AQP (x).
Then, from above relations, we have
5Q" _ 5Q* a A5QB e ANB
(321) St - St +e (z)[Xa]B Szt St [XG]BQ )
aQ/A aQA . 8QB He?
(3.22) o = aor T @XJES + 5 XRQ”.

Now, we have to remark that a globally invariant Lagrangian may be not invariant
under the local transformations (3.20). The variation of the Lagrangian is

* * * A * B
S0 - L xign . Ok 5( Q‘>+ oL ™ 5(8Q )
a(a .

Q4 9 (56%:‘) St BQ?) Q% —ct 00
Noc . oc s0F oc 0QB
© A0+ 5QA T T 50A ‘M:ctio (Xl
3£ 650, a,c aga B A
(500 o0t 5 (aanY et et ggn | @ Kelb
( Szt ) ( 920 ) e

Taking into account that the Lagrangian satisfy relation (3.15) (the global invariance),
we obtain the variation of £ by the form

x i 0e” 09" B A
10 = |Qhr + Qs | QPR

Hence, we need to add some new fields, called gauge fields, see [7, 8], to obtain a
locally invariant Lagrangian.

More exactly, we consider the horizontal and vertical 1-forms

(3.23) H* = H(x)dx", i€ {1,...,2n},a € {1,...,7}
and
(3.24) C*=o0%x)n,ac{l,...,r}

respectively, where HY, 0% € C>(M).
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Since 7 is a global 1-form on M, the functions o are globally defined on M, while
H{ are locally defined functions on M, and they have to transform as it follows (at
the local coordinate changing on M)

07 ~,
dzri I

(3.25) HY =

Now, we ask that £L =L (QA, 5Q4 )52, 0Q4/02°, HE, o“) is an invariant Lagrangian
to the local action of G. According to [7], the gauge fields have to transform as it
follows:

* e * oe?
a bova c a bra _c
(3.26) 6 (H}) =e"Cy Hi + 5pi 0 (09) =e"Cyo° + 920"
and
g(ﬁ) _ £5(QA) oL 3 QA oL | x (0QA
a0 gy (o) o e Lo
oL “ oL =, .
aHlaé(Hz)—’—aO_a(;(U )7
must vanishes. That is
oL  §QF oL 0QF A
QB ~+ |5QA .0 [Xa]B “
A A 7 A — —ct 0
Q o (55%1 ) ox b (%Cio ) Swt Ox
0L 0 1re % o | b oL AAB oL | de®
" {aHngcHi T Bga Coe” ] = 3<5Qa)[ ABQ7 T pe | 5
ozt
oL B oL | 0e*
a(%Qg,)hQ _[XdBQP + 907 | 520

Taking into account that parameters functions £*(z) are arbitrary, we obtain the

following equivalent conditions for the vanishing of 3 (L):

(3.27)
Y i 5QP 0Q” v
W[Xa]gQB+QA[ o5 s T QalX ) ey 50 8H Cb Hi + 55 ——Ct.o° =0,
B oL _ B 8£ _
(3.28) QUQ"[Xal5 *om 0, Q4Q°[X.l3 + 5ga = 0-

In order to obtain identities (3.27) and (3.28), it is enough to add some additional
fields enter into Lagrangian from some expressions like covariant derivatives, called
the horizontal and vertical gauge-covariant derivatives of physical fields:

QA QA

(3.29) DiQ* = == = HY[X]5Q7, DoQ” = =5 — 0" [Xu]5Q".
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Indeed, if we take the Lagrangian in the form
(3.30) L=L(Q* D:iQ* DyQ?),

then we have

oL oL oL | oL
A\ DA’ a1t —et T 9pDLOA’
9 (5521' ) 0D;Q P (8620 ) ot 0Dy Q
oL or bop L 0L .
oL oL 9L .op L .o
8QA - 8@‘4 6D1QBHZ [XG]A 8D0QBJ [XG]A'

By a direct computation it follows that conditions (3.28) are satisfied and condition
(3.27) is equivalent to

oL
QA

oL
oD;Q4

oL
0DyQA

QP + D;Q” + DoQP | [X.)5 =0,

which is true from the global invariance of the Lagrangian (3.30).

Remark 3.3. The local gauge invariance of a Lagrangian on a contact metric mani-
fold M endowed with the characteristic foliation F¢ is obtained from a global gauge
invariant Lagrangian just by replacing the usual derivatives Q4 /6z* and Q% /9z°
by the horizontal and vertical gauge-covariant derivatives D;Q“ and DyQ%, respec-
tively. In this way we obtain the minimal replacement principle for contact metric
manifolds.

3.3 Lagrangians for gauge fields

The Lagrangian (3.30) is made up of the free Lagrangian for scalar fields Q4 and the
interaction of the scalar fields with the gauge fields H?, c¢. Now we shall find the
expression for the Lagrangian of the gauge fields which is invariant under the group
action.

This Lagrangian depends on the gauge fields as well as on their derivatives, so it
is given by

SHY OH® §o° 9o
(3.31) L1 =L, (Hg,aa s 015 %o 3“).

P Sxt T 020§t Ox0

The condition for invariance of £; is

(3.32)

or * oL * a aor * a
+5 0 (o) + 5EE 8 (3%) + a(zerylazt—ct 0 (525) =0,
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where the gauge fields transform according to (3.26), while their derivatives follow
the rules

T (SHY\ _ _bra SHS a 8¢° rre 5%
0 (5935 ) = Chesar + Clesor Hi + sar5ars

* a c b a
do __ beva d0° a 0’ ¢ 6 (Oe
6 (527) ="Ch5% + Ch5550° + 507 (50)

(3.33)

S (9H!\ _ _brva OHS a 9" pre 9 (8e”
d (8950) =¢€ Cbc Ox0 +Ob08:zDH’i + 0z0 (5:&)’

* a c b 2_a
do __ _byva 9o a Ot c O“e
4 (awo) =€ Cbc ox0 + CbC 9209 + 0z9920

Replacing (3.33) in (3.32) and using the randomness of parameters ¢, we obtain the

equivalent conditions for the vanishing of 5 (L1):

(3.35) oy 8(69??})| oup _ ChuHE+ ‘%?{?) ~ o0,
(3.36) gé} + (Q)éij})Och; * (Z';;l?) Ct ¢ =0,
e il sy e Sl

where we have taken into account the relations (2.9) and (2.12).

Then, the additional gauge fields must enter into Lagrangian through some com-
binations such that the above conditions are ensured. Let us define the following
differentiable functions:

. _ ST SHS
0 Sad ozt

1
+ 50& (HYHS — HEHY) + ¢ji0°,

oH¢ o 1
3.38 pr=—L _ — — -Cp (¢"Hf — H}o®
(3.38) ! 020 oxi 2 b (0" H; 7).
which are the local components of so called strength fields.
Taking into account (3.25), these functions transform (at the local coordinate
changing on M) as it follows:

~l gk ~j
o _ 07T 07" 5, pa_ 0x Pa
R e T
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hence they are components of some adapted tensor fields, while S* are globally defined
functions on M. We obtain

0Ly 0Ly 0Ly 0Ly 0Ly | 0Ly 0Ly 0Ly
aN a ’ ay a ’ ay 19HF _ T ) say 2
B (%) R 5 (%) ORY; - (%) o=t 0P 9 (557) OF;
which make (3.34) true. Then, using also C¢, = —CF,, we have
8[5 _ 8Lh, 8£ﬁ b d
dor ¢J’8jo - oP? Caalli
a£1 a£1 b d 8£1 b d
qu = 8Rb Cu,de + ﬁcada .
% i %

The above relations make (3.35) and (3.36) also true. Hence, an invariant Lagrangian
Ly must be express through fields Rf;, P such that (3.37) is satisfied.

Inspired by the Yang-Mills Lagrangian, in [7] and [5] are given such Lagrangians.
According to these, we also could take the following Lagrangian, corresponding to

horizontal fields Rf; and P}
1 c ij a ij pa
(3.9 £1 = 0G5 (¢9M RS + 20 PP,

which is locally gauge invariant at the local action of G.

The full Lagrangian of the system of the scalar fields @Q“ and the gauge fields will
be given by the sum of Lagrangian £y of the gauge fields and the Lagrangian from
(3.30), that is

(3.40) L(z) = L(x) + L1(),

which contains the Lagrangian of scalar fields as well as the interaction between the
scalar and gauge fields.

3.4 Equations of motion and conservation laws for full La-
grangian and Bianchi identities for strength fields

According to the previous discussion the Lagrangian £ from (3.40) is locally gauge
G-invariant, hence it can be proposed as full Lagrangian for the gauge theory on the
contact metric manifold M. Then, we consider the associated Lagrangian density
Ly = H - L, and suppose the equations of motion follow from the variational principle
o(I(2)) =0.

Hence, we get the following three Euler-Lagrange equations for physical scalar
fields and gauge fields

oLy 0 9L ) 9L
(3.41) T2 | 7 | - =0,
) o0QA 0 o0QA
oQ or b ( gii) or E)( 5i0)
5.4 Lo 9L, ) i \_,

Oz 0z0
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Lo o ([ oL, o ( 9L, \
349 dor Bt (8(%2?)) G (a(zzs>> ¢

According to the previous computations, we remark that (3.41) are equivalent with

82 7 eags
W—QM QA|0_2j .

where the covariant derivatives of Q% , QY are taken with respect to one of the adapted

(3.44) 5 Q%

(0%
connections V, a = 1, 2, 3, 4, introduced in subsection 2.2.

Remark 3.4. Although, the equations (3.44) and (3.10) have the same form, we
notice that they do not coincide because of the contribution of the local gauge invariant
Lagrangian £(z) (from (3.30)) in (3.44).

On the other hand, by similar computations as in the general case of semi-
Riemannian foliated manifolds [5], or of vector bundles endowed with vertical foliation
[3], we get that (3.42) and (3.43) are equivalent with

oL g 09,
4 _Hi|, — H gis 99is i
(3 5) GHZ“ a |J |0 9x0 @
and
oL :
(3.46) 5ga ~ %ali =0,
respectively, where
s oL . SHY oL . OH!
j i . ik g i __ o 7 _ a
Ha _a(éH{l)vHaj_ Sxd +HaFk H a(W)'i:_;_Ct’HalO o0
Sxd Oz
and _ )
Uazmv%b (5 J Fk]

In particular, if M is K-contact then we have the following simple form of equations
of motion for full Lagrangian L:

o oF . or
ey’ P — _ Hzg Hily = 07 o~
8QA QA| QA|O aHa |J a|0 do@

Moreover, for the horizontal and vertical currents hJ, = Ji(5/6x"), v.J, = Jo& asso-
ciated to the full Lagrangian £, we have

(3.47) olli =0.

Ji = —Qu[X.3Q" — H]'CL HS — 0iCl.0°, J) = —Q%[Xa) Q" — HiCL HE,
and the conservation laws of the horizontal and vertical currents become

dgjs ,
(3.48) Tili+ o = 507 2L (QUIXJAQE + HY).
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In particular, if M is K-contact, we obtain J!|; + JO|o = 0.
In what follows, we are interested to obtain the Bianchi identities for the covariant
derivatives of strength fields Rf; and P;* with respect to one of adapted connections

o [0} [e%

V= (F, D},0,0), a € {1,2,3,4} introduced in subsection 2.2. Firstly, we define the
following gauge covariant derivatives of strength fields

5R;’1 a C a 5 a by
(3.49) Rk = 5:5’“3 + CbcjoHlé — vy Fli —RY, thm
ORY, o o
(3.50) Rilo = WOJ + CgcR?jUC - Ry, D} —Rj, D?,
opy y dP? «
(3.51)  Plle =5 + Ci.PH}, — P Fjy., Pilo = 920 T C§.Plo® — Py DY,
e T

which are the components of some adapted tensor fields for the the characteristic

foliation JF¢. For instance, Rf;|o satisfies

o o~
Rijlo = 55 57 Bkilos

and similar relations are satisfied by the other gauge covariant derivatives with respect
to local changes of coordinates on M.

Also, the local gauge action of G on the above gauge covariant derivatives is given
by the adjoint representation, that is we have

(3.52) 5 (Rfl0) = " Ci. R o,

and similar relations for the others.
Now, using (2.9) and (2.12) we get that the Jacobi identity

5 8§71 0
(3.53) 2. {st(sx] (sxk” =0
(1,3,k)
is equivalent to

0¢ij
£ Jxk
(4,3,k)

(3.54)

=0,

where we have used d¢;;/9z° = 0. We also notice that (3.54) follows directly from
d(dn) = 0.
Next, taking into account the local expression of the non- vanishing torsion field

«
of an adapted connection V, that is

o5 5\ .. 0 ald 5\ % 6
(8.35) T (&:51;) = Wiigg T (axoax> =D 5or
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if we use (3.38), (3.49)-(3.51) and (3.54), we get the following Bianchi identities for
the gauge covariant derivatives of strength fields:

(3.56) > {RYlk + 2P dr} =0,

(i.4.k)
(3.57) Pf'|; — Pli — R{;lo + RS, D} —R§, D}j=0.
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