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Abstract. In this paper, we study the sets of the left invariant and of
the bi-invariant connections on Lie groups, endowed with some additional
properties: symmetry, flatness, Ricci-flatness, etc. Moreover, we give some
new examples in low dimensions for some special types of affine connec-
tions.
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1 Introduction

On Lie groups, the invariant geometries are an important tool for testing conjectures
and for classifying different differential/affine/metric objects. In particular, affine
connections that are left or bi-invariant with respect to translations were considered
in many papers ([8], [7], [1], [14],[15], [16], etc).For compact Lie groups, the set of bi-
invariant connections was classified by Laquer ([5],[6]). We are not aware of a similar
result, in the non-compact case.

For a n-dimensional Lie group G, the left-invariant connections are completely
modelled as (1,2)-tensors on the Lie algebra L(G), thus their set may be identified

with Rn3

. When additional properties are considered, this set reduces; our aim is to
determine how and why.

There exist similar studies for specific families of affine connections on differen-
tiable manifolds, but the techniques and results are of a completely different nature
([2], [3],[4]).

In this paper, we study (some sub-) sets of invariant connections and to what
extent they may classify the Lie algebras or the Lie groups. In §2 we determine
the sets of symmetric left-invariant connections, of the flat connections and of the
symmetric and flat connections, respectively; examples are given in dimensions 2 and
3; we suggest two new conjectures.
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In §3 we define the mixed flat affine differential manifolds and we give examples
of such (left-invariants) structures on Lie groups of low dimensions; the set of all the
mixed flat left-invariant connections is determined in the general case.

In §4 we characterize the sets of left-invariant connections which are: Ricci-flat,
symmetric and Ricci-flat, Ricci-symmetric, symmetric and Ricci-symmetric respec-
tively.

In §5 we determine the sets of bi-invariant connections on the 2-dimensional non-
commutative Lie group, which are symmetric or flat; there exists a unique symmetric
and flat connection. On the Heisenberg group, we find the sets of all the bi-invariant
connections, as well as the subset of symmetric ones.

2 The setting

Consider G a n-dimensional Lie group and L(G) its Lie algebra. For each a ∈ G,
we denote by La and Ra the left and right translations on G associated to a, given
by La(x) = ax and Ra(x) = xa, for all x ∈ G. An affine connection ∇ on G is
left-invariant if, for any vector fields X and Y on G,

∇(La)∗X(La)∗Y = (La)∗∇XY.

The right-invariant connections are defined in a similar manner. A connection is
called bi-invariant if it is simultaneously left and right-invariant.

We denote by C(G), C(G)l, C(G)sl, C(G)b, C(G)sb the sets of (affine) connec-
tions, of left-invariant, of symmetric left-invariant, of bi-invariant and of symmetric
bi-invariant ones.

Let fix a basis {E1, ..., En} of L(G). Each ∇ ∈ C(G)l may be writen as ∇EiEj =
Γk
ijEk, for every i, j = 1, n, with real coefficients Γk

ij .
The set C(G)l is in one-to-one correspondence with the set of (1,2)-tensor fields

on L(G), so may be identified with the real vector space Rn3

. All the connections
studied hereafter will belong to this ”ambient space”.

Proposition 2.1. The set C(G)sl is an affine subspace in C(G)l, of affine dimen-
sion n2(n + 1)/2. Moreover, C(G)sl is a linear subspace in C(G)l if and only if G is
commutative.

Proof. Consider a basis {E1, ..., En} of L(G) with structural constants ckij , for i, j, k =

1, n. Write ∇ ∈ C(G)sl as ∇EiEj = Γk
ijEk, for every i, j = 1, n, with real coefficients

Γk
ij , such that

(2.1) Γk
ij − Γk

ji − ckij = 0.

We have here a system of n3 affine equations in the unknowns Γk
ij . It follows that the

coefficients Γk
ij parameterize C(G)sl as an affine subspace in Rn3

, of affine dimension

n2(n+1)/2. The second property is obvious, as all ckij vanish. We point out also that
these two properties do not depend on the choice of the basis in L(G). �
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Proposition 2.2. (i) The set of flat connections in C(G)l is the (non-void) intersec-

tion of n2(n2−1)/3 hyperquadrics in Rn3

, for n ≥ 1. Moreover, all these hyperquadrics
have a center in the origin if and only if G is commutative.

(ii) The set of local Euclidean (i.e. symmetric and flat) connections in C(G)sl is
the intersection of n2(n2 − 1)/3 hyperquadrics with n2(n− 1)/2 affine hyperplanes in

Rn3

, for n ≥ 1. Moreover, this set contains the origin if and only if G is commutative.

Proof. (i) Fix a basis {E1, ..., En} of L(G); denote by cijk the structural constants, by

Γk
ij the coefficients of an arbitrary flat left invariant connection on G and by Ri

jkl the
components of its curvature tensor field R. The vanishing of R yields to

(2.2) Γs
kiΓ

l
js − Γs

jiΓ
l
ks − csjkΓ

l
si = 0,

for all i, j, k, l = 1, n. This system of (apparently) n4 quadratic equations depends on
the n3 unknowns Γi

jk; in fact, only n2(n2−1)/3 equations are effective, because exactly

n2(n2 − 1)/3 coefficients Ri
jkl are independent, and the others may be deduced from

them (see, for example [18]). Each equation in (2.2) defines an affine hyperquadric in

Rn3

; the quadratic part is independent of G (depends only on n), but the linear part
depends on G, through the structural constants.

The linear part csjkΓ
l
si vanishes, for all i, j, k, l = 1, n and for all coefficients of the

connections if and only if all the structural constants vanish.
The system (2.2) is compatible, as it admits the trivial solution (which corresponds

to the Cartan-Schouten connection ∇−).

(ii) From (2.1) we deduce the condition involving the n2(n−1)/2 affine hyperplanes

in Rn3

, as well as the characterization concerning the case when all the structural
constants vanish. �
Remark 2.3. Suppose n = 2 and G commutative.

(i) We may reduce the parameterizing set of flat connections in C(G)l to the set
S of solutions of the (”minimal”) system of equations

R1
112 = 0 , R1

212 = 0 , R2
112 = 0 , R2

212 = 0.

In other words,

Γ2
21Γ

1
12 − Γ2

11Γ
1
22 = 0

Γ1
22Γ

1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
21 − Γ2

12Γ
1
22 = 0

Γ2
12Γ

2
21 + Γ1

21Γ
2
11 − Γ1

11Γ
2
21 − Γ2

11Γ
2
22 = 0

Γ1
22Γ

2
11 − Γ1

12Γ
2
21 = 0, (redundant)

in the eight unknowns Γ1
11,Γ

1
12,Γ

1
21,Γ

1
22,Γ

2
11,Γ

2
12,Γ

2
21,Γ

2
22.
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For simplicity, we denote the variables x1 = Γ1
11, x

2 = Γ1
12, x

3 = Γ1
22, x

4 = Γ2
11,

x5 = Γ2
12, x

6 = Γ2
22, x

7 = Γ1
21, x

8 = Γ2
21. The set of flat left invariant connections in

G is parameterized by the set S of the solutions of the following system of quadratic
equations in R8 :

x8x2 − x4x3 = 0

x3x1 + x6x2 − x2x7 − x5x3 = 0

x1x8 + x6x4 − x5x8 − x7x4 = 0.

An elementary calculation determines S, as the union of the following submanifolds
in R8, of dimension 6,5,5 and 4, respectively:

{(x1, x2, x8x2(x4)−1, x4, x5, x7+x8(x5−x1)(x4)−1, x7, x8) | x1, x2, x4, x5, x7, x8 ∈ R, x4 ̸= 0}

{(x1, x2, x3, 0, x5, x7 + x3(x5 − x1)(x2)−1, x7, 0) | x1, x2, x3, x5, x7 ∈ R, x2 ̸= 0}

{(x1, 0, x3, 0, x1, x6, x7, x8) | x1, x3, x6, x7, x8 ∈ R} (a 5− plane)

{(x1, 0, 0, 0, x5, x6, x7, 0) | x1, x5, x6, x7 ∈ R} (a 4− plane)

(ii) We may reduce the parameterizing set of symmetric flat connections in C(G)l
to the set of solutions of the (”minimal”) system of equations

R1
112 = 0 , R1

212 = 0 , R2
112 = 0 , R2

212 = 0 , Γ1
12 = Γ1

21 , Γ2
12 = Γ2

21.

In other words

Γ2
12Γ

1
12 − Γ2

11Γ
1
22 = 0

Γ1
22Γ

1
11 + Γ2

22Γ
1
12 − (Γ1

12)
2 − Γ2

12Γ
1
22 = 0

Γ1
11Γ

2
12 + Γ2

11Γ
2
22 − (Γ2

12)
2 − Γ1

12Γ
2
11 = 0

Γ1
22Γ

2
11 − Γ1

12Γ
2
12 = 0 (redundant)

in the six unknowns Γ1
11,Γ

1
12,Γ

1
22,Γ

2
11,Γ

2
12,Γ

2
22.

For simplicity, we denote the variables x1 = Γ1
11, x

2 = Γ1
12, x

3 = Γ1
22, x

4 = Γ2
11,

x5 = Γ2
12, x

6 = Γ2
22. The set of symmetric flat left invariant connections in G is

parameterized by the set S of the solutions of the following system of quadratic
equations in R6 :

x5x2 − x4x3 = 0

x3x1 + x6x2 − (x2)2 − x5x3 = 0

x5x1 + x6x4 − (x5)2 − x2x4 = 0
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An elementary calculation determines S, as the union of the following submanifolds
in R6, of dimension 4,3,3 and 2, respectively:

{(x1, x2, x5x2(x4)−1, x4, x5, x2 + x5(x5 − x1)(x4)−1) | x1, x2, x4, x5 ∈ R, x4 ̸= 0}

{(x1, x2, x3, 0, 0, x2 − x3x1(x2)−1) | x1, x2, x3 ∈ R, x2 ̸= 0}

{(x1, 0, x3, 0, x1, x6) | x1, x3, x6 ∈ R} (a 3− plane)

{(x1, 0, 0, 0, 0, x6) | x1, x6 ∈ R} (a 2− plane)

(Another method consists in particularizing x7 := x2 and x8 := x5 in (i).)

Remark 2.4. Suppose n = 2 and G non-commutative. We may choose a basis
{E1, E2} of L(G) such that [E1, E2] = E1.

(i) We may reduce the parameterizing set of flat connections in C(G)l to the set
of solutions of the (”minimal”) system of equations

R1
112 = 0 , R1

212 = 0 , R2
112 = 0 , R2

212 = 0

In other words

Γ2
21Γ

1
12 − Γ2

11Γ
1
22 − Γ1

11 = 0

Γ1
22Γ

1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
21 − Γ2

12Γ
1
22 − Γ1

12 = 0

Γ2
12Γ

2
21 + Γ1

21Γ
2
11 − Γ1

11Γ
2
21 − Γ2

11Γ
2
22 − Γ2

11 = 0

Γ1
22Γ

2
11 − Γ1

12Γ
2
21 − Γ2

12 = 0

in the eight unknowns Γ1
11,Γ

1
12,Γ

1
21,Γ

1
22,Γ

2
11,Γ

2
12,Γ

2
21,Γ

2
22.

For simplicity, we denote the variables x1 = Γ1
11, x

2 = Γ1
12, x

3 = Γ1
22, x

4 = Γ2
11,

x5 = Γ2
12, x

6 = Γ2
22, x

7 = Γ1
21, x

8 = Γ2
21. The set of flat left invariant connections in

G is parameterized by the set S of the solutions of the following system of quadratic
equations in R8 :

x8x2 − x4x3 − x1 = 0

x3x1 + x6x2 − x2x7 − x5x3 − x2 = 0

x1x8 + x6x4 − x5x8 − x7x4 + x4 = 0

x4x3 − x8x2 − x5 = 0.

We obtain S as the union of the following submanifolds in R8, of dimension 4,4,3 and
3 respectively:
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{(±
√
−x2x4, x2,∓x2(x6 − x7 − 1)

2
√
−x2x4

, x4,∓
√
−x2x4, x6,

x7,∓x4(x6 − x7 + 1)

2
√
−x2x4

) | x2, x4, x6, x7 ∈ R, x2x4 < 0}

{(0, 0, x3, 0, 0, x6, x7, x8) | x3, x6, x7, x8 ∈ R}

{(0, x2, x3, 0, 0, x7 + 1, x7, 0) | x2, x3, x7 ∈ R , x2 ̸= 0}

{(0, 0, 0, x4, 0, x6, x6 + 1, x8) | x4, x6, x8 ∈ R.}

(ii) We want to parameterize the set of symmetric flat connections in C(G)l, so we
suppose, in addition to (i), that (1.1) holds. As the only non-null structural constants
are c112 = −c121 = 1, we deduce

Γ1
12 − Γ1

21 − 1 = 0 , Γ2
12 = Γ2

21.

We obtain S as the union of the following submanifolds in R8, of dimension 2,2,1 and
1 respectively:

{(±
√
−x2x4, x2,±x2(x2 + 1)√

−x2x4
, x4,∓

√
−x2x4,−x2 − 2,

x2 − 1,∓
√

−x2x4) | x2, x4 ∈ R, x2x4 < 0}

{(0, 0, x3, 0, 0, x6,−1, 0) | x3, x6 ∈ R}

{(0,−1, x3, 0, 0,−1,−2, 0) | x3 ∈ R}

{(0, 0, 0, x4, 0,−2,−1, 0) | x4 ∈ R}.

Remark 2.5. Suppose n = 3 and G commutative.
(i) We may reduce the parameterizing set of flat connections in C(G)l to the set

S of solutions of the (”minimal”) system of 24 equations

Ri
112 = 0 , Ri

113 = 0 , Ri
123 = 0 , Ri

212 = 0

Ri
213 = 0 , Ri

223 = 0 , Ri
313 = 0 , Ri

323 = 0

for i ∈ {1, 2, 3} in the 27 unknowns Γi
jk. In other words

Γ1
11Γ

i
21 + Γ2

11Γ
i
22 + Γ3

11Γ
i
23 − Γ1

21Γ
i
11 − Γ2

21Γ
i
12 − Γ3

21Γ
i
13 = 0,

for i ∈ {1, 2, 3} and another 21 similar equations (each of them defining a quadratic
variety in R27). The system is compatible, as it admits the trivial solution ∇−, with
all the coefficients null.

(ii) We may now reduce the parameterizing set of symmetric flat connections in
C(G)l, by adding the 9 equations Γi

jk = Γi
kj for i, j, k ∈ {1, 2, 3}, j < k, to the

system from the previous remark. This new system is also compatible, as it admits
the solution ∇−.
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Remark 2.6. Suppose n = 3 and G non-commutative. The study becomes more
complex(and, due to the lack of space, will be carried out elsewhere), as we must take
into account the classification of the 3-dimensional Lie algebras ([8], [12], [18]),for
the following non-commutative Lie groups: the Heisenberg group H3,the orthogo-
nal group O(3), the special linear group SL(2,R), the Lorentz group O(1, 2), the
Euclidean motions group E(2) and the Minkowski motions group E(1, 1).

We sketch here the case of the Heisenberg group H3. Fix a basis {E1, E2, E3} of
L(H3) such that [E1, E2] = E3.

The set of flat connections in C(H3)l is given by a system of 24 equations in the
27 unknowns Γi

jk.

For the set of symmetric and flat connections in C(H3)l, we must add the following
8 equations

Γ3
12 − Γ3

12 − 1 = 0 , Γ1
12 = Γ1

21 , Γ1
13 = Γ1

31 , Γ1
23 = Γ1

32

Γ2
12 = Γ2

21 , Γ2
13 = Γ2

31 , Γ2
23 = Γ2

32 , Γ3
12 = Γ3

21 , Γ3
13 = Γ3

31,

and we obtain a system of 33 equations in the 27 unknowns Γi
jk.

The set of Ricci-flat connections in C(H3)l is given by a system of 9 equations
in the 27 unknowns Γi

jk; for the symmetric and Ricci-flat connections we obtain a
system of 18 equations.

The set of symmetric and Ricci-flat connections in C(H3)l is given by a system of
9 equations in the 27 unknowns Γi

jk; for the symmetric and Ricci-flat connections we
obtain a system of 18 equations.

The set of Ricci-symmetric connections in C(H3)l is given by a system of 3 equa-
tions in the 27 unknowns Γi

jk; for the symmetric and Ricci-symmetric connections we
obtain a system of 12 equations.

The set of symmetric and Ricci-symmetric connections in C(H3)l is given by a
system of 3 equations in the 27 unknowns Γi

jk; for the symmetric and Ricci-symmetric
connections we obtain a system of 12 equations.

Remark 2.7. Suppose n ≥ 4. The system (2.2) admits always a non-trivial solution
(hence a line of solutions), for example for the Cartan-Schouten connection ∇0, which
is half of the Lie bracket on L(G).

(i) Instead, it is not evident at all if the system (2.1)+(2.2) admits always a
solution, as for growing n it becomes overdetermined ( with n2(n − 1)(2n + 5)/6
equations vs. n3 unknowns). This is an important topic, which gave rise to the study
of the left structures (affine structures) and suggested, for example, the Auslander-
Milnor’s conjecture ([9]):”On each solvable Lie group there exists a symmetric and
flat left-invariant connection”. This conjecture was refuted through counterexamples
constructed on filiform algebras. We may weaken the Auslander-Milnor conjecture,
through the following two conjectures:

Conjecture 1. On each Lie group there exists a symmetric and Ricci-flat left-
invariant connection.
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Conjecture 2. On each Lie group there exists a symmetric and Ricci-symmetric
left-invariant connection.

Obviously, Conjecture 1 true implies Conjecture 2 true. (For the Conjecture 1,
the 2-dimensional case is not interesting, as (in this case) every Ricci-flat connection
is flat.)

(iii) Another interesting problem is to determine all the non-flat left-invariant
connections which are Ricci-flat. The Riemannian case is solved (there are none !); in
the indefinite case, there exist such connections. In the following we shall deal with
the pure affine case.

Remark 2.8. A left-invariant connection ∇ ∈ C(G)l is called Cartan connection
([13]) if ∇XX = 0 for any X ∈ L(G). It is easy to prove that any such connection is
of the form

(2.3) ∇XY =
1

2
([X,Y ] + T (X,Y ]),

for any X,Y ∈ L(G) and any skew-symmetric tensor field T of type (1,2) on L(G). (It
follows that extending T gives precisely the torsion field of ∇.) As examples we have
the classical Cartan-Schouten connections ∇−, ∇+, ∇0 and any other one collinear
with them. Obviously, we have: (i) the set of left-invariant Cartan connections may

be parameterized by R
n2(n−1)

2 , where n = dimG; (ii) there exists a unique symmetric
left-invariant Cartan connection, namely ∇0 (in fact it is even bi-invariant);(iii) the
Propositions 2.1 and 2.2,(i) may be re-written accordingly; (iv) as a Cartan connection
satisfies ∇XY +∇Y X = 0, for every X,Y ∈ L(G), we see that such connection is the
skew-symmetric analogue of symmetric (i.e. torsion-free) one.

3 Mixed flat connections

Let M be a n-dimensional differentiable manifold and ∇ a linear (affine) connection
on M . Denote R, Ric and T the curvature, the Ricci and the torsion tensor fields of
∇, respectively. We define a (1,3)-tensor field on M , by U(X,Y )Z := R(X,Y )Z −
(n − 1)−1{Ric(Y, Z)X − Ric(X,Z)Y }. We call U the Riemann-Ricci tensor field; it
is skew-symmetric in the first two variables and traceless in the third variable.

Definition 3.1. The affine differentiable manifold (M,∇) is called mixed flat if U
identically vanishes.

In the following, we make some comments and give some examples. More details
about the geometry of mixed flat manifolds as well as their applications in the Theory
of Relativity will appear elsewhere ([15]).

Remark 3.2. (i) Obviously, every flat affine connection on a differentiable manifold
is mixed flat; every mixed flat and Ricci flat affine connection must be flat.

(ii) In dimension 2, any affine differentiable manifold (M,∇) is mixed flat.

(iii) Consider a mixed flat affine differentiable manifold (M,∇). If T = 0, then
Ric is symmetric and cyclic-parallel.
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(iv) Let (N, g) be a semi-Riemannian manifold of dimension greater than 3 and
∇ its Levi-Civita connection. Then (N,∇) is mixed flat if and only if (N, g) has
constant sectional curvature. It follows that this new notion is irrelevant for the semi-
Riemannian geometry. Nonetheless, the notion of mixed flatness is important in the
non-Riemannian case, as it extends the notion of constant sectional curvature beyond
the frontiers of metric theories.

(v) Let G be a n-dimensional Lie group and ∇ a left-invariant connection on G.
Altogether with R and Ric, the tensor field U is also left-invariant.

The study of mixed flat connections on Lie groups is particularly relevant, because
the examples of Lie groups, which admit left-invariant Riemannian metrics with con-
stant sectional curvature, are quite rare (cf. [8]).

Consider the Cartan-Schouten connections ∇−, ∇+, ∇0. We remark that ∇− and
∇+ are always flat, hence they are also mixed flat. The connection ∇0 is mixed flat
if and only if

(3.1) (n− 1)[[X,Y ], Z] = B(Y,Z)X −B(X,Z)Y,

for every X,Y, Z ∈ L(G), where B is the Killing form on G. Of course, this relation
holds for every Levi-Civita connection of a bi-invariant metric with constant sectional
curvature, as previously pointed out.

In the sequel we provide an example when this condition holds, in the affine
differential setting.

Proposition 3.3. (i) The set of mixed flat connections in C(G)l is the (non-void)

intersection of n2(n2 − 1)/3 hyperquadrics in Rn3

, for n ≥ 1. Moreover, if G is
commutative, then all these hyperquadrics have a center in the origin.

The proof is similar to that of Proposition 2.2.

4 On the symmetry of the Ricci tensor

Let M be a n-dimensional differentiable manifold and ∇ a linear (affine) connection
on M . Denote R, Ric and T the curvature, the Ricci and the torsion tensor fields of
∇, respectively. In the affine differentiable setting, the symmetry of the Ricci tensor
is a quite subtle property. It is known ([11]) that, for a symmetric connection ∇,
the Ricci-symmetry is equivalent with the local existence of a volume form which
is ∇-parallel (i.e. ∇ is locally equiaffine). We shall extend this result for arbitrary
connections.

We define a 2-form t on M , by

t(Y, Z) = trace{X →
∑

[T (T (X,Y ), Z) + (∇XT )(Y, Z)]},

with cyclic sum after X,Y, Z ∈ X (M).

Remark 4.1. (i) We distinguish the special cases when the 2-form t is exact or closed.
Each such property defines a new interesting family of affine differential manifolds.
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(ii) Suppose there exists a one-form α on M such that T (Y, Z) = α(Z)Y −α(Y )Z
(i.e. ∇ is semi-symmetric). Then

t(Y, Z) = (∇Y α)Z − (∇Y α)Z

and t = 0 if and only if α is closed.

From the first Bianchi identity, by contracting, we get

Ric(Y, Z)−Ric(Z, Y ) = −traceR(Y,Z) + t(Y,Z).

We get the following

Lemma 4.2. The Ricci tensor is symmetric if and only if traceR(Y, Z) = t(Y, Z),
for every vector fields Y, Z.

Let ω be a local volume element on M . Then, there exists a one-form τ such that
∇Y ω = τ(Y )ω (i.e. ω is a ∇-recurrent n-form, with recurrency factor τ). One knows
(cf. [11]) that

R(Y, Z)ω = −[traceR(Y,Z)]ω.

On another hand, we derive

R(Y,Z)ω = 2[dτ(Y, Z)]ω + τ(T (Y,Z))ω.

The last two relations lead to

(4.1) traceR(Y, Z) + 2[dτ(Y, Z)] + τ(T (Y, Z)) = 0.

Theorem 4.3. Let ∇ be an affine connection on the differentiable manifold M , with
t = 0.

(i) If there exists a local ∇-parallel volume element, then Ric is symmetric.

(ii) Suppose Ric is symmetric and suppose there exists a (local) volume element
with recurrency factor τ such that ImT ⊂ kerτ . Then there exists a local ∇-parallel
volume element on M .

Proof. From Lemma 4.2, Ric is symmetric if and only if traceR(Y, Z) = 0 for every
vector fields Y,Z.

(i) Let ω be a local ∇-parallel volume element on M , so its recurrency factor
τ = 0. From (4.1) it follows that traceR(Y,Z) = 0, which proves the symmetry of
Ric.

(ii) Suppose Ric is symmetric and ω is the volume element with the required
property. It follows that traceR(Y,Z) = 0, for every vector fields Y,Z. Relation (4.1)
implies that

2[dτ(Y,Z)] + τ(T (Y, Z)) = 0.

From the hypothesis, τ(T (Y,Z)) = 0, for every vector fields Y, Z. It follows that τ is
an exact one-form; thus there exists a function f such that τ = −dlnf . The volume
element fω is ∇-parallel. �
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Remark 4.4. (i) The theorem 4.3.,(ii) generalizes the quoted result from [11], which
can be recovered for T = 0.

(ii) The generalization is effective, as may be seen from the following example.
Let consider a 2-dimensional non-commutative Lie group as in the Remark 2.4 with
the formulas therein. Let ∇ be the left-invariant connection with all the components
null, except Γ1

11 = 1 and Γ1
12 = −1. Then Ric12 = Ric21 (hence Ric is symmetric); ∇

is not flat nor Ricci-flat, as R1
112 = Ric12 = −1. The connection ∇ is non-symmetric,

as T 1
12 = −2.
A short calculation proves that t = 0, so there exist non-trivial cases when the

hypothesis in theorem 4.3.,(ii) applies.
(Here the connection ∇ is semi-symmetric, as in Remark 4.1., for the closed left-

invariant one-form α such that α(E2) = −2 and α(E1) = 0).

(iii) For any Lie group G, the Cartan-Schouten connection ∇− has the following
properties: is bi-invariant; T = −[, ] on L(G); t = 0. This is in agreement with theo-
rem 4.3., as ∇− is Ricci-flat (hence Ricci-symmetric) and each left-invariant volume
element is ∇−-parallel.

This example shows that the Conjecture 1 is true if we replace the requirement
T = 0 with t = 0.

5 The set of bi-invariant connections

Let G be a n-dimensional Lie group. The following (known) result characterizes the
bi-invariant connections (see for example [13] for a partial sketch of proof).

Theorem 5.1. For a left-invariant connection ∇ ∈ Cl(G) the following claims are
equivalent:

(i) ∇ is bi-invariant;

(ii) for every X,Y, Z ∈ L(G) we have

(5.1) [X,∇Y Z]−∇[X,Y ]Z −∇Y [X,Z] = 0;

(iii) ∇ is ad-invariant, i.e., for every X ∈ L(G) we have adX∇ = 0;

(iv) ∇ is Ad-invariant, i.e., for every X,Y ∈ L(G) and a ∈ G, we have ∇AdaXAdaY =
Ada(∇XY ).

Remark 5.2. (i) It is well known that the set C(G)b is always non-void, as it contains
the Cartan-Schouten connections ∇−, ∇+ and ∇0. (On L(G), they act as the null
operator, as the Lie bracket and half of the Lie bracket, respectively). The connection
∇0 is symmetric, so C(G)sb is also non-void. The connection ∇− is flat, but in general
it is not symmetric.

(ii) Using (2.3), we see that a (general) Cartan connection is bi-invariant if and only
if the skew-symmetric tensor field T satisfies [X,T (Y, Z)]−T ([X,Y ], Z)−T (Y, [X,Z]) =
0 for every X,Y, Z ∈ L(G) (i.e. T is ad-invariant). A non-trivial example is the fol-
lowing: consider ω a left-invariant one-form on G, vanishing on the derived algebra of
L(G) (i.e. ω([X,Y ]) = 0 for every X,Y ∈ L(G)).Define T (X,Y ) := ω(X)Y −ω(Y )X.



62 P.-G. Pripoae and C.-L. Pripoae

(iii) In the following, we investigate the sets of all the bi-invariant connections,
using the relation (3.1). We fix a basis {Ei | i = 1, n} in L(G) and denote cijk the

structural constants and by Γi
jk the coefficients of an arbitrary bi-invariant connection

on G. Then (5.1) leads to the linear system

Γs
ijc

k
sh = Γk

isc
s
jh + Γk

sjc
s
ih,

for every i, j, k, h = 1, n, with (at first sight) n3 unknowns Γi
jk and n4 equations.

(iv) For a commutative G, the sets C(G)b and C(G)l coincide, so, in the sequel of
this paragraph we shall suppose G non-commutative.

Remark 5.3. Consider now a non-commutative 2-dimensional Lie group G as in
Remark 2.4. We make the convention that the vanishing coefficients of the connections
are not written anymore. A short calculation shows that:

(i) the bi-invariant connections verify

∇E1E2 = aE1 , ∇E2E1 = bE1 , ∇E2E2 = (a+ b)E2,

for every a, b ∈ R. For a = b = 0, a = b = −1 and a = b = − 1
2 we find the

Cartan-Schouten connections ∇−, ∇+ and ∇0 respectively.

(ii) the symmetric bi-invariant connections verify

∇E1E2 = (b+ 1)E1 , ∇E2E1 = bE1 , ∇E2E2 = (2b+ 1)E2,

for every b ∈ R. For b = −1
2 we find the Cartan-Schouten connection ∇0.

(iii) the flat bi-invariant connections verify

∇E2E1 = bE1 , ∇E2E2 = bE2

for every b ∈ R. For b = 0 we find the Cartan-Schouten connection ∇−.

(iv) there exists a unique flat and symmetric bi-invariant connection, given by

∇E2E1 = −E1 , ∇E2E2 = −E2.

To our knowledge, this remarkable bi-invariant connection is a new one! We call
it the Euclidean connection of the 2-dimensional non-commutative Lie groups. This
connection cannot be a Levi-Civita connection of a bi-invariant metric on G, because
it would imply that G is compact, and thus (due to the dimension 2) commutative.

One can deduce some simple properties of the differential affine manifold (G,∇):
the auto-parallel left invariant vector fields X ∈ L(G) (i.e. with ∇XX = 0) are
exactly those collinear with E1; there exists no parallel left-invariant vector fields Y
(i.e. with ∇ZY = 0, for every Z ∈ L(G)).

Consider a realization of G, as the so-called ”ax+ b”-group, i.e. the affine group
of transformations of the real line. We may identify it with the product R∗ ×R, with
coordinates (x1, x2) and with the multiplication

(a1, a2)(b1, b2) = (a1b1, a1b2 + a2).
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The Lie algebra of G admits a basis {E1, E2}, with E1 = x1∂2 and E2 = −x1∂1,
such that [E1, E2] = E1. In the (global) coordinates (x1, x2), the components of ∇
all vanish, which proves that the bi-invariant connection discovered above is exactly
the canonical ”Euclidean” connection induced on G. Its auto-parallel curves are the
real lines of the plane, restricted to G; we remark that there exist non-complete
auto-parallel curves (those which cannot pass through the origin).

Example 5.4. Consider now the non-commutative 3-dimensional Lie group H3 as
in Remark 2.6. A tedious calculation shows that, on H3, we have the following
properties.

(i) The set of bi-invariant connections is given by all the real numbers Γi
jk ∈ R27,

with i, j, k = 1, 3, such that Γ3
11,Γ

3
12,Γ

3
21,Γ

3
22 are arbitrary and

Γ1
22 = Γ1

23 = Γ1
33 = Γ1

32 = Γ1
31 = Γ1

13 = Γ2
11 = Γ2

13 = Γ2
31 = Γ2

33 = Γ2
32 = Γ2

23 = Γ3
33 = 0

Γ2
12 = Γ3

13 , Γ1
11 = Γ3

13 + Γ3
31 , Γ2

22 = Γ3
23 + Γ3

32 , Γ1
12 = Γ3

32 , Γ2
21 = Γ3

31 , Γ1
21 = Γ3

23.

This set may be parameterized as a product V × R4, where V is a 4-dimensional
subspace in R10 (determined by the last previous relation). Hence, the set of bi-
invariant connections may be modelled as a 8-dimensional subspace in R14.

(ii) The set of the symmetric bi-invariant connections is modelled by a 6-dimensional
affine subspace in R14, of the formW×R2, whereW is a 4-dimensional affine subspace
in R12, defined by

Γ1
21 = Γ1

12 , Γ2
21 = Γ2

12 , Γ3
31 = Γ3

13 , Γ3
32 = Γ3

23 , Γ2
12 = Γ3

13 ,

Γ1
11 = 2Γ3

13 , Γ2
22 = 2Γ3

23 , Γ1
12 = Γ3

23 , Γ3
21 = Γ3

12 − 1

and arbitrary Γ3
11,Γ

3
22. (The null components are the same as in (i)).

(iii) Similar computations may be made for the bi-invariant connections which
are: flat, flat and symmetric, Ricci-flat, Ricci-flat and symmetric, Ricci-symmetric,
Ricci-symmetric and symmetric, respectively.
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