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1 Introduction

The idea of the well known Ricci flow was generalized to the concept of the Riemann
flow. Riemann solitons were introduced in [1] as an analog of Ricci solitons. Namely,
Riemann solitons correspond to self-similar solutions of Riemann flow (see [2] and
[3]). They can be viewed as fixed points of the Riemann flow, as a dynamical system,
on the space of Riemannian metrics modulo diffeomorphisms.

In the present paper we consider applications of the theory of infinitesimal har-
monic transformations (see, for example, [4]) to the global Riemann solitons theory.
In the second section of our paper we give a brief survey of the basic facts of the
theory of infinitesimal harmonic transformations. The results of the third section
”Riemann solitons” are obtained as applications of the results of the second section
of the present paper.

The results of the second section were announced in our reports at the conference
"Differential Geometry” organized by the Banach Center from June 18 to June 24,
2017 at Bedlewo (Poland).

2 Infinitesimal harmonic transformations

In the present paper we consider an n-dimensional (n > 3) manifold M with a Rie-
mannian metric g and its Levi-Civita connection V. We also consider a flow on M
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which is a local one-parameter group of diffeomorphisms ¢;(z) : M — M that is gen-
erated by the smooth vector field £ on M (see [5, p. 13-14]). In addition, a vector field
¢ on a Riemannian manifold (M, g) is called an infinitesimal harmonic transformation
of (M, g) if € generates a local one-parameter group of harmonic diffeomorphisms (see
[6]). An analytic characteristic of such vector field has the form 00§ = 0 for the Yano
rough Laplacian O : T*M — T*M and the 1-form 6 corresponding to £ under the
duality defined by the metric g.

The Yano rough Laplacian O : T*M — T*M was defined in [7] by the formula
O = 66* — 6*8 where 6* : T*M — S2T*M is the symmetric derivation defined by the
formula 6*0 = L¢g for the Lie derivation L¢ with respect to £ and & : S?T*M — T*M
its formal adjoint operator, and it is called the divergence. The Yano rough Laplacian
O has another form of notation. Namely, we have proved that 00 = A8 — 2Ric(E, -)
where A is the Hodge-de Rham Laplacian and Ric is the Ricci tensor of (M, g) (see
[7] and [8]).

Remark 2.1. Examples and properties of infinitesimal harmonic transformations can
be found in our papers [4]; [8]; [9]; [10]. In particular, in [4], it was shown that £+ X is
an infinitesimal harmonic transformation for an infinitesimal harmonic transformation
¢ and any infinitesimal isometry transformation or Killing vector field X. We recall
here that a vector field X on a Riemannian manifold (M, g) is called an infinitesimal
isometry transformation or Killing vector field if it generates a local one-parameter
group of local isometric transformations. This means, that Lxg = 0.

The following theorem on infinitesimal isometric transformations is well known
(see, for example, [11, p. 44]).

Theorem 2.1. Let £ be a vector field on a Riemannian manifold (M,g) and 6 be
the 1—form corresponding to £ under the duality defined by the metric g. If £ is an
infinitesimal isometric transformation, it satisfies the following differential equations:
AO = 2Ric(,-) and 60 = 0. Conversely, if M is compact and £ satisfies the above
system of differential equations, then & is an infinitesimal isometry.

The first equation of Theorem 2.1 Af = 2Ric(§, -) means that £ is an infinitesimal
harmonic transformation and the second equation 60 = 0 means that div{ = 0, and
it is too strict condition. We can formulate our alternative version of this theorem.

Theorem 2.2. Let (M, g) be a compact Riemannian manifold and £ be an infinitesi-
mal harmonic transformation on (M, g). If £ satisfies the condition LedivE > 0, then
& 1s an infinitesimal isometric transformation.

Proof. Let’s consider the vector field X = (div€)¢ for an arbitrary smooth vector field
¢ on a compact Riemannian manifold (M, g). The divergence of this vector field has
the form

(2.1) divX = L¢(div€) + (div€)?>.

Integrating over M and using the classic Green’s theorem (see [5, p. 281])

/M (divX)dVol, =0
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to the vector field X = (div€), we imply the integral formula

(2.2) /M (Le(div€) + (divX)?) dVol, = 0.

If the inequality L¢(div§) > 0 holds anywhere on M, then from (2.2) we conclude
that div€ = 0. Next, to complete the proof we can refer to Theorem 2.1. O

Remark 2.2. The divergence of a vector field £ on (M, g) is a scalar function defined
by (see [11, p. 4]; [5, p. 281]; [12, p. 195])

(div€)dVoly = Le(dVoly)

for the canonical measure dVol, which is associated to the metric g. Due to this
formula, the scalar function divé is called the logarithmic rate of volumetric expansion
along the flow generated by the vector field £ (see [12, p. 195]). Therefore, the
condition L¢(divg) > 0 means that dVol, is a nondecreasing scalar function along
trajectories of this flow.

We have proved in [4] that on a compact Riemannian manifold of negative Ricci
curvature, every infinitesimal harmonic transformation is identically zero. We shall
prove it only assuming quasi-negative Ricci curvature. We recall the Ricci curvature
is quasi-negative if it is everywhere non-positive and is in addition negative (in all
directions) at a point (see [17]). In accordance with this definition we can formulate
the following theorem.

Theorem 2.3. A compact Riemannian manifold with quasi-negative Ricci curvature
has no nonzero infinitesimal harmonic transformation.

Proof. A standard calculation yields

(23) AZJE? = ~Rie(&, &) + 9(20,0) — | Ve[

for the Laplacian A. In particular, if £ is an infinitesimal harmonic transformation,
then (2.3) can be rewritten in the form

1 .
(2.4) A llEll* = Rie(&, €) = [IVE]1*.
Integrating over M and using the Green’s theorem, then we imply

| (Ricte.) = [91P) avel, =o.

If the Ricci curvature is quasi-negative then this condition contradicts the integral
formula. This contradiction shows that & = 0. O
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Finally, we recall that the kinetic energy E(§) of the flow generated on (M, g) by
a vector field £ is determined by the following equation (see [13, p. 2])

E(€) = /M e(&)dVol,

where e(&) = 271|€||? is the energy density of the flow.

Remark 2.3. The energy E(£) can be infinite and finite. For example, E(£) < +oo
for a smooth complete vector field £ on a compact Riemannian manifold (M, g).

Using the definition of the kinetic energy of a flow, we can formulate the following

Theorem 2.4. Let (M, g) be a complete Riemannian manifold and & be an infinites-
imal harmonic transformation. If Ric(€,€) < 0 and the flow generated by & has the
finite kinetic energy E(E), then & is a parallel vector field. Moreover, if the volume of
(M, g) is infinite then this infinitesimal harmonic transformation & = 0.

Proof. Let’s consider the well known second Kato inequality (see [14, p. 380])

IENANIEN < g(A0,0)

where A := —trace,V oV is the rough Laplacian and 6 is the 1-form corresponding to
& under the duality defined by the metric g. In turn, the rough Laplacian A satisfies
the Weitzenbock formula (see [14, p. 378])

A0 = A — Ric(¢, -).

Then the second Kato inequality can be rewritten in the form

(2.5) 2ve(§)Ave(§) < g(Ab,0) — Ric(&,¢).
where [|£]] = /2¢e(£). At the same time, we know that a vector field ¢ is an infinites-

imal harmonic transformation on (M, g) if and only if A0 = 2Ric(¢,-). Using this
equation, we can rewrite (2.5) in the form

(2.6) 2/ e(§)Av/e(§) < Ric(§,§).

then from (2.6) we obtain \/e(€) (~Ay/e(§]) = 0. Tn [15, p. 664] and [16] was
shown that every non-negative smooth function u defined on a complete Riemannian
manifold (M, g) and satisfying the conditions u(—Au) > 0 and [,, uPdVol, < 400
for all p # 1, must be constant. In particular, if the volume of (M, g) is infinite, then
u = 0. Therefore, if Ric(£,£) <0 and

(2.7) E¢) = /M e(§)dVol, < +o0,

then from (2.5) we conclude that the function y/e(§) is constant. At the same time,
we obtain from (2.4) that the volume of (M, g) is finite unless £ is identically equal
to zero, i.e. £ =0.

If Ric(¢,8) < 0 and e(§) = const , then we obtain from (2.7) that V& = 0 The
proof is complete. U
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3 Riemann solitons

Let g be a fixed Riemannian metric on a smooth manifold M and R be its Riemannian
curvature tensor. Consider the family of diffeomorphisms ¢;(z) : M — M that is gen-
erated by the smooth vector field £ on M. The evolutive metric g(t) = o (t)¢f(x)g(0)
for a positive scalar o(t) such that ¢(0) = 1 and ¢(0) = g is a Riemann soliton if the
metric g is a solution of the nonlinear stationary PDF

(3.1) 2R4+MgNANg+gANLeg=0

where A is a constant, 7 A” is the Kulkarni-Nomizu product (see [18, p. 47]). To
simplify notation, we denote the Riemann soliton in the following way (M, g,&, A).
A Riemann soliton is called shrinking when A < 0, steady when A = 0 and expanding
when A > 0. If £ is a gradient, i.e., £ = grad f for some smooth scalar function f,
then we get the notion of gradient Riemann soliton. In [1] was shown that a Riemann
soliton on a compact manifold M is gradient. We call the vector field £ the potential
field of the Riemann soliton. In particular, if the potential field of a Riemann soliton
is identically zero, then we call this Riemann soliton a trivial soliton.

In terms of local coordinate system z', 22, --- | 2", the equation (3.1) has the form

(see also [2])

—2Riji = 2Mgirgjt — gagik) + (Vi + V&) gt + (V& + Vi&5) gin—

3.2
(32) — (V& + Vi&i) gjx — (Vi + Vi&j) ga-

where R;;;; and g;; are local components of R and g, respectively. Moreover, L¢g;; =

0
Vi&; + V ;& where V; is the covariant derivative with respect to 0l and & = gin€"
: z

for the potential field & = ﬁk%. From (3.2) we obtain
x
(3.3) —2Rj; = 2(n — 1)Agji + 2Vi&¥gj + (n — 2)(V;& + Vi&));

(3.4) —s=n(n—1DA+2(n— 1)V

where Rj; are local components of the Ricci tensor Ric and s is the scalar curvature
of (M, g). Next, we rewrite the equations (3.3) and (3.4) in the following forms

(3.5) 0*0 =— (Ric+ (n — 1)Ag — d8g);

n—2

(3.6) 50 = Q(Tl_l)(s+n(n— HA).

In turn, from the equations (3.5) and (3.6) we obtain
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1

(3.7) 5*(50) = T

ds;

(3.8) 5(6%0) = —% (26Ric — 26(50g)) = % (ds — 26%(50))

1
where we used the following identities d Ric = —§ds (see [18, p. 43]). Then using the
equations (3.7) and (3.8), we have

(3.9) 06 = d(36).

where d(06) = ds. The following theorem is obvious.

1
2(n—1)
Theorem 3.1. A Riemann soliton (M, g,&,\) has the constant scalar curvature s if
and only if its potential field & is an infinitesimal harmonic transformation.

Remark 3.1. We have proved that the potential field of a Ricci soliton is an in-
finitesimal harmonic transformation (see [7]).

From the above theorem we conclude that the following corollaries hold.

Corollary 3.2. If the scalar curvature s of a compact Riemann soliton (M, g,&, A)
satisfies the inequality s > n(n — 1)\ (or s < n(n — 1)\), then this soliton is a
Riemannian manifold of constant curvature C' = —\ and its potential field £ is a zero
vector field.

Proof. Consider a compact Riemann soliton. We apply the Green’s theorem to its
vector field &, then we obtain from (3.4) the integral formula

/ (s +n(n—1)A)dVol, = 0.
M

If the scalar curvature s of our Riemann soliton satisfies the inequality s > n(n —
1A (or s < n(n—1)A) then from above integral formula it follows that s = —n(n—1)\.
It means that 00 = 0 and div€ = 0. In this case, from Theorem 2.1 we know that the
potential field £ is an infinitesimal isometric transformation. On the other hand, we
know that £ = V f on compact manifold (see [1]). In this case, the equation Lgg =0
can be rewritten in the form VV f = 0. In particular, from this equation we obtain
that Af = 0. Then f = const because (M, g) is a compact Riemannian manifold.
Then £ is a zero vector field. Then from (3.2) we conclude that our Riemann soliton
is a Riemannian manifold of constant curvature C' = —A. O

Remark 3.2. A compact Ricci soliton is trivial if the condition L¢s < 0 is satisfied
(see [19)).

Corollary 3.3. If the scalar curvature s of a compact Riemann soliton (M, g,&,\) is
a nonincreasing scalar function along trajectories of the flow that is generated by the
potential field & then (M, g) is a Riemannian manifold of constant sectional curvature
C = —\ and the potential field & is a zero vector field.
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Proof. Let the scalar curvature s and the potential field £ of a compact Riemann
soliton satisfy the condition Lgs < 0. Using the equation (3.4), we can rewrite this
condition in the form L¢(div€) > 0. Then from Theorem 2.2 we obtain that s is a
constant and div€ = 0. This means that £ is an infinitesimal isometric transformation
and therefore £ is a zero vector field. In this case, from (3.2) we conclude that (M, g)
is a Riemannian manifold of constant sectional curvature C' = —\. (]

The well-known Bieberbach theorem states that every compact flat Riemannian
manifold (M, g) is finitely covered by a flat torus. More precisely, (M, g) has the form
(I'\ G)/H where G is a group of translations of euclidian space, I' C G is a discrete
subgroup, and H is a finite group of isometric of the space of right cosets I' \ G. For
a proof see [20]. Therefore we have

Corollary 3.4. Let the scalar curvature s and the potential field & of a compact
steady Riemann soliton (M,g,&, ) satisfy the conditions Les < 0, then (M,g) is
finitely covered by a flat torus.

On the other hand, it was shown by Hopf that a compact, simply connected
Riemannian manifold with positive constant sectional curvature C' > 0 is isometric to
a Euclidian sphere, equipped with its standard metric (see [21]; [22]). More generally,
if (M, g) is a compact Riemannian manifold with constant sectional curvature C' > 0,
then (M, g) is a spherical space form (see [20, p. 69]). For the even dimensional
these forms are the Euclidian 2k-sphere S?* and the real projective 2k-space RP2F,
Therefore we have the following corollary.

Corollary 3.5. Let the scalar curvature s and the potential field & of a compact
shrinking n-dimensional Riemann soliton (M, g,&, X) satisfies the conditions Les < 0,
then (M, g) is a spherical space form. In particular, for the even dimensional n = 2k
it is the Buclidian sphere S** or the real projective space RP?F.

Using the definition of the kinetic energy of a flow, we can formulate the following
theorem.

Theorem 3.6. Let a nonzero potential field & of a complete, connected and nontrivial
n-dimensional Riemann soliton (M, g,&, ) generates a flow with finite kinetic energy.
If the scalar curvature s of this soliton is a nonincreasing function along trajectories
of the flow and Ric(&,£) <0, then (M, g) is a Euclidian space form.

Proof. Let’s consider our variant of the second Kato inequality

(3.10) 2V/e(©)AV/e(©) < g(A0,0) — Ric(&, €).

where ||£]| = v/2e(§). On the other hand, we have proved that the potential field £ of
a Riemann soliton satisfies the equation A8 = 2Ric(¢,-) + (n — 1)~ L¢s. Therefore,
we can rewrite the ine-quality (3.10) in the form

(3.11) VEl@AVEl®) < gRic(e.6) + g Les
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If the Ricci tensor Ric is non-positive and Le¢s < 0, then from (3.13) we obtain

ve(6) (—A\/e(§)> > 0. If, in addition, (M, g) is complete and
E(¢) :/ e(§)dVol, < +o0,
M

then y/e(€) is a constant function (see [15, p. 664] and [16]). On the other hand, if &
is a potential field of a Riemann soliton, then (2.6) can be rewritten in the form

(312) Ae(§) = Ricl€., ) - VeI + ~= Les.

If Ric(§,€) <0, Les < 0 and e(§) is a constant function, then we obtain from
(3.12) that V& = 0 In this case, from (3.2) we conclude that (M, g) is a Riemannian
manifold of constant curvature C' = —\. At the same time, we have 0 = Ric(,-) =
—A(n —1)0 for § # 0. This means that A = 0. Therefore, the tensor curvature R of
(M, g) is identically zero. If this (M, g) is complete, connected and simply connected
Riemannian manifold, then it is a Euclidian space form by the well-known Killing-
Hopf theorem (see [20, p. 69]). This completes the proof of the theorem. a
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