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Abstract. There are two important aspects of Ricci solitons. One looking
at the influence on the topology by the Ricci soliton structure of the Rie-
mannian manifold, and the other looking at its influence in its geometry.
In this paper, we are interested in summarizing some new results about
the classification of Ricci solitons and it’s rigidity.
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1 Introduction

Under the leadership of the famous Chinese mathematician, Shing-Tung Yau, the use
of analytical and differential equations to study differential geometry has become a
very important trend, called geometric analysis. One of its representative work is that
Yau used the method of geometric analysis to prove the Calabi conjecture and the
positive quality conjecture. On this basis, the geometric analysis has developed a lot
of research results. To what extent can the geometry of a differential manifold reflect
its topology, how its topology affects its geometry, and how to analyze important
differential epidemics through geometric invariants, geometric estimation, geometric
differential equations, and geometric research conditions. It is one of the central
research topics of differential geometry.

The fundamental problem of capturing the topological properties of a manifold by
it’s metric structure opened, in the last decades, extremely fruitful areas of mathe-
matics. From this perspective, there has been an increasing interest in the study of
Riemannian manifolds endowed with metrics satisfying special structural equation,
possibility involving the curvature and vector fields. One of the most important ex-
ample is represented by Ricci flow and Ricci solitons, that have become the subject of
rapidly increasing investigation since the appearance of the seminal works of Hamilton
and Perelman. The Ricci flow plays a key role in Perelman’s proof of the Poincaré
conjecture, and has been widely used to study the topology, geometry and complex
structure of manifolds. It also features prominently in the proof of the differentiable
sphere theorem for point-wise pinched manifolds. The Ricci flow equation is of own
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interest as a geometric partial differential equation, it gives a canonical way of a
critical metric. It has been remarkably successful program over years.

The concept of Ricci solitons was introduced by Hamilton [41] in mid 80’s. They
are natural generalization of Einstein metrics. Ricci solitons also correspond to self-
similar solutions of Hamilton’s Ricci flow [37] and often arise as limits of dilations of
singularities in the Ricci flow [39, 28, 11, 64]. They can be viewed as fixed points
of the Ricci flow, as a dynamical system, on the spaces of Riemannian metrics mod
diffeomorphisms and scaling. Ricci solitons are of interests to physicists as well and
are called quasi-Einstein metrics in physics literature. In this paper, we summary
some of recent progress on Ricci solitons as well as the role they play in the study of
the rigidity.

2 Ricci solitons

2.1 Ricci solitons

Recall that [13] a Riemannian metric gij is Einstein if its Ricci tensor

(2.1) Rij = ρgij

for some constant ρ. A smooth n-dimensional manifold Mn with an Einstein metric
gij is an Einstein manifolds. Ricci solitons, introduced by Hamilton, are natural
generalizations of Einstein metrics.

A complete Riemannian metric gij on a smooth manifold Mn is called a Ricci
soliton if there exists a smooth vector field V = (V i) such that the Ricci tensor of
metric gij satisfies the equation

(2.2) Rij +
1

2
(∇iVj +∇jVi) = ρgij

for some constant ρ. Moreover, if V is a gradient vector field, then we have a gradient
Ricci soliton, satisfying the equation

(2.3) Rij +∇iVjf = ρgij

for some smooth function f on Mn. The function f is called a potential function of
the Ricci soliton. For ρ = 0, the Ricci soliton is steady, for ρ > 0 it is shrinking and
for ρ < 0 it is expanding.

Since ∇iVj +∇jVi is the Lie derivative of the metric gij in the direction of V , we
also write the Ricci soliton equations (2.2) and (2.3) as

(2.4) Ric+
1

2
LV g = ρg,Ric+∇2f = ρg

respectively.
When the underlying manifold is a complex manifold, we have the corresponding

notion of Kähler-Ricci solitons. A complete Kähler metric gαβ on a complex manifold
Xn of complex dimension n is called a Kähler-Ricci soliton if there exists a holomor-
phic vector field V = (V α) on X such that the Ricci tensor Rαβ of the metric gαβ
satisfies the equation

(2.5) Rαβ +
1

2
(∇βVα +∇αVβ) = ρgαβ
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for some constant ρ. It is called a gradient Kähler-Ricci soliton if the holomorphic
vector field V comes from the gradient vector field of a real-valued function f on Xn

so that

(2.6) Rαβ +∇αVβf = ρgαβ ,

and

(2.7) ∇αVβf = 0.

Note that the case V = 0 (i.e., f being a constant function) is an Einstein (or Kähler-
Einstein) metric. Thus Ricci solitons are natural extensions of Einstein metrics. Also,
by a suitable scale of the metric g, we can normalize ρ = 0,+ 1

2 ,−
1
2 .

2.2 Examples of Ricci solitons

When n ≥ 4, there exit non-trivial compact gradient shrinking solitons. Also, there
exist complete non-compact Ricci solitons (steady, shrinking and expanding) that are
not Einstein. Below we list a number of such examples.

Example 2.1 (The cigar soliton). In dimension two, Hamilton [41] discovered the
first example of a complete non-compact steady soliton on R2, called the cigar soliton,

where the metric is given by ds2 = dx2+dy2

1+x2+y2 with potential function

f = − log (1 + x2 + y2).

The cigar has positive Gaussian curvature R = 4ef and linear volume growth, and is
asymptotic to a cylinder of finite circumference at infinity.

Example 2.2 (The Bryant soliton). In the Riemannian case, higher dimensional ex-
amples of non-compact gradient steady solitons were found by Bryant on Rn (n ≥ 3),
they are rotationally symmetric and have positive sectional curvature. Furthermore,
the geodesic sphere Sn−1 of radius r has the diameter on the order

√
r. Thus the

volume of geodesic balls Br(0) grown on the order of r
(n+1)

2 .

Example 2.3 (Warped products). Using doubly warped product and multiple warped
product constructions, Ivey [44] produced non-compact gradient steady solitons, which
generalize the construction of Bryant’s soliton. Also, Gastel-Kronz [35] produced a
two-parameter family (doubly warped product metrics) of gradient expanding soli-
tons on Rm+1 × N, where Nn, (n ≥ 2) is an Einstein manifold with positive scalar
curvature.

Example 2.4 (Gaussian solitons). (Rn, g0) with flat Euclidean metric can be also
equipped with both shrinking and expanding gradient Ricci solitons, called the Gaus-
sian shrinker or expander.

(a)(Rn, g0, |x|
2

4 ) is a gradient shrinker with potential function f = |x|2
4 ,

Ric+∇2f =
1

2
g0

(b)(Rn, g0,− |x|2
4 )is a gradient shrinker with potential functionf = − |x|2

4 ,

Ric+∇2f = −1

2
g0
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Example 2.5 (Compact gradient Kähler shrinkers). For real dimension 4, the first
example of a compact shrinking soliton was constructed in early 90’s by Koiso [47] and
Cao [11] on compact complex surface CP2#(−CP2), where (−CP2) denotes the com-
plex projective space with the opposite orientation. This is a gradient Kähler-Ricci
soliton, has U(2) symmetry and positive Ricci curvature. More generally, they found
U(n)-invariant Kähler-Ricci soliton on twisted projective line bundle over CPn−1 for
n ≥ 2.

Example 2.6 (Noncompact gradient Kähler shrinkers). Feldman-Ilmanen-Knopf [33]
found the first complete noncompact U(n)-invariant shrinking gradient Kähler-Ricci
solitons, which are cone-like at infinity. It has positive scalar curvature but the Ricci
curvature does not have a fixed sign.

Example 2.7 (Noncompact gradient steady Kähler solitons). In the Kähler case,
Cao [12] found two examples of complete rotationally noncompact gradient steady
Kähler-Ricci solitons:
(a) On Cn (for n = 1 it is just the cigar soliton). These examples are U(n)-invariant
and have positive sectional curvature. It is interesting to point out that the geodesic
sphere S2n−1 of radius s is an S1-bundle over CPn−1 where the diameter of S1 is
on the order 1, while the diameter of CPn−1 is on order

√
s. Thus the volume of

geodesic balls Br(0) grow on the order of rn, n being the complex dimension. Also,
the curvature R(x) decays like 1/r.
(b) On the below-up of Cn/Zn at the origin. This is the same space on which Eguchi-
Hansen (n = 2) and Calabi (n ≥ 2) constructed examples of Hyper-Kähler metrics.
For n = 2, the underlying space is the canonical line bundle over CP1.

Example 2.8 (Noncompact gradient expanding Kähler solitons). Cao [11] constructed
a one-parameter family of complete noncompact expanding solitons on Cn. These
expanding Kähler-Ricci solitons all have U(n) symmetry and positive sectional cur-
vature, and are cone-like infinity.

3 Classification of gradient shrinking Ricci solitons

Gradient Ricci solitons play a fundamental role in Hamilton’s Ricci flow as they
correspond to self-similar solutions, and also arise as singularity models. From the
seminal work of Hamilton and Perelman that any compact Ricci soliton is necessarily
a gradient soliton, it is to see that any compact steady or expanding Ricci soliton must
be Einstein. Therefore, it is crucial to classify gradient Ricci solitons and understand
their geometry. Some results about the classification of solitons were obtained in
the last decades. These results were derived under conformally flat, constant scalar
curvature, nonnegative Ricci curvature or bounded compact nonnegative curvature
operator. In dimension 2, Hamilton [41] proved that any 2-dimensional complete non-
flat ancient solution of bounded curvature must be S2, RP2 or the cigar soliton. The
two dimensional case is well understand and all complete Ricci solitons have been
classified, see for instance the very recent [2] and references therein.

First we will focus our attention on complete gradient shrinking Ricci solitons,
which are possible Type I singularity models in the Ricci flow. From the seminal work
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gradient solitons, it is to see that any compact steady or expanding Ricci solitons must
be Einstein.

Indeed, the below-up around Type I singularity point always converge to nontrivial
gradient shrinking Ricci solitons. And a theorem of Perelman states that given any
non-flat k-non-collapsed ancient soliton to Ricci flow with bounded and nonnegative
curvature operator, the limit of some suitable below-back of the solution converges to a
non-flat gradient shrinking soliton. Thus knowing the geometry of gradient shrinking
solitons also helps us to understand the asymptotic behavior of ancient solitons.

In dimension 2, Hamilton completely classified shrinking gradient Ricci solitons
with bounded curvature and proved that they are the sphere, the projecture space
and the Euclidean space with constant curvature. In dimension 3, due to the efforts of
Ivey [43], Perelman [57], Ni-Wallach [55], and Cao-Chen-Zhu [21], shrinking solitons
have been completely classified: they are quotients of either the round sphere S3, the
round cylinder R× S2 or the shrinking Gaussian soliton R3.

Theorem 3.1 (Perelman [58]). There is no three-dimensional complete non-compact,k-
non-collapsed gradient shrinking soliton with bounded and positive sectional curvature.

Based on the investigation of the shrinking soliton equation Rij + fij +
gij
2t = 0

where t < 0 and applying Hamilton’s strong maximum principle, Perelman proved:

Theorem 3.2. Let (M3, gij , f) be a non-flat gradient shrinking soliton to the Ricci
flow on a three-manifold. Suppose (M3, gij , f) has bounded and nonnegative sectional
curvature and is k-non-collapsed on all scales for some k > 0. Then (M3, gij , f) is
one of the followings:
(a)The round three-sphere S3, or its metric quotients;
(b)The round infinite cylinder S2 × R, or its Z2 quotients.

Under the assumption on k-non-collapsing and nonnegative sectional curvature
condition, Cao generalize the results of Perelman.

Corollary 3.3 (Cao [14]). The only three-dimensional complete non-compact k-non-
collapsed gradient shrinking soliton with bounded and nonnegative sectional curvature
are either R3 or quotients of S2 × R.

The above Perelman’s result has been improved by Ni-Wallach [55] and Naber [54],
in which they dropped the assumption on k-non-collapsing condition and replaced
nonnegative sectional curvature by nonnegative Ricci curvature.

Theorem 3.4 (Ni-Wallach [55]). Let (Mn, gij , f) be a gradient shrinking soliton
whose Ricci curvature is positive and satisfying |Rijkl(x)| ≤ exp (a(r(x) + 1)) for
some a > 0, where r(x) is the distance function to a fixed point on the manifold.
Then M must be compact.

Corollary 3.5. Any three-dimensional complete non-compact gradient shrinking soli-
ton with nonnegative Ricci curvature Ric ≥ 0 and curvature bound |Rm|(x) ≤ Cear(x)

is a quotient of the round sphere S3 or round cylinder S2 × R.

Ni-Wallach proved a more general result about the classification of three-dimensional
gradient shrinking soliton since he assumed neither that gradient shrinking soliton is
k-non-collapsed nor that the curvature is uniformly bounded.
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Corollary 3.6. Let (M3, gij , f) be a complete gradient shrinking soliton with the posi-
tive sectional curvature and the Ricci curvature satisfies |Ric|(y, t) ≤ exp (εr2(x) + β(ε))

where any ε > 0, β(ε) > 0, for all y ∈ Bg(− 1
2 )
(x, r(x)2 ) and t ∈ [− 1

2 , 0]. Then M must

be the quotient of S3.

Under the additional assumption of being gradient, though not k-non-collapsed,
the following was proved by using techniques more in line with maximum principles.

Corollary 3.7 (Naber [54]). Let (M3, gij , f) be a 3-dimensional shrinking gradient
soliton with bounded curvature and Ric ≥ 0. Then (M3, gij) is isometric to R3 or to
a finite quotient of the round sphere S3 or round cylinder S2 × R.

Subsequently, Cao-Chen-Zhu [21] observed that one can remove all the curvature
bound assumption.

Corollary 3.8. Let (M3, gij , f) be a 3-dimensional complete non-flat shrinking gra-
dient soliton. Then (M3, gij) is a quotient of the round sphere S3 or round cylinder
S2 × R.

Corollary 3.9. Let (M3, gij , f) be a 3-dimensional complete non-compact non-flat
shrinking gradient soliton. Then (M3, gij) is a quotient of the round neck S2 × R.

Extending to the non-gradient case the previous of Perelman, Catino-Mastrolia-
Monticelli-Rigoli got a new result.

Corollary 3.10 (Catino-Mastrolia-Monticelli-Rigoli [25]). Let (M3, gij , f) be a 3-
dimensional complete generic shrinking Ricci soliton. Furthermore, if M is non-
compact, assume that the curvature is bounded and |∇X| = o(|X|) as r → ∞. Then
(M3, gij) is isometric to a finite quotient of either S3, R3 or S2 × R.

The first classification theorem with n ≥ 4 given by Gu-Zhu [36] that any non-flat,
k-non-collapsing, rotationally symmetric gradient shrinking soliton with bounded and
nonnegative sectional curvature must be the finite quotients of Sn×R or Sn+1. Later,
Kotschwar [48] improved this result showed that any complete rotationally symmetric
gradient shrinking is the finite quotients of Rn+1, Sn × R or Sn+1.

The combination of the Hamilton’s sphere theorem and Hamilton’s strong max-
imum principle gives a complete classification of 3-dimensional compact manifolds
with nonnegative Ricci curvature. By using his advanced maximum principle in a
similar way, Hamilton [38] also proved a 4-dimensional differentiable sphere theorem.

Theorem 3.11 (Hamilton [38]). A compact 4-manifold with positive curvature oper-
ator is diffeomorphic to the sphere S4 or the real projective space RP4.

Hamilton also obtained the following classification theorem for four-manifolds with
nonnegative curvature operators.

Theorem 3.12. A compact 4-manifold with nonnegative curvature operator is diffeo-
morphic to one of the sphere S4 or CP2 or S2 × S2 or a quotient of one of the spaces
S4 or CP2 or or S3 × S1 or S2 × S2 or S2 × R2 or R4 by a group of fixed point free
isometrics in the standard metrics.
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Naturally, one would ask if a compact Riemannian manifold Mn, with n ≥ 5,
of positive curvature operator (or 2-positive curvature operator) is diffeomorphic to
a space form. This was in fact conjectured so by Hamilton, and proved by Böhm-
Wilking [9], they developed a powerful new method to construct closed convex sets,
which are invariant under the Ricci flow, in the space of curvature operator.

Corollary 3.13. A compact Riemannian manifold of dimension n ≥ 5 with positive
curvature operator is diffeomorphic to a spherical space form.

We remark that in 1988, by using minimal surface theory, Micallef-Moore [51]
proved that any compact simply connected n-dimensional manifold with positive
isotropic curvature is homeomorphic to the n-sphere Sn, and the condition of positive
isotropic curvature is weaker than both positive curvature operator and 1/4-pinched.
Very recently, Brendle-Scheon [7] showed that when the initial metric has 1/4-pinched
sectional curvature (in fact, under the weaker curvature condition that M × R2 has
positive isotropic curvature), the Ricci flow will converge to a spherical space form.
As a corollary, they proved the long-standing Differential Sphere Theorem.

Theorem 3.14 (Brendle-Scheon [7]). Let (Mn, gij , f) be a compact manifold with
(point-wise) 1/4-pinched sectional curvature. Then M is diffeomorphic to Sn or a
quotient of Sn by a group of fixed point free isometrics in the standard metrics.

By using the strong maximum principle to a powerful version, Brendle-Schoen[6]
even obtained the following rigidity result.

Corollary 3.15. Let M be a compact manifold with (point-wise) weakly 1/4-pinched
sectional curvature in the sense that 0 ≤ sec t(P1) ≤ 4 sec t(P2) for all two-planes
P1, P2 ∈ TpM . IfM is not diffeomorphic to a spherical space form, then it is isometric
to a locally symmetric space.

Very recently, there are many new results about the classification of gradient
shrinking solitons with nonnegative curvature operator, bounded nonnegative sec-
tional curvature or some additional conditions. For n = 4, Ni-Wallach [56] showed
that any 4-dimensional complete gradient shrinking soliton with nonnegative curva-
ture operator and positive isotropic curvature, satisfying certain additional assump-
tions, is either a quotient of S4 or a quotient of S3 × R. Based on this result, Naber
[54] proved the following result.

Corollary 3.16. Any 4-manifold complete non-compact shrinking Ricci soliton with
bounded nonnegative curvature operator is isometric to either R4 or a finite quotient
of S2 × R2 or S3 × R.

Corollary 3.17. A 4-manifold non-flat complete non-compact shrinking Ricci soliton
with bounded nonnegative curvature operator is isometric to a finite quotient of S2×R2

or S3 × R.

For higher dimension, Gu-Zhu [36] proved that any complete, rotationally sym-
metric, non-flat, n-dimensional (n ≥ 3) shrinking Ricci soliton with k-non-collapsing
on all scales and with bounded and nonnegative sectional curvature must be the round
sphere Sn or the round cylinder Sn−1 × R.
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Theorem 3.18 (Petersen-Wylie [61]). If (Mn, gij , f) is a shrinking gradient Ricci
soliton with nonnegative sectional curvature and R ≤ 2ρ, then the universal cover of
M is isometric to either Rn or S2 × Rn−2.

In the complete non-compact case, the identity∫
M

|∇Ric|2e−fdµ =

∫
M

|divRm|2e−fdµ

yields a classification of locally conformally flat gradient shrinking Ricci solitons with
Ricci curvature bounded from below.

Theorem 3.19 (Cao-Wang-Zhang [26]). Let (Mn, gij , f), n ≥ 3, be a complete
non-compact gradient shrinking soliton whose Ricci curvature is bounded |Rij |(x) ≤
exp(a(r(x) + 1)) Assume that it is locally conformally flat. Then its universal cover
is either Rn, or Sn−1 × R.

Applying a theorem about Riemannian curvature tensor growing, Munteanu-Wang
[53] proved a gap result for gradient shrinking solitons.

Corollary 3.20. Let (Mn, gij , f) be a shrinking gradient Ricci soliton. If |Rc| ≤
1

100n2 on M , then M is isometric to the Gaussian soliton.

Under the assumption that DRic decays polynomially with a degree depending
on other geometric quantities, Cai [10] proved:

Corollary 3.21. Let (Mn, gij , f) be a complete non-compact gradient shrinking Ricci
soliton with bounded nonnegative sectional curvature. Assume that there exist δ > 0
such that

∫
M
eδf |DRic|dvolg < ∞. Then (Mn, gij) is isometric to N× Rm, where N

is a compact Einstein manifold.

Note that this is the first rigidity result in high dimensions without assumptions
on the Weyl tensor. The potential function is known to grow quadratically with
respect the distance from a fixed point, so the condition on DRic says that it decays
exponentially. The Cheeger-Gromoll soul theorem states that an open manifold with
nonnegative sectional curvature is diffeomorphic to a vector bundle over a compact
sub-manifold called a soul. The pull-back metric on the bundle can be highly twisted.
However, if there exists a gradient soliton structure on such a bundle, then the metric
has to be locally trivial, provided that the decay condition is satisfied. The decay
condition on DRic is imposed in the region where f is large. And the next corollary
deals with the rigidity under a condition on DRic imposed in the region where f is
small.

Corollary 3.22. Let (Mn, gij , f) be a complete gradient shrinking Ricci soliton with
bounded nonnegative sectional curvature. Assume that the minima of f is a smooth
compact non-degenerate critical sub-manifold, DRic and D2Ric vanish on the min-
ima, then (Mn, gij) is non-compact and isometric to N× Rm, where N is a compact
Einstein manifold.

Theorem 3.23 (Yang-Zhang [68]). Let (M4, gij , f) be a 4-dimensional gradient shrink-
ing Ricci soliton. If div4Rm = 0 or div3Rm(▽f) = 0 or div3W (▽f) = 0, then
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(M4, gij) is either
(a)Einstein, or
(b)a finite quotient of the Gaussian shrinking soliton R4, S2×R2 or the round cylinder
S3 × R.

As a generalization,

Corollary 3.24. Let (M4, gij , f) be a 4-dimensional rigid gradient shrinking Ricci
soliton, then (M4, gij) is either
(a)Einstein, or
(b)a finite quotient of the Gaussian shrinking soliton R4, S2×R2 or the round cylinder
S3 × R.

The Ricci soliton can be interpreted as a prescribing condition on the Ricci tensor
of g, that is on the trace part of the Riemannian tensor. Thus, we can except classi-
fication results for these structures only assuming further conditions on the traceless
part of the Riemannian tensor, i.e., on the Weyl tensor W , if n ≥ 4. For higher
dimensions, it has been proven by several authors under curvature conditions on the
Weyl tensor that complete locally conformally flat gradient shrinking Ricci solitons
are finite quotients of either the round sphere Sn, or the Gaussian shrinking soliton
Rn, or the around cylinder Sn−1 × R. Under the weaker condition of harmonic Weyl
tensor, n-dimensional complete gradient shrinking solitons are rigid in the sense that
they are either Einstein, or finite quotient of the product Nk × Rn−k, 0 ≤ k ≤ n,
where Nk is a k-dimensional Einstein manifold of positive scalar curvature.

The so called Weyl tensor is defined by the following decomposition formula in
dimension n ≥ 3,

Wijkl = Rijkl+
R

(n− 1)(n− 2)
(gikgjl−gilgjk)−

1

n− 2
(Rikgjl−Rilgjk+Rjlgik−Rjkgil)

The Cotton tensor is defined as

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR)

The Schouten tensor is defined as

Aij = Rij −
R

2(n− 1)
gij

The Weyl tensor satisfies all the symmetries of the curvature tensor and all its traces
with the metric are zero. Recall that a Riemannian manifold is locally conformally
flat if the Weyl tensor vanishes.

Theorem 3.25 (Catino-Mantegazza [22]). Any compact n-dimensional, locally con-
formally flat Ricci soliton is quotient of Rn, Sn and Hn with their canonical metrics,
for every n ∈ N.

The analysis of Ktoschwar [48] of rotationally invariant shrinking gradient Ricci
solitons gives the following classification where the Gaussian soliton is defined as the

flat Rn with a potential function f = α|x|2
2n , for a constant α.
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Theorem 3.26. The shrinking gradient locally conformally flat Ricci solitons of di-
mension n ≥ 4 are given by the quotients of Sn, the Gaussian solitons with α > 0 and
the quotients of Sn−1 × R.

Instead of assuming the uniform bound on curvature, we only need very mild
growth control on the curvature. Maybe more importantly we do not assume that
the gradient shrinking soliton is k-non-collapsed, as required by Perelman.

Theorem 3.27 (Ni-Wallach [55]). Let (Mn, gij , f) be a gradient shrinking Ricci soli-
ton whose Ricci curvature is nonnegative. If n ≥ 4, we assume that (Mn, gij , f) is
locally conformally flat. Assume further that |Rijkl|(x) ≤ exp(a(r(x) + 1)) for some
a > 0, where r(x) is the distance function to a fixed point on the manifold. Then its
universal cover is either Rn, Sn, or Sn−1 × R.

Corollary 3.28. Let (Mn, gij , f), n ≥ 4, be a complete noncompact gradient shrink-
ing Ricci soliton whose Ricci curvature satisfies |Rijkl|(x) ≤ exp(a(r(x)+1)) for some
constant a > 0, where r(x) is the distance function to a fixed point on the manifold.
Assume that (Mn, gij) is locally conformally flat, then its universal cover is either
Rn, or Sn−1 × R.

If we assume neither that gradient shrinking soliton is k-non-collapsed nor that
the curvature is uniformly bounded.

Corollary 3.29. Let (Mn, gij , f) be a locally conformally flat gradient shrinking Ricci
soliton whose Ricci curvature is nonnegative satisfying |Ric|(y, t) ≤ exp (εr2(x) + β(ε))

where any ε > 0, β(ε) > 0, for all y ∈ Bg(− 1
2 )
(x, r(x)2 ) and t ∈ [− 1

2 , 0]. Then its uni-

versal cover is either Rn, Sn, or Sn−1 × R.

By a maximality argument, passing to the universal covering of the manifold,
Catino-Mantegazza [22] got the following conclusion.

Corollary 3.30. If n ≥ 4, any n-dimensional locally conformally flat Ricci soli-
ton with constant scalar curvature is either a quotient of Sn, Rn and Hn with their
canonical metrics, or a quotient of the Riemannian products Sn−1×R and R×Hn−1.

Corollary 3.31. If n ≥ 4, any n-dimensional locally conformally flat Ricci soliton
with nonnegative Ricci tensor is either a quotient of Rn and Sn with their canonical
metrics, or a quotient of Sn−1 × R or it is a warped product Sn−1 of on a proper
interval of R.

Based on the Hamilton-Ivey type pinching estimate on higher dimension:

R ≥ (−ν)
[
log(−ν) + log(1 + t)− n(n+ 1)

2

]
at all points and all times t ≥ 0, whenever ν < 0. Zhang obtained the following
theorem (without any curvature bound assumption).

Theorem 3.32 (Zhang [69]). Any complete gradient shrinking soliton with vanishing
Weyl tensor must be the finite quotients of Rn, Sn, or Sn−1 × R.
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Note that complete locally conformally flat gradient Ricci solitons, i.e. Wikjl = 0.
And any rationally symmetric metric has vanishing Weyl tensor.

By using a different set of formulas Petersen-Wylie[60] proved:

Corollary 3.33. Let (Mn, gij , f) be a complete shrinking gradient soliton of dimen-
sion n ≥ 3 such that

∫
M

|Ric|2e−fdvolg < ∞ and W = 0. Then (Mn, gij) is infinite
of Rn, Sn, or Sn−1 × R.

If relax the Weyl curvature condition and instead assume that the scalar curvature
is constant they also got a nice general classification.

Corollary 3.34. Let (Mn, gij , f) be a complete shrinking gradient Ricci soliton with
n ≥ 3, constant scalar curvature, and W (∇f, ·, ·,∇f) = o(|∇f |2). Then M is a flat
bundle of rank 0, 1 or n over an Einstein manifold.

Then Catino [15] generalized the previous result concerning the classification of
complete gradient shrinking Ricci solitons to the case when Ricci tensor is nonnegative
and a very general pinching condition on the Weyl tensor is in force, without assume
the soliton metric to be locally conformally flat.

Corollary 3.35. Any k-dimensional complete gradient shrinking Ricci soliton with
nonnegative Ricci curvature and satisfying

|W |S ≤
√

2(n− 1)

n− 2

(
|T | − 1√

n(n− 1)
S

)2

is a finite quotient of Rn, Sn, or Sn−1 × R. Where T = Ric− 1
nSg.

In higher dimensions,

Corollary 3.36 (Catino-Mastrolia-Monticelli-Rigoli [25]). Let (Mn, gij , f) be a com-
plete generic shrinking Ricci soliton of dimension n > 3. Furthermore, if M is non-
compact, assume that the curvature is bounded and |∇X| = o(|X|) as r → ∞. If for
some a > 0, |Ric| ≤ aS, and

|W |S ≤
√

2(n− 1)

n− 2

(
|T | − 1√

n(n− 1)
S

)2

Then (Mn, gij) is isometric to a finite quotient of either Rn, Sn, or Sn−1 × R.

With harmonic Weyl tensor, Menunteanu-Sesum [52] extended the results from
above.

Theorem 3.37. Any n-dimensional complete gradient shrinking Ricci soliton with
harmonic Weyl tensor is a finite quotient of Rn, Sn, or Sn−1 × R.

With the following definitions,

div4(W ) = ∇k∇j∇l∇iWikjl

div3(C) = ∇i∇j∇kWijk
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Where W and C are the Weyl and Cotton tensors, respectively. Note that, in di-
mension n ≥ 4, div4(W ) = 0 if and only if div3(C) = 0. Then Catino used these
equations to improve the results on gradient shrinking solitons with harmonic Weyl
tensor in [69].

Corollary 3.38 (Catino-Mastrolia-Monticelli [24]). Every complete gradient shrink-
ing Ricci soliton of dimension n ≥ 4 with div4(W ) = 0 on M is either Einstein is
isometric to a finite quotient of Nn−k×Rk, (k > 0), the product of a Einstein manifold
Nn−k with the Gaussian shrinking soliton Rk.

Dimension four is the lowest dimension where there are interesting examples of
shrinking gradient Ricci solitons. The first examples where constructed by Koiso
[46] and Cao [11]. Note that all of the known interesting examples are Kähler. In
dimension 4, the Hodge star splits the space of 2-forms into the self dual and anti-
self dual parts and consequently the curvature tensor and Weyl tensor respect this
splitting. It is thus natural to consider self dual and anti-self dual part of Weyl
curvature W± commonly called the half Weyl curvature. Chen-Wang [27] and Cao-
Chen [18] proved that half conformally flat (W± = 0) four dimensional gradient
shrinking Ricci soliton is a finite quotient of S4, CP2, R4, or S3 × R.

Half conformally flat metrics are also known as self-dual or anti-self-dual ifW− = 0
or W+ = 0, respectively. For anti-self-dual soliton, Chen-Wang [27] proved:

Theorem 3.39. Any 4-dimensional complete gradient shrinking Ricci soliton with
bounded curvature and W+ = 0 must be isometric to finite quotients of S4, CP2, R4,
or S3 × R.

By a theorem of [1], a compact 4-dimensional half-conformally Einstein manifold
(of positive scalar curvature) is S4 or CP2. Combing Hitchin’s theorem, Cao arrive
the following classification of 4-dimensional compact half-conformally flat gradient
shrinking Ricci solitons which was first obtained by Chen-Wang [27].

Corollary 3.40. Let (M4, gij , f) be a compact half-conformally flat gradient shrink-
ing Ricci soliton, then (M4, gij) is isometric to the standard S4 or CP2.

We know that a compact four-dimensional gradient shrinking Ricci soliton with
δW± = 0 and half two-nonnegative curvature operator (which is equivalent to half
nonnegative isotropic curvature) is finite quotient of S4 for Kähler-Einstein. Then
Wu-Wu-Wylie [67] complete the classification of four-dimensional gradient shrinking
Ricci solitons with harmonic half Weyl curvature.

Corollary 3.41. A four-dimensional gradient shrinking Ricci soliton with δW± = 0
is either Einstein, or a finite quotient of S2 × R2, R4, or S3 × R.

Bach tensor was introduced by Bach in early 1920s’ to study conformally relativity.
On any n-dimensional manifold (Mn, gij), (n ≥ 4) the Bach tensor is defined by

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklW

kl
ij

Here Wikjl is the Weyl tensor. It is easy to see that if (Mn, gij) is either locally
conformally flat (i.e. Wikjl = 0) or Einstein, then (Mn, gij) is Bach-flat: Bij = 0.
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This can be seen as a vanishing condition involving second and zero order terms in
Weyl, which a posteriori captures a more rigid class of solitons than in the harmonic
Weyl case. In addition, in dimension n = 4, if a 4-manifold is half-conformally
flat or locally conformal to an Einstein 4-manifold, then it is also Bach flat. Bach
flat metrics are precisely the critical points of the conformally invariant functional
metrics. Recent, Cao-Chen [18] shown that Bach-flat gradient shrinking Ricci solitons
are either Einstein, or finite quotients of Rn or Nn−1 × R, where Nn−1 is an (n− 1)-
dimensional Einstein manifold.

Theorem 3.42 ( Cao-Chen [18]). Let (Mn, gij , f), (n ≥ 5) be a complete Bach-flat
gradient shrinking Ricci soliton, then (Mn, gij) is either
(a)Einstein, or
(b)a finite quotient of the Gaussian shrinking soliton Rn, or
(c)a finite quotient of Nn−1×R, where Nn−1 is an Einstein manifold of positive scalar
curvature.

Corollary 3.43. Let (M4, gij , f) be a 4-dimensional complete Bach-flat gradient
shrinking Ricci soliton, then (M4, gij) is either
(a)Einstein, or
(b)Locally conformally flat, hence a finite quotient of either the Gaussian shrinking
soliton R4 or the round cylinder S3 × R.

In their study of the geometry of locally conformally flat and Bach flat gradient
solitons, Cao-Chen [19] introduced a three tensor Dijk related to the geometry of the
level surfaces of the potential function:

Dijk =
1

n− 2
(Ajk ▽i f −Aik ▽j f) +

1

(n− 1)(n− 2)
(gjkEil − gikEjl)∇lf

Where Aij is the Schouten tensor and Eij is the Einstein tensor. The vanishing of D,
which is a consequence of the curvature assumption on Weyl, is crucial ingredient in
their classification results. Then Cao-Chen [18] proved that:

Corollary 3.44. Let (Mn, gij , f), (n ≥ 4) be a complete gradient shrinking Ricci
soliton with Dijk = 0, then
(a) (M4, gij , f) is either Einstein, or a finite quotient of R4 or S3 × R;
(b) For n ≥ 5, (Mn, gij , f) is either Einstein, or a finite quotient of the Gaussian
shrinking soliton Rn, or a finite quotient of Nn−1 × R, where Nn−1 is an Einstein.

4 Classification of gradient steady Ricci solitons

Next, we will study the gradient steady Ricci solitons, which are possible Type II
singularity models and correspond to translating solutions in the Ricci flow.

Hamilton [41] showed that the only complete steady soliton on a 2-dimensional
manifold with bounded scalar curvature which attains its maximum at a point or with
positive curvature is the cigar soliton up to a scaling. For n ≥ 3, Bryant showed that
there exists an unique complete rotationally symmetric gradient Ricci soliton on Rn up
to scaling. In higher dimensions, Cao-Chen proved in [19] that complete n-dimensional
(n ≥ 3) locally conformally flat gradient steady Ricci solitons are isometric to either
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a finite quotient of or the Bryant soliton. When n = 4, Chen-Wang [27] showed that
any four dimensional complete half-conformally flat gradient steady Ricci soliton is
either Ricci flat, or isometric to the Bryant soliton. Again, these are rigidity results
under zero order conditions on Weyl.

In the steady three dimensional case the known examples are given by quotients
of R3, R × Σ2 and the rotationally symmetric one constructed by Bryant. It is still
an open problem to classify three dimensional steady solitons. But it is well-known
that compact gradient steady solitons must be Ricci flat.

Provided that (Mn, gij , f) satisfies certain asymptotic conditions near infinity and
also inspired in part by Robinson’s proof of the uniqueness of the Schwarzschild black
hole. Brendle proved the following result.

Theorem 4.1 (Brendle [4]). Let (M3, gij , f) be a three-dimensional steady Ricci
soliton. Supposed that the scalar curvature is positive and approaches zero at infin-
ity. Moreover, assume that there exist an exhaustion of M by bounded domains Ωl
such that liml→∞

∫
∂Ωl

eu(R)⟨∇R + ψ(R)∇f, υ⟩ = 0. Then (M3, gij , f) is rotationally
symmetric.

Where the function ψ : (0, 1) → R so that ∇R + ψ(R)∇f = 0 on the Bryant

soliton, and u(s) = logψ(s) +
∫ s

1
2

(
3

2(1−t) −
1

(1−t)ψ(t)

)
dt.

In the seminal paper by Brendle, it was shown that Bryant soliton is the only
non-flat, k-collapsed, steady soliton, then Brendle proving a famous conjecture by
Perelman [57].

Theorem 4.2 (Brendle [3]). Let (M3, gij , f) be a three-dimensional complete steady
gradient Ricci soliton which is non-flat and k-non-collapsed. Then (M3, gij , f) is
rotationally symmetric, and is therefore isometric to the Bryant soliton up to scaling.

In higher dimension, motivated in part by the work of Simon-Solomon [65], which
deals with uniqueness question for minimal surfaces with prescribed tangent cones at
infinity, Brendle [5] also proved:

Corollary 4.3. Let (Mn, gij , f) be a steady gradient Ricci soliton of dimension
n ≥ 4 which has positive sectional curvature and is asymptotically cylindrical. Then
(Mn, gij , f) is rotationally symmetric. In particular, (Mn, gij , f) is isometric to the
n-dimensional Bryant soliton up to scaling.

Where we say that (Mn, gij , f) is asymptotically cylindrical if the following holds:
(a) The scalar curvature satisfies a1

d(p0,p)
≤ R ≤ a2

d(p0,p)
at infinity, where a1 and a2

are positive constants.
(b) Let pm be an arbitrary sequence of marked points going to infinity. Consider the
rescaled metrics ĝ(m)(t) = r−1

m Φ∗
rm(g), where rmR(pm) = n−1

2 +o(1). As m→ ∞, the

flows (M, ĝ(m)(t), pm) converge in the Cheeger-Gromov sense to a family of shrinking
cylinders (Sn−1 × R, ḡ(t)), t ∈ (0, 1). The metric ḡ(t) is given by ḡ(t) = (n − 2)(2 −
2t)gSn−1 + dz ⊗ dz, where gSn−1 denotes the standard metric on Sn−1 with constant
sectional curvature 1.

Under integral assumptions on the scalar curvature, and using the hypothesis that
the steady Ricci soliton has nonnegative sectional curvature, implies that the scalar
curvature is nonnegative, bounded, and globally Lipschitz, and thus R→ 0 at infinity,
Catino-Mastrolia-Monticelli [23] proved:
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Theorem 4.4 (Catino-Mastrolia-Monticelli [23]). Let (Mn, gij , f) be a complete gra-
dient steady Ricci soliton of dimension n ≥ 3 with nonnegative sectional curvature.
Suppose that limr→∞ inf 1

r

∫
Br(o)

R = 0. Then, (Mn, gij) is isometric to a quotient of

Rn or Rn−2 × Σ2, where Σ2 is the cigar soliton.

In the three dimensional case, they proved the analogous results under weaker
assumptions.

Corollary 4.5. Let (M3, gij , f) be a three dimensional complete gradient steady Ricci
soliton. Suppose that limr→∞ inf 1

r

∫
Br(o)

R = 0. Then, (M3, gij) is isometric to a

quotient of R3 or R× Σ2, where Σ2 is the cigar soliton.

As a consequence of the integral decay estimate in [31], it follows that the assump-
tion g has less than quadratic volume growth, i.e., vol(Br(0)) = o(r2) as r → ∞. This
implies the following.

Theorem 4.6 (Catino-Mastrolia-Monticelli [23]). The only complete gradient steady
Ricci solitons of dimension n ≥ 3 with nonnegative sectional curvature and less than
quadratic volume growth are quotients of Rn−2 × Σ2.

In particular, in dimension three the nonnegativity assumption on the curvature
is automatically satisfied [17].

Corollary 4.7. The only three dimensional complete gradient steady Ricci solitons
less than quadratic volume growth are quotients of R× Σ2 .

For n ≥ 4, it is natural to ask if the Bryant soliton is the only complete non-
compact, positively curved, locally conformally flat gradient steady soliton.

Motivated in part by the works of physicists Israel [42] and Robinson [63] concern-
ing the uniqueness of the Schwarzschild black hole among all static, asymptotically
flat vacuum space-times. Cao-Chen [19] given an affirmative answer.

Theorem 4.8 (Cao-Chen [19]). Let (Mn, gij , f), n ≥ 3, be a n-dimensional com-
plete non-compact locally conformally flat gradient steady Ricci soliton with positive
sectional curvature. Then (Mn, gij , f) is isometric to the Bryant soliton.

Corollary 4.9. Let (Mn, gij , f), n ≥ 3, be a n-dimensional complete non-compact
locally conformally flat gradient steady Ricci soliton. Then (Mn, gij , f) is either flat
or isometric to the Bryant soliton.

By the analysis of Bryant in the steady case, [8] showing that there exists a unique
non-flat steady gradient soliton which is a warped product of Rn−1 on a half line of
R, Catino-Mantegazza [22] got the following classification.

Corollary 4.10. The steady gradient locally conformally flat Ricci solitons of dimen-
sion n ≥ 4 are given by the quotients of Rn and the Bryant soliton.

With vanishing Weyl tensor,

Theorem 4.11 (Cao-Chen [19]). Suppose n ≥ 4, any complete n-dimensional gradi-
ent steady soliton with vanishing Weyl tensor must be either flat or isometric to the
Bryant soliton.
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Without requiring the curvature to be bounded globally, but assume the soliton
is anti-self-dual, Chen-Wang [27] proved:

Corollary 4.12. Any 4-dimensional complete gradient steady Ricci soliton withW+ =
0 must be isometric to one of the following two types:
(a) The Bryant soliton up to a scaling.
(b) A manifold which is anti-self-dual and Ricci flat.

Very recently, Kim [46] get a new classification with harmonic Weyl curvature.

Corollary 4.13. A 4-dimensional complete steady gradient Ricci soliton with δW = 0
is either Ricci flat, or isometric to the Bryant soliton.

Classification results have been obtained for Bach flat steady solitons case in di-
mension n ≥ 4. In particular, it follows that Bach flatness implies local conformally
flatness. It is still an open question if similar results can be obtained under first order
vanishing conditions on Weyl.

The Bach tensor is defined as

Bij =
1

n− 3
∇k∇lWikjl +

1

n− 2
RklW

kl
ij

here Wikjl is the Weyl tensor. In terms of Cotton tensor

Cijk = ∇iRjk −∇jRik −
1

2(n− 1)
(gjk∇iR− gik∇jR)

we also have

Bij =
1

n− 2
(∇kCkij +RklW

kl
ij )

when n = 3, the expression Bij is defined as Bij = ∇kCkij . For Bach flat gradient
Ricci solitons, there are some results concerning the classification.

Theorem 4.14 (Cao-Catino-Chen-Mantegazza-Mazzieri [20]). Let (Mn, gij , f), n ≥
4, be a complete steady gradient Ricci soliton with positive Ricci curvature such that
the scalar curvature R attains its maximum at some interior point. If in addition
(Mn, gij , f) is Bach flat, then it is isometric to the Bryant soliton up to a scaling
factor.

Corollary 4.15. Let (M3, gij , f) be a three-dimensional complete steady gradient
Ricci soliton with divergence-free Bach tensor (i.e., divB = 0). Then (M3, gij , f) is
either Einstein or locally conformally flat.

The assumption of Bach flat or divergence-free Bach is weaker than that of locally
conformally flat. Then using the three-dimensional classification of locally conformally
flat gradient steady Ricci solitons, they proved:

Corollary 4.16. A complete three-dimensional gradient steady Ricci soliton with
divergence-free Bach tensor is either flat or isometric to the Bryant soliton up to a
scaling factor.
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Corollary 4.17. Let (Mn, gij , f), (n ≥ 4), be a complete gradient steady Ricci soliton
with Dijk = 0. If the Ricci curvature is positive and the scalar curvature R attains its
maximum at some interior point, then (Mn, gij , f) is isometric to the Bryant soliton
up to a scaling factor.

Combining with the covariant 3-tensor Dijk defined as before, Cao-Chen [18] im-
proved the above result for four dimension with vanishing Dijk.

Corollary 4.18. Let (M4, gij , f) be a complete gradient steady Ricci soliton with
Dijk = 0, then (M4, gij , f) is either Ricci flat or isometric to the Bryant soliton.

Theorem 4.19 (Catino-Mastrolia-Monticelli [24]). Every three dimensional complete
gradient steady Ricci soliton with div3(C) = 0 on M is isometric to either a finite
quotient of R3 or the Bryant soliton up to scaling.

5 Classification of gradient expanding Ricci solitons

Expanding gradient solitons are self-similar solutions to the Ricci flow that flows by
diffeomorphism and expanding homothety, they model Type III singularities in the
Ricci flow and provide examples of equality in Hamilton’s Harnack inequality [40].
The case of expanding solitons is clearly the less rigid. However, some properties and
classification theorems have been proved in the recent years by various authors, and
several interesting results under vanishing conditions on Weyl have been obtained.

Schulze-Simon [66] have constructed solitons to Ricci flow coming out of the
asymptotic cone at infinity of manifolds with positive curvature operator and shown
that such a solution to Ricci flow must be an expanding gradient soliton. The simplest
example of non-Einstein expanding gradient soliton is the Gaussian soliton. Various
aythors have obtained uniqueness results concerning expanding gradient solitons. In
[28], Chen-Zhu show that a non-compact expanding gradient soliton with positive
sectional curvature and uniformly pinched Ricci curvature must be the flat expanding
Gaussian soliton. In addition, Bryant has constructed non-flat expanding gradient
solitons which are rotationally symmetric and are asymptotic to a cone at infinity.

Theorem 5.1 (Peterman-Wylie [60]). The only 3-dimensional expanding gradient
Ricci solitons with constant curvature are quotients of R3, H2 × R, or H3.

It has been known for some time that compact expanding Ricci solitons are neces-
sarily trivial [32], the next theorem below, extend this conclusion to the non-compact
setting up to imposing suitable integral conditions on potential function under Lp

conditions on the relevant quantities.

Theorem 5.2 (Pigolia-Rimoldi-Setti [59]). A complete expanding gradient Ricci soli-
ton (Mn, gij , f) is trivial provided |∇f | ∈ Lp(M, e−fdvol), for some 1 ≤ p ≤ +∞.

Corollary 5.3. Let (Mn, gij , f) be a complete expanding gradient Ricci soliton. Let S
be the scalar curvature of M . If S ≥ 0 and S ∈ L1(M, e−fdvol), then M is isometric
to the standard Euclidean space.

Additionally, [20] have shown that an expanding gradient soliton with positive
Ricci curvature must be rotationally symmetric under certain assumption on the
Bach tensor.
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Theorem 5.4 (Cao-Catino-Chen-Mantegazza-Mazzieri [20]). Let (Mn, gij , f), n ≥
4, be a complete Bach flat gradient expanding Ricci soliton with nonnegative Ricci
curvature, then it is rotationally symmetric.

Corollary 5.5. Let (M3, gij , f) be a three-dimensional complete expanding gradient
Ricci soliton with divergence-free Bach tensor and nonnegative Ricci curvature. Then
(M3, gij , f) is rotationally symmetric.

Based on the works of Brendle [3], [5] in which it is shown that a steady Ricci
soliton with positive sectional curvature that parabolically blows down to a shrinking
cylinder must be rotationally symmetric. Chodosh proved:

Theorem 5.6 (Chodosh [29]). Supposed that (Mn, gij , f) is an expanding gradient
soliton (for n ≥ 3) that has positive sectional curvature and is asymptotically conical
as a soliton, then (Mn, gij , f) is rotationally symmetric.

A Riemannian manifold (Mn, gij) is Ricci pinched if there exists some ε ∈ (0, 1]
such that Ric(g) ≥ ε

nRgg. Deruelle [30] didn’t assume a bound on the full curvature
tensor, but derived such bounds by the sole assumption of being Ricci pinched. Then
he proved:

Theorem 5.7 (Deruelle [30]). Let (Mn, gij , f) be an expanding gradient Ricci soliton
with nonnegative scalar curvature which is Ricci pinched. Then,
(a)(Mn, gij , f) is asymptotically conical to a Ricci flat metric cone at exponential
rate.
(b)If n = 4, (M4, gij , f) is isometric to the Gaussian soliton.
(c)If g is sufficiently pinched, i.e., if ε ∈ [ε(n), 1], then (Mn, gij , f) is isometric to
the Gaussian soliton.

Under integral assumptions on the scalar curvature, Catino-Mastrolia-Monticelli
[23] proved:

Corollary 5.8. Let (Mn, gij , f) be a complete expanding gradient Ricci soliton of
n ≥ 3 with nonnegative sectional curvature. If R ∈ L1(Mn), then M is isometric to
a quotient of the Gaussian soliton Rn.

In the three dimensional case, they also proved the analogous results under weaker
assumptions.

Corollary 5.9. Let (M3, gij , f) be a three dimensional complete expanding gradient
Ricci soliton of with nonnegative Ricci curvature. If R ∈ L1(M3), thenM is isometric
to a quotient of the Gaussian soliton R3.

Using neither geometric decay nor nonnegative curvedness, but with harmonic
Weyl curvature δW = 0, Kim [46] proved:

Theorem 5.10 ( Kim [46]). A 4dimensional complete expanding gradient Ricci soli-
ton with harmonic Weyl curvature is one of the following:
(a) gij is an Einstein metric with f a constant function.
(b) gij is isometric to a finite quotient of R2 ×Nλ where R2 has the Euclidean metric
and Nλ is a 2-dimensional Riemannian manifold of constant curvature λ < 0 and
f = λ

2 |x|
2 on the Euclidean factor.

(c) gij is locally conformally flat.
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Homogeneous solutions to the Ricci flow have long been studied for both their
relative simplicity and their appearance as limits of the flow. Furthermore, a ho-
mogeneous Ricci soliton metric naturally arise as a preferred choice of metric in the
absence of Einstein metrics. The classification of homogeneous Ricci soliton spaces
has also been a central problem. In this respect, Jablonski [45] proved an important
result:

Theorem 5.11. Compact homogeneous Ricci solitons are necessarily Einstein.

6 Rigidity of gradient Ricci solitons

In particularly, a gradient soliton is said to be rigid if it is isometric to a quotient of
N × Rk where N is an Einstein manifold and f = ρ

2 |x|
2 on the Euclidean factor. As

generalizations of Einstein manifolds, Ricci solitons enjoy some rigidity properties,
which can take the form of classification(metric rigidity), or alternatively, triviality of
the soliton structure(soliton rigidity). It is known that not all gradient solitons are
rigid. Here we summarize several natural conditions that characterize rigid gradient
solitons. In dimension 2 [41] and 3 [43] all compact solitons are rigid. Building on
the work of Ni-Wallach [56], Naber has shown that every 4-dimensional complete
shrinking soliton with nonnegative curvature operator is rigid. The famous Bryant
soliton show that there are non-rigid rotationally symmetric steady and expanding
gradient solitons with positive curvature operator. Moreover, it is also not hard to
see that, in any dimension, compact steady or expanding solitons are rigid.

For compact manifolds it is easy to see that they are rigid precisely when the
scalar curvature is constant see [32]. More general, Petersen-Wylie [61] proved:

Theorem 6.1 (Petersen-Wylie [61]). A compact gradient soliton is rigid with trivial
f if Ric(∇f,∇f) ≤ 0.

In the non-compact case Perelman has shown that all 3-dimensional shrinking
gradient solitons with nonnegative sectional curvature are rigid.

Theorem 6.2 (Perelman [58]). Any (M3, gij , f) be a complete gradient shrinking
Ricci soliton with nonnegative sectional curvature is rigid.

If a soliton is rigid, then the ”ridial” curvature vanishing, i.e., R(·,▽f)▽ f = 0
and the scalar curvature is constant. Conversely we just saw that constant scalar
curvature and radial Ricci flatness: Ric(▽f,▽f) = 0 each imply rigidity on compact
solitons. In the non-compact case Petersen-Wylie [61] showed:

Corollary 6.3. A shrinking (expanding) gradient soliton is rigid if and only if it has
constant scalar curvature and is radially flat, i.e., sec(E,▽f) = 0.

Corollary 6.4. All complete non-compact shrinking gradient solitons of co-homogeneity
1 with nonnegative Ricci curvature and sec(E,▽f) ≥ 0 are rigid.

A function u is rectifiable if it can be written as u = h(r) where r is a distance
function. For rectifiable shrinking solitons with nonnegative radial curvature, they
proved:
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Corollary 6.5. A complete, non-compact, rectifiable, shrinking gradient soliton with
nonnegative radial sectional curvature, and nonnegative Ricci curvature is rigid.

Then they showed that all gradient solitons with maximal symmetry are rigid.

Theorem 6.6. All homogeneous gradient Ricci solitons are rigid.

Using the maximum principles for the Laplacian and the f -Laplacian and under
the assumptions that the Ricci tensor is nonnegative and its sectional curvature has
an upper bound.

Theorem 6.7 (López-Rı́o [49]). Let (Mn, gij , f) be a complete gradient shrinking
Ricci soliton with bounded nonnegative Ricci tensor. Then (Mn, gij) is rigid if and

only if the sectional curvature is bounded from above by |Ric|2
2(R2−|Ric|2) .

With Weyl tensor, Petersen-Wylie [60] got the following result

Theorem 6.8. Any gradient soliton with constant scalar curvature, ρ ̸= 0 and
W (∇f, ·, ·,▽f) = o(|∇f |2) is rigid.

Then Fernández-Ŕıo [50] showed that an n-dimensional compact Ricci soliton is
rigid if and only if it has harmonic Weyl tensor. Also, Munteanu-Sesum [52] proved
that any n-dimensional complete non-compact gradient shrinking with harmonic Weyl
tensor is rigid. Building on this, Catino-Mastrolia-Monticelli proved that gradient
shrinking Ricci solitons are rigid if div4W = 0. More recently, Yang-Zang [68] ob-
tained new results, as follows:

Theorem 6.9 (Yang-Zang [68]). Let (Mn, gij , f) be a complete non-compact gradient
shrinking Ricci soliton. If div4W = 0, then (Mn, gij) is rigid.

Corollary 6.10. Let (Mn, gij , f) be a complete non-compact gradient shrinking Ricci
soliton. If div4Rm = 0 or div3Rm(∇f) = 0 or div3W (∇f) = 0, then (Mn, gij) is
rigid.
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