Ordered line and skew-fields in the Desargues affine plane

O. Zaka and J. F. Peters

Abstract. This paper introduces ordered skew fields that result from the construction of a skew field over an ordered line in a Desargues affine plane. A special case of a finite ordered skew field in the construction of a skew field over an ordered line in a Desargues affine plane in Euclidean space, is also considered. Two main results are given in this paper: (1) every skew field constructed over a skew field over an ordered line in a Desargues affine plane is an ordered skew field and (2) every finite skew field constructed over a skew field over an ordered line in a Desargues affine plane is an ordered skew field and (2) every finite skew field constructed over a skew field over an ordered line in a Desargues affine plane in \mathbb{R}^2 is a finite ordered skew field.

M.S.C. 2010: 51-XX; 51Axx; 51A30; 51E15.

Key words: Affine Pappus Condition; ordered line; ordered skew-field; Desargues affine plane.

1 Introduction

The foundations for the study of the connections between axiomatic geometry and algebraic structures were set forth by D. Hilbert [10], recently elaborated and extended in terms of the algebra of affine planes in, for example, [13], [5, Sec.IX.3, p.574]. E.Artin in [3] shows that any ordering of a plane geometry is equivalent to a weak ordering of its skew field. He shows that that any ordering of a Desargues plane with more than four points is (canonically) equivalent to an ordering of its field. In his paper on ordered geometries [24], P. Scherk considers the equivalence of an ordering of a Desarguesian affine plane with an ordering of its coordinatizing division ring. Considerable work on ordered plane geometries has been done (see, *e.g.*, J. Lipman [15], V.H. Keiser [12], H. Tecklenburg [27], H. S. M. Coxeter [6] and L. A. Thomas [28, 29]).

In this paper, we utilize a method that is naive and direct, without requiring the concept of coordinates. Our results are straightforward and constructive. For this reason we begin by giving a suitable definition for our search for lines in Desargues affine planes, based on the meaning of betweenness given by Hilbert [10, §3].

Balkan Journal of Geometry and Its Applications, Vol.26, No.1, 2021, pp. 141-156.

[©] Balkan Society of Geometers, Geometry Balkan Press 2021.

In addition, we introduce ordered skew files that result from the construction of a skew field over an ordered line in a Desargues affine plane. A special case of a finite ordered skew field in the construction of a skew field over an ordered line in a Desargues affine plane in Euclidean space, is also considered.

Based on the works of E.Artin [3] and J. Lipman [15] on ordered skew fields, we prove that the skew field that the constructed over an ordered line in a Desargues affine plane is an ordered skew field. To prove this, we consider ordered Desargues affine plane based on the definition given by E.Artin [3], but in this case the ordered line is given a suitable definition without the use of *coordinates*.

Two main results are given in this paper, namely, every skew field constructed over a skew field over an ordered line in a Desargues affine plane is an ordered skew field 4.5. and every finite skew field constructed over a skew field over an ordered line in a Desargues affine plane in \mathbb{R}^2 is a finite ordered skew field 4.7.

2 Preliminaries

Let \mathcal{P} be a nonempty space, \mathcal{L} a nonempty subset of \mathcal{P} . The elements p of \mathcal{P} are points and an element ℓ of \mathcal{L} is a line. Collinear points on a line \mathcal{L} are denoted by [A, E, B], where E is between A and B. Given *distinct* points A, B, there is a unique line ℓ^{AB} such that A, B lie on ℓ^{AB} and we write $\ell^{AB} = A + B$ [34, p. 52]. An **affine space** is a vector space with the origin removed [4, §4.1, p. 391]. The geometric structure $(\mathcal{P}, \mathcal{L})$ is an **affine plane**, a subspace of an affine space, provided

- 1° For each $\{P,Q\} \in \mathcal{P}$, there is exactly one $\ell \in \mathcal{L}$ such that $\{P,Q\} \in \ell$.
- **2**° For each $P \in \mathcal{P}, \ell \in \mathcal{L}, P \notin \ell$, there is exactly one $\ell' \in \mathcal{L}$ such that $P \in \ell'$ and $\ell \cap \ell' = \emptyset$ (Playfair Parallel Axiom [22]). Put another way, if $P \notin \ell$, then there is a unique line ℓ' on P missing ℓ [23].
- **3**^o There is a 3-subset $\{P, Q, R\} \in \mathcal{P}$, which is not a subset of any ℓ in the plane. Put another way, there exist three non-collinear points \mathcal{P} [23].

An affine plane is a projective plane in which one line has been distinguished [12]. For simplicity, our affine geometry is on the Euclidean plane \mathbb{R}^2 and incident lines ℓ, ℓ' are represented by $\ell \cap \ell' \neq \emptyset'$ (intersection). A **0-plane** is a point, a **1-plane** a line containing a minimum of 2 collinear points and a **2-plane** is an affine plane containing a minimum of 4 points, no 3 of which are collinear. An affine geometry is a geometry defined over vector spaces V, field \mathbb{F} (vectors are points and subspaces of V) and subsets \mathcal{P} (points), \mathcal{L} (lines) and Π (planes) [7, §7.5].

Desargues' Axiom, circa 1630 [13, §3.9, pp. 60-61] [25]. Let $A, B, C, A', B', C' \in \mathcal{P}$ and let pairwise distinct lines $\ell_k, \ell_l, \ell_m, \ell^{AC}, \ell^{A'C'} \in \mathcal{L}$ such that

$$\ell_k \parallel \ell_l \parallel \ell_m \text{ and } \ell^A \parallel \ell^{A'} \text{ and } \ell^C \parallel \ell^{C'}.$$

$$A, B \in \ell^{AB}, A'B' \in \ell^{A'B'}, \text{ and } B, C \in \ell^{BC}, B'C' \in \ell^{B'C'}.$$

$$A \neq C, A' \neq C', \text{ and } \ell^{AB} \neq \ell_l, \ell^{BC} \neq \ell_l.$$

Then $\ell^{AC} \parallel \ell^{A'C'}$.

Figure 1: Desargues: $\ell^{AC} \parallel \ell^{A'C'}$

Example 2.1. The parallel lines ℓ^{AC} , $\ell^{A'C'} \in \mathcal{L}$ in Desargues' Axiom are represented in Fig. 1. In other words, the base of $\triangle ABC$ is parallel with the base of $\triangle A'B'C'$, provided the restrictions on the points and lines in Desargues' Axiom are satisfied.

A Desargues affine plane is an affine plane that satisfies Desargues' Axiom.

Theorem 2.1. Pappus, circa 320 B.C. [5, §1.4, p. 18]. If $[ACE] \in \ell^{EA}$, $[BFD] \in \ell^{BD}$ and ℓ^{BD} , ℓ^{CD} , ℓ^{EF} meet ℓ^{DE} , ℓ^{FA} , ℓ^{BC} , then [NLM] are collinear on ℓ^{NM} .

Figure 2: Pappian Line: $[NLM] \in \ell^{NM}$

Example 2.2. The lines ℓ^{BD} , ℓ^{CD} , ℓ^{EF} , ℓ^{DE} , ℓ^{FA} , ℓ^{BC} in Pappus' Axiom are represented in Fig. 2. In that case, the points of intersection [NLM] lie on the line ℓ^{NM} .

The affine Pappus condition in Theorem 2.1 has an effective formulation relative to [NLM] on line ℓ^{NM} given by N.D. Lane [14], *i.e.*,

Affine Pappus Condition [14]. Let E, C, A, B, F, D be mutually distinct points as shown in Fig. 2 such that A, B, C lie on ℓ^{EA} and B, F, D lie on ℓ^{BD} and none of these points lie on $\ell^{EA} \cap \ell^{BD}, \ell^{BD} \cap \ell^{NM}$ or $\ell^{NM} \cap \ell^{EA}$. Then

 $\left. \begin{array}{l} \ell^{CB} \cap \ell^{EF} \text{ lies on } \ell^{NM} \\ \ell^{AF} \cap \ell^{CD} \text{ lies on } \ell^{NM} \end{array} \right\} \Rightarrow \ell^{AB} \cap \ell^{ED} \text{ lies on } \ell^{NM}.$

This leads to the following result.

Theorem 2.2. Affine Pappus Condition [14]. If the affine Pappus condition holds for all pairs of lines ℓ, ℓ' such that $\ell \not \mid \ell'$, then the affine Pappus condition holds for all pairs ℓ, ℓ' with $\ell \mid \ell'$.

Every Desarguesian affine plane is isomorphic to a coordinate plane over a field [26] and every finite field is commutative [16, §3, p. 351]. From this, we obtain

Theorem 2.3. [Tecklenburg] [26].

Every finite Desarguesian affine plane is Pappian.

3 Ordered lines and ordered Desargues affine plane

An invariant way to describe an 'order' is by means of a ternary relation: the point B lies "between" A and C. Hilbert has axiomatized this ternary relation [10]. In this section, we begin by giving a suitable definition for our search for lines in Desargues affine plane, based on the meaning of *betweenness* given by D.Hilbert, *i.e.*, if B lies "between" A and C, we mark it with [A, B, C].

Definition 3.1. An ordered line in a Desargues Affine plane (briefly, called the *line*) satisfies the following axioms.

Lo.1 For $A, B, C \in \ell$, $[A, B, C] \Longrightarrow [C, B, A]$.

Lo.2 For $A, B, C \in \ell$ are mutually distinct, then we have exactly one, [A, B, C], [B, C, A] or [C, A, B].

Lo.3 For $A, B, C, D \in \ell$, then [A, B, C] and $[B, C, D] \Longrightarrow [A, B, D]$ and [A, C, D].

Lo.4 For $A, B, C, D \in \ell$, then [A, B, C] and $[C, B, D] \Longrightarrow [D, A, B]$ or [A, D, B].

Proposition 3.1. For all $A, B, C, D \in \ell$, two, of [B, A, C], [C, A, D] and [D, A, B] exclude the third.

Proof. Let's get double combinations and see how third is excluded.

Figure 3: Possibilities of doubles combinations, of [B, A, C], [C, A, D] and [D, A, B]

(a) Suppose we are true [B, A, C] and [C, A, D], (see Fig. 3, (a)) then from the order axioms in Def. 3.1, we have:

$$\begin{bmatrix} B, A, C \\ [C, A, D] \end{bmatrix} \xrightarrow{\mathbf{Lo}, \mathbf{1}} \begin{bmatrix} B, A, C \\ [D, A, C] \end{bmatrix} \xrightarrow{\mathbf{Lo}, \mathbf{4}} \begin{bmatrix} D, B, A \end{bmatrix} \vee \begin{bmatrix} B, D, A \end{bmatrix}$$

From Axiom Lo.2 loses the possibility that [D, A, B] is true, so [D, A, B] is false.

(b) Suppose we are true [B, A, C] and [D, A, B], (see Fig. 3, (b)) then from the axioms above we have:

$$\begin{bmatrix} B, A, C \\ [D, A, B] \end{bmatrix} \stackrel{\text{Lo.1}}{\Longrightarrow} \begin{bmatrix} B, A, C \\ [B, A, D] \end{bmatrix} \stackrel{\text{Lo.4}}{\Longrightarrow} \begin{bmatrix} A, D, C \end{bmatrix} \vee \begin{bmatrix} A, C, D \end{bmatrix}.$$

From Axiom Lo.2 loses the possibility that [C, A, D] be true, so [C, A, D] is false.

but each of them $[A, D, C] \vee [A, C, D]$ derives that [C, A, D] is false.

(c) Suppose we are true [B, A, C] and [D, A, B], (see Fig. 3, (c)) then from the axioms above we have:

$$\begin{bmatrix} C, A, D \\ [D, A, B] \end{bmatrix} \stackrel{\text{Lo.4}}{\Longrightarrow} [B, C, A] \lor [C, A, B].$$

From Axiom Lo.2 loses the possibility that [B, A, C] be true, so [B, A, C] is false.

Definition 3.2. For three different points $A, B, C \in \ell$, that, we say that points B and C lie on the same side of point A, if we have exactly one of [A, B, C], [A, C, B].

Proposition 3.2. For every four different points A, B, C, D in a line ℓ , in Desargues affine plane. Then

$$\begin{bmatrix} A, B, C \\ [A, C, D] \end{bmatrix} \Longrightarrow \begin{cases} \begin{bmatrix} A, B, D \\ [B, C, D] \end{bmatrix}$$

Proof. By [A, B, C], we have that the points A and B are in the same side of point C, by [A, C, D], we have that the points A and D are on the opposite side of point C. Then, we have that, the point B and D are on the opposite side of point C (since otherwise we would have that points A, B and D would be on the same side of point C, this would exclude [A, C, D], so we have that [B, C, D].

By [A, B, C], we have that the points A and C on the opposite side of point B. Since [B, C, D], we have that the points C and D are in the same side of point B. Then, we have that, the point A and D are on opposite sides of the point B (since otherwise we would have that points A and D would be on the same side of point B, and point C this will give us [D, B, C] this would exclude [B, C, D]), so we have that [A, B, D].

Definition 3.3. For three different points $A, B, C \in \ell$, that, we say that points B and C lie on the same side of point A, if we have exactly one of [A, B, C], [A, C, B].

Proposition 3.3. If we have, that, for four different points $A, B, C, D \in \ell$: points B and C lie on the same side of point A, and the points C and D lie on the same side of point A, then the points B and D lie on the same side of point A.

Proof. Let's look at the possible cases of 'positioning' between the points, If.

$$\begin{bmatrix} A, D, C \\ [B, C, A \end{bmatrix} \left. \begin{array}{c} \texttt{Lo.1} & \begin{bmatrix} A, D, C \\ \blacksquare & \begin{bmatrix} A, C, B \end{bmatrix} \right. \end{array} \right. \xrightarrow{3.2} \begin{bmatrix} A, D, B \end{bmatrix}.$$

If,

$$\begin{bmatrix} A, B, C \\ [A, C, D] \end{bmatrix} \stackrel{3.2}{\Longrightarrow} \begin{bmatrix} A, B, D \end{bmatrix}.$$

If,

$$\begin{bmatrix} A, D, C \\ [A, B, C] \end{bmatrix} \stackrel{3.1}{\Longrightarrow} \begin{bmatrix} A, B, D \end{bmatrix} \lor \begin{bmatrix} A, D, B \end{bmatrix}.$$

If,

$$\begin{bmatrix} A, D, C \\ [B, C, A \end{bmatrix} \right\} \stackrel{\text{Lo.1}}{\Longrightarrow} \begin{bmatrix} A, D, C \\ [A, C, B \end{bmatrix} \right\} \stackrel{\text{Lo.3}}{\Longrightarrow} \begin{bmatrix} A, D, B \end{bmatrix}$$

So we see that any of the possible cases stays. The case when at least two of the four above points coincide the proof is clear. $\hfill\square$

Definition 3.4. The parallel projection between the two lines in the Desargues affine plane, will be called, a function,

$$P_p: \ell_1 \to \ell_2, \forall A, B \in \ell_1, AB \parallel P_p(A)P_p(B).$$

It is clear that this function is a bijection between any two lines in Desargues affine planes.

Definition 3.5. [3] A Desargues Affine plane, is said to be ordered, provided

- 1. All lines in this plane are ordered lines.
- 2. Parallel projection of the points of one line onto the points of another line in this plane, either preserves or reverses the ordering.

Theorem 3.4. Each translation (dilation which is different from $id_{\mathcal{P}}$ and has no fixed point) in a finite Desargues affine plane $\mathcal{A}_D = (\mathcal{P}, \mathcal{L}, \mathcal{I})$ preserves order in a line ℓ of this plane.

Proof. Let $A, B, C \in \ell$, and [A, B, C]. Let's have, too, a each translation φ on this plan. Here we will distinguish two cases regarding the direction of translation.

Case.1 The translation φ has not direction according to line ℓ , in this case $\varphi(\ell) \parallel \ell$, and $\varphi(\ell) \neq \ell$, (see Fig. 4). Mark $\varphi(\ell) = \ell'$.

From the translation properties, we have,

$$A, B, C \in \ell \Longrightarrow \varphi(A), \varphi(B), \varphi(C) \in \ell'.$$

From the translation properties described at [37], we have the following parallelisms,

$$AB \parallel \varphi(A) \varphi(B), AC \parallel \varphi(A) \varphi(C), BC \parallel \varphi(B) \varphi(C),$$

and

$$A\varphi(A) \parallel B\varphi(B) \parallel C\varphi(C).$$

So we have the following parallelograms (see [11]):

$$\left(A,B,\varphi\left(B\right),\varphi\left(A\right)\right),\left(A,C,\varphi\left(C\right),\varphi\left(A\right)\right),\left(B,C,\varphi\left(C\right),\varphi\left(B\right)\right),$$

Figure 4: The translation φ as a parallel projection $P_p: \ell \to \ell'$.

Clearly, we see that the translation φ can be seen as parallel projection P_p , from line ℓ to line ℓ' , with direction the line $\ell^{A\varphi(A)}$.

Thus by definition and so [A, B, C], we have $[\varphi(A), \varphi(B), \varphi(C)]$.

Case.2 The translation φ has direction according to line ℓ , in this case $\varphi(\ell) \parallel \ell$, and $\varphi(\ell) = \ell$, (see Fig. 5). By translation properties have,

$$A, B, C \in \ell \Longrightarrow \varphi(A), \varphi(B), \varphi(C) \in \ell.$$

In this case, we choose a point $E \notin \ell$ of the plan. For this point, $\exists ! \ell_{\ell}^{E} \in \mathcal{L}$, so it exists a translation φ_{1} , such that $\varphi_{1}(A) = E$, and exists a translation φ_{2} , such that $\varphi_{2}(E) = \varphi(A)$.

Figure 5: The translations φ as a composition of two translations φ_1 and φ_2 . So $\varphi = \varphi_2 \circ \varphi_1$.

Well,

$$(\varphi_2 \circ \varphi_1)(A) = \varphi(A).$$

Two translations φ_1 and φ_2 have different directions from line ℓ . Now we repeat the first case twice, once for the translation φ_1 and once for the translation φ_2 , and we have:

$$[A, B, C] \Longrightarrow [\varphi_1(A), \varphi_1(B), \varphi_1(C)] \Longrightarrow [\varphi_2(\varphi_1(A)), \varphi_2(\varphi_1(B)), \varphi_2(\varphi_1(C))]$$

thus,

$$[A, B, C] \Longrightarrow \left[\left(\varphi_2 \circ \varphi_1 \right) (A), \left(\varphi_2 \circ \varphi_1 \right) (B), \left(\varphi_2 \circ \varphi_1 \right) (C) \right].$$

Hence

$$[A, B, C] \Longrightarrow [\varphi(A), \varphi(B), \varphi(C)]$$

Theorem 3.5. Every finite ordered Desarguesian affine plane over \mathbb{R}^2 is Pappian.

Proof. Let π be a finite Desarguesian affine plane over \mathbb{R}^2 . From Theorem 2.3, π is Pappian. Since every line in π satisfies Axioms Lo.1-Lo.4 of definition 3.1, so every line in π is an ordered line, also, this plane meets the conditions of the definition 3.5. Consequently, π is a finite ordered Desarguesian affine plane. It has been observed that every Euclidean space is Pappian [27, §1.1, p. 195]. Hence, π is Pappian.

4 The ordered skew-field in a line in ordered Desargues affine plane

In [35], [9], we have shown how to construct a skew-field over a line in Desargues affine plane. Let it be ℓ a line of Desargues affine plane $\mathcal{A}_{\mathcal{D}} = (\mathcal{P}, \mathcal{L}, \mathcal{I})$.

We mark $\mathbf{K} = (\ell, +, *)$ the skew-field constructed over the line ℓ , in Desargues affine plane $\mathcal{A}_{\mathcal{D}}$. In previous work [9], we have shown how we can transform a line in the Desargues affine plane into an additive Group of its points. We have also shown [35], [9] and [36] how to construct a skew-field with a set of points on a line in the Desargues affine plane. In addition, for a line of in any Desargues affine plane, we construct a skew-field with the points of this line, by appropriately defined addition and multiplication of points in a line (also, another very interesting construction of skew-fields in affine plane, is presented in the works [30] and [31]).

During the construction of the skew-field over a line of a Desargues affine plane, we choose two points (each affine plan has at least two points), which we write with O and I and call them zero and one, respectively. These points play the role of unitary elements regarding the two actions addition and multiplication, respectively.

Definition 4.1. [3],[24]A skew-field **K** is said to be ordered, if, satisfies the following conditions

- 1. $K = K_{-} \cup \{0_{K}\} \cup K_{+}$ and $K_{-} \cap \{0_{K}\} \cap K_{+} = \emptyset$,
- 2. For all $k_1, k_2 \in K_+, k_1 + k_2 \in K_+$, $(K_+ \text{ is closed under addition})$
- 3. For all $k_1, k_2 \in K_+, k_1 * k_2 \in K_+$, (a product of positive elements is positive)

Consider a line ℓ in a Desargues affine plane, by defining the affine plane so that we have at least two points in this line, which we mark **O** and **I**. For this line, we have shown in the previous works (see [9],[33]) that we can construct a skew-field $\mathbf{K} = (\ell, +, *)$. We have shown [9] the independence of choosing points **O** and **I** in a line, for the construction of a skew-field over this line.

To establish a separation of the set of points in line ℓ , we separate, firstly the points $\{\mathbf{O}\}$, which we mark with

$$\mathbf{K}_{+} = \{ X \in \ell \mid [O, X, I] \text{ or } [O, I, X] \} (= \ell_{+}).$$

and

$$\mathbf{K}_{-} = \{ X \in \ell \mid [X, O, I] \} \, (= \ell_{-}).$$

So, clearly, from the definition of the ordered line in a Desargues affine plane, we have

$$\mathbf{K} = \mathbf{K}_{-} \cup \{\mathbf{0}_{\mathbf{K}}\} \cup \mathbf{K}_{+},$$

where $0_{\mathbf{K}} = O$, and

$$\mathbf{K}_{-} \cap \{\mathbf{0}_{\mathbf{K}}\} \cap \mathbf{K}_{+} = \emptyset.$$

Lemma 4.1. For all $A, C \in \mathbf{K}_+ \Longrightarrow A + C \in \mathbf{K}_+$.

Proof. Let's have the points $A, C \in \ell$, such that [O, A, C] or [O, C, A]. Suppose we have true [O, A, C], from the construction of the A + C point we have that $A + C \in \ell$, (see Fig. 6) which was built according to the algorithm

$$\forall A, C \in \ell, \begin{bmatrix} \mathbf{Step. 1.} \exists B \notin OI \\ \mathbf{Step. 2.} \ell_{OI}^{B} \cap \ell_{OB}^{A} = D \\ \mathbf{Step. 3.} \ell_{CB}^{D} \cap OI = E \end{bmatrix} \Leftrightarrow A + C = E.$$

$$B \qquad D \qquad \ell_{\ell^{OB}}^{B} \qquad \ell_{\ell^{OB}}^{D} \qquad \ell_{\ell^{BC}}^{B} \qquad \ell_{\ell^{BC}}^{D} \qquad \ell_{\ell$$

Figure 6: The addition of points in a line of Desargues affine plane, as a composition of tow parallel projections.

From the construction of the A + C point, we have that:

$$\ell^{OB} \parallel \ell^{AD}; \ell^{BC} \parallel \ell^{D(A+C)}, \ell^{BD} \parallel OI.$$

From these parallelisms, there is the translation φ_1 with direction, according to line ℓ , such that, $\varphi_1(O) = A$.

$$[O, A, C] = [O, \varphi_1(O), C]$$

Since, by with Theorem 3.4, the translations preseve the line-order, we have

$$[O, A, C] = [O, \varphi_1(O), C] \Longrightarrow [\varphi_1(O), \varphi_1(\varphi_1(O)), \varphi_1(C)]$$
$$\Longrightarrow [\varphi_1(O), \varphi_1(A), \varphi_1(C)] = [A, \varphi_1(A), \varphi_1(C)].$$

Hence, we have defined a translation (see [34],[32]), such that we have true

$$[O, \varphi_1(O) = A, \varphi_1(A)] = [O, A, \varphi_1(A)]$$

From this translation, we also have,

$$\varphi_1(B) = D$$
 and $\varphi_1(C) = A + C$,

By by with Theorem 3.4 we have

$$[O, A, C] \Longrightarrow [\varphi_1(O), \varphi_1(A), \varphi_1(C)] = [A, \varphi_1(A), A + C].$$

For four points $O, A, \varphi_1(A), A + C \in \ell$, we have

$$\begin{bmatrix} [O, A, \varphi_1(A)] \\ [A, \varphi_1(A), A+C] \end{bmatrix} \xrightarrow{\mathbf{Lo.3}} [O, A, A+C] \wedge [O, \varphi_1(A), A+C].$$

Ordered line&skew fields in the Desargues affine plane

By [O, A, A + C], we have that

$$A + C \in K_+ (= \ell_+).$$

Corollary 4.2. For all $A, C \in \mathbf{K}_{-} \Longrightarrow A + C \in \mathbf{K}_{-}$. **Corollary 4.3.** For all $A \in \mathbf{K}_{+} \Longrightarrow - A \in \mathbf{K}_{-}$. *Proof.* If $-A \in \mathbf{K}_{+} \Longrightarrow A + (-A) = O(= 0_{K}) \in \mathbf{K}_{+}$, which is a contradiction. \Box **Lemma 4.4.** For all $A, C \in \mathbf{K}_{+} \Longrightarrow A * C \in \mathbf{K}_{+}$.

Proof. Let's have the points $A, C \in \ell$, such that [O, A, C] or [O, C, A]. Suppose we have true [O, A, C], and suppose also that we have [O, I, A] from the construction of the A * C point we have that $A * C \in \ell$, which was built according to the algorithm

$$\forall A, C \in \ell, \begin{bmatrix} \mathbf{Step.1}. \exists B \notin OI \\ \mathbf{Step.2}. \ell_{IB}^A \cap OB = E \\ \mathbf{Step.3}. \ell_{BC}^E \cap OI = F \end{bmatrix} \Leftrightarrow A * C = F$$

By construction of the point A * C, we have parallelisms

$$IB||AE, BC||E(A * C).$$

We take a parallel projection P_p with the direction of the line $\ell^{IB},$ (see Fig. 7) such that

$$P_p: \ell^{OI} \to \ell^{OB}, P_p(O) = O; P_p(I) = B$$

and $P_p(A) = E$, since parallel projection preserves the order, we have

Figure 7: The multiplication of points in a line of Desargues affine plane, as a composition of tow parallel projections.

$$\begin{bmatrix} O, I, A \\ IB \parallel AE \end{bmatrix} \Longrightarrow [P_p(O), P_p(I), P_p(A)] = [O, B, E]$$

But by the multiplication algorithm, during the construction of the A * C point, we have BC||E(A * C).

We take a parallel projection $\widetilde{P_p}$ with the direction of the line ℓ^{BC} , (see Fig. 7) such that

$$\widetilde{P_p}:\ell^{OB}\to\ell^{OI}, \widetilde{P_p}(O)=O; \widetilde{P_p}(B)=C \ and \ \widetilde{P_p}(E)=A*C.$$

Since the parallel projection preserves the order, we have

$$\begin{bmatrix} [O, B, E] \\ BC || E(A * C) \end{bmatrix} \Longrightarrow \left[\widetilde{P_p}(O), \widetilde{P_p}(B), \widetilde{P_p}(E) \right] = [O, C, A * C]$$

By [O, C, A * C], we have that

$$A * C \in K_+ (= \ell_+).$$

If we have, [O, A, C] and $[A, I, C] \Longrightarrow [O, A, I]$, (see Fig. 8). By construction of the point A * C, we have parallelisms

$$IB||AE, BC||E(A * C).$$

We take a parallel projection P_p with the direction of the line ℓ^{IB} , such that

$$P_p: \ell^{OI} \to \ell^{OB}, P_p(O) = O; P_p(A) = E \text{ and } P_p(I) = B.$$

Since the parallel projection preserves the order, we have

$$[O, A, I] \Longrightarrow [P_p(O), P_p(A), P_p(I)] \Longrightarrow [O, E, B].$$

Figure 8: The case where, we have, [O, A, C] and [A, I, C].

But by the multiplication algorithm, during the construction of the A * C point, we have BC||E(A * C). We take a parallel projection $\widetilde{P_p}$ with the direction of the line ℓ^{BC} , such that

$$\widetilde{P_p}: \ell^{OB} \to \ell^{OI}, \widetilde{P_p}(O) = O; \widetilde{P_p}(E) = A * C \text{ and } \widetilde{P_p}(B) = C.$$

152

Since the parallel projection preserves the order, we have

$$[O, E, B] \Longrightarrow \left[\widetilde{P_p}(O), \widetilde{P_p}(E), \widetilde{P_p}(B)\right] = [O, A * C, C] \Longrightarrow A * C \in K_+(=\ell_+).$$

If we have, [O, A, C] and $[A, C, I] \Longrightarrow [O, A, I] \land [O, C, I]$, (see Fig. 9). By construction of the point A * C, we have parallelisms

$$IB||AE, BC||E(A * C).$$

We take a parallel projection P_p with the direction of the line ℓ^{IB} , such that

$$P_p: \ell^{OI} \to \ell^{OB}, P_p(O) = O; P_p(A) = E \text{ and } P_p(I) = B.$$

Since the parallel projection preserves the order, we have

$$[O, A, I] \Longrightarrow [P_p(O), P_p(A), P_p(I)] \Longrightarrow [O, E, B].$$

Figure 9: The case where we have [O, A, C] and [A, C, I].

But by the multiplication algorithm, during the construction of the A * C point, we have BC||E(A * C). We take a parallel projection $\widetilde{P_p}$ with the direction of the line ℓ^{BC} , such that

$$\widetilde{P_p}: \ell^{OB} \to \ell^{OI}, \widetilde{P_p}(O) = O; \widetilde{P_p}(E) = A * C; \widetilde{P_p}(B) = C,$$

and $\widetilde{P_p}$, since parallel projection preserves the order, we have

$$[O, E, B] \Longrightarrow \left[\widetilde{P_p}(O), \widetilde{P_p}(E), \widetilde{P_p}(B)\right] = [O, A * C, C] \Longrightarrow A * C \in K_+ (=\ell_+).$$

We have indirectly from Lemma 4.4 the case when [O, C, A], since $A * C \neq C * A$. From Lemmas 4.1 and 4.4, we have the following result.

Theorem 4.5. Every skew Field that is constructed over an ordered-line of a Desargues affine plane is an ordered skewField.

If we consider the special case where ordered-line of a Desargues affine plane in \mathbb{R}^2 , we obtain the following result.

Corollary 4.6. Every finite skew Field that is constructed over an ordered-line of a Desargues affine plane in \mathbb{R}^2 is a finite ordered skew-field.

Putting together the result from Corollary 4.6 and Theorem 3.5, we obtain the following result for an ordered lines o a finite Desargues affine plane in \mathbb{R}^2 .

Theorem 4.7. A finite skew Field constructed over an ordered-line on a finite Desargues affine plane in \mathbb{R}^2 is Pappian.

Proof. Let ℓ be an ordered-line in a finite Desargues affine plane in \mathbb{R}^2 . By definition, ℓ is a Desarguesian affine 1-plane. From Corollary 4.6, ℓ is a finite ordered skew-field. Hence, from Theorem 3.5, ℓ is Pappian.

Acknowledgements. This research has been supported by the Natural Sciences & Engineering Research Council of Canada (NSERC) discovery grant 185986 and Instituto Nazionale di Alta Matematica (INdAM) Francesco Severi, Gruppo Nazionale per le Strutture Algebriche, Geometriche e Loro Applicazioni grant 9 920160 000362, n.prot U 2016/000036 and Scientific and Technological Research Council of Turkey (TÜBİTAK) Scientific Human Resources Development (BIDEB) under grant no: 2221-1059B211301223.

References

- A.D. Aleksandrov, Non-Euclidean Geometry, In: "Mathematics. Its Contents, Methods and Meaning", Eds: A.D. Aleksandrov, A.N. Kolmogorov, M.A. Lavrent'ev, Dover Pubs, Inc., Mineola, NY, Trans. from the Russian edition by S.H. Gould, 1999; 97-192.
- [2] P.S. Aleksandrov, *Topology*, In: "Mathematics. Its Contents, Methods and Meaning", Eds: A.D. Aleksandrov, A.N. Kolmogorov, M.A. Lavrent'ev, Dover Pubs, Inc., Mineola, NY, Trans. from the Russian edition by S.H. Gould, 1999; 193-226.
- [3] E. Artin, Geometric Algebra, Interscience Tracts in Pure and Applied Mathematics 3, Wiley Classics Library, John Wiley & Sons Inc, Berlin, New York, (1988) [1957].
- [4] R.A. Bailey, P.J. Cameron, and R. Connelly, Sudoku, gerechte designs, resolutions, affine space, spreads, reguli, and Hamming codes, Amer. Math. Monthly, 115, 5 (2008), 383-404.
- [5] M. Berger, *Geometry Revealed*, Heidelberg, Springer, 2010.
- [6] H. S. M. Coxeter, Introduction to Geometry (2nd ed.), John Wiley & Sons, Inc., New York-London-Sydney, 1969.
- [7] M.I. Dillon, Geometry Through History. Euclidean, Hyperbolic, and Projective Geometries, Springer, Cham, Switzerland, 2018.
- [8] I.V. Dolgachev and A.P. Shirokov, Affine space, In: "Encyclopedia of Mathematics", Ed: M. Hazewinkel, Kluwer, Dordrecht, 1995; 62-63.
- [9] K. Filipi, O. Zaka, and A. Jusufi, The construction of a corp in the set of points in a line of Desargues affine plane, Matematicki Bilten 43, 1 (2019), 27-46.

- [10] D. Hilbert, The Foundations of Geometry, The Open Court Publishing Co., La Salle, Ill., 1959.
- [11] D.R. Hughes and F.C. Piper, *Projective Planes*, Graduate Texts in Mathematics 6, Springer-Verlag, Berlin, New York, 1973.
- [12] V.H. Keiser, Finite affine planes with collineation groups primitive on the points, Mathematische Zeitschrift 92 (1966), 288-294.
- [13] A. Kryftis, A Constructive Approach to Affine and Projective Planes, Ph.D. thesis, University of Cambridge, Trinity College and Department of Pure Mathematics and Mathematical Statistics, supervisor: M. Hyland, 2015.
- [14] N.D. Lane, Finite affine planes with collineation groups primitive on the points, Canad. Math. Bull. 10 (1967), 453-457.
- [15] J. Lipman, Order in affine and projective geometry, Canad. Math. Bull. 10 (1967), 6, 1 (1963), 37-43.
- [16] J.H. Maclagan-Wedderburn, A theorem on finite algebras, Trans. Amer. Math. Soc. 6, 3 (1905), 349-352.
- [17] W. Noll and J.J. Schäffer, Order-isomorphisms in affine spaces, Annali di Matematica Pura ed Applicata, 117, 4 (1978), 243-262.
- [18] J.F. Peters, Computational Geometry, Topology and Physics of Digital Images with Applications. Shape Complexes, Optical Vortex Nerves and Proximities, book reviewed by Krzystof Gdawiec (Sosnowiec), Springer Nature, Cham, Switzerland, 2020.
- [19] J.F. Peters, Proximal planar shapes. Correspondence between triangulated shapes and nerve complexes, Bull. Allahabad Math. Soc. 33, 1 (2018), 113-137.
- [20] J.F. Peters, Two forms of proximal, physical geometry. Axioms, sewing regions together, classes of regions, duality and parallel fibre bundles, Adv. in Math. Sci. J. 5, 2 (2016), 241-268.
- [21] J.F. Peters, Proximal Vortex Cycles and Vortex Nerve Structures. Non-Concentric, Nesting, Possibly Overlapping Homology Cell Complexes, Journal of Mathematical Sciences and Modelling, 1, 2, (2018), 56–72.
- [22] G. Pickert, Affine planes: an example of research on geometric structures, The Mathematical Gazette, 57, 402 (2004), 278-291.
- [23] M. Prażmowska, A proof of the projective Desargues axiom in the Desarguesian affine plane, Demonstratio Mathematica, 37, 4 (2004), 921-924.
- [24] P. Scherk, On ordered geometries, Canadian Mathematical Bulletin (Bulletin Canadien de Mathematiques, ISSN 0008-4395), 6, 1 (1963), 27-36.
- [25] W. Szmielew, From Affine Geometry to Euclidean Geometry (an approach through axiomatics) (in Polish), Warsaw, Biblioteka Matematyczna [Mathematics Library], 1981.
- [26] H. Tecklenburg, A proof of the theorem of Pappus in finite Desarguesian affine planes, Journal of Geometry, 30 (1987), 173-181.
- [27] H. Tecklenburg, Quasi-ordered Desarguesian affine spaces, J. of Geometry, 41, 1-2 (1991), 193-202.
- [28] L.A. Thomas, Ordered Desarguesian affine Hjelmslev planes, Master's Thesis, Mathematics Department, McMaster University (supervisor: N.D. Lane), 1975.

- [29] L.A. Thomas, Ordered Desarguesian affine Hjelmslev planes, Canadian Mathematical Bulletin (Bulletin Canadien de Mathematiques, ISSN 0008-4395), 21, 2 (1978), 229-235.
- [30] O. Zaka and M. A. Mohammed, The endomorphisms algebra of translations group and associative unitary ring of trace-preserving endomorphisms in affine plane, Proyecciones (Antofagasta, On line), 39, 4 (2020); https://doi.org/10.22199/issn.0717-6279-2020-04-0051
- [31] O. Zaka and M. A. Mohammed, Skew-field of trace-preserving endomorphisms, of translation group in affine plane, Proyecciones (Antofagasta, On line), 39, 4 (2020), https://doi.org/10.22199/issn.0717-6279-2020-04-0052
- [32] O. Zaka and J.F. Peters, Isomorphic-dilations of the skew-fields constructed over parallel lines in the Desargues affine plane, Balkan Journal of Geometry and Its Applications, 25, 1 (2020), 141-157.
- [33] O. Zaka, A description of collineations-groups of an affine plane, Libertas Mathematica (N.S.) 37, 2 (2017), 81-96.
- [34] O. Zaka, Dilations of line in itself as the automorphism of the skew-field constructed over in the same line in Desargues affine plane, Applied Mathematical Sciences 13, 5 (2019), 231-237.
- [35] O. Zaka and K. Filipi, The transform of a line of Desargues affine plane in an additive group of its points, Int. J. of Current Research 8, 07, (2016), 34983-34990.
- [36] O. Zaka, Contribution to Reports of Some Algebraic Structures with Affine Plane Geometry and Applications, Ph.D. thesis, Polytechnic University of Tirana, Albania, Department of Mathematical Engineering, supervisor: K. Filipi, 2016.
- [37] O. Zaka, Three vertex and parallelograms in the affine plane: Similarity and addition Abelian groups of similarly n-vertexes in the Desargues affine plane, Mathematical Modelling and Applications 3, 1 (2018), 9-15.

Authors' addresses:

Orgest Zaka

Department of Mathematics-Informatics, Faculty of Economy and Agribusiness, Agricultural University of Tirana, Kamza Hill, SH1, Tirana 1000. Albania. E-mail: ozaka@ubt.edu.al, gertizaka@yahoo.com

James Francis Peters Computational Intelligence Laboratory, University of Manitoba, WPG, MB, R3T 5V6, Canada and Department of Mathematics, Faculty of Arts and Sciences, Adiyaman University, 02040 Adiyaman, Turkey E-mail: James.Peters3@umanitoba.ca