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Abstract. The present study is based on the geometrical bearing of rel-
ativistic perfect fluid spacetime and GRW -spacetime in terms of almost
Ricci-Bourguignon solitons with torse-forming vector field ξ. A condi-
tion for the almost Ricci-Bourguignon solitons to be steady, expanding
or shrinking is also given. In particular, when the potential vector field
ξ of the soliton is of gradient type, we derive a Poisson-Laplacian equa-
tion from the almost η-Ricci-Bourguignon soliton. Finally, we provide
an example of 4-dimensional relativistic spacetime admitting the almost
Ricci-Bourguignon and almost η-Ricci-Bourguignon solitons.
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1 Introduction

General Relativity is the theory of gravity (GR) put forward by Albert Einstein in
1915. In this theory the gravitational field is the spacetime curvature and its source
is energy-momentum tensor. This is the origin of all field theories. In GR the matter
content of the universe is assumed to behave like a perfect fluid in the standard cos-
mological models, the physical motivation for studying Lorentzian manifolds is the
assumption that a gravitational field may be effectively modeled by some Lorentzian
metric defined on a suitable 4-dimensional manifold M .

The Einstein’s equations are fundamental tools in the construction of cosmological
models which imply that the matter determines the geometry of the spacetime and
conversely the motion of matter is determined by the metric tensor of the space which
is non-flat. Relativistic fluid models are of considerable interest in several areas of
astrophysics, plasma physics and nuclear physics. Theories of relativistic stars (which
would be models for supermassive stars) are also based on relativistic fluid models.
The problem of accretion onto a neutron stars or a black hole is usually set in the
framework of relativistic fluid models.
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Besides its essential role in the theoretical study, general relativity has also gained
great success in engineering when applying to our daily life. After being proposed,
seeking the various solution to Einstein’s field equation become one of the most im-
portant problems. The most obvious solution is the Minikowski’ spacetime, which is
the four dimensional Euclidean space R4 equipped with Lorentzian metric.

A connected 4-dimensional time oriented Lorentzian manifold is a special subclass
of pseudo-Riemannian manifolds with Lorentzian metric g with signature (−,+,+,+)
has great importance in general relativity. The geometry of 4-dimensional Lorentzian
manifold begins with the study of nature of vectors on the manifold. Therefore, 4-
dimensional Lorentzian manifold becomes most suitable choice for the study of general
relativity.

A perfect fluid is to be one with no heat conduction and no viscosity or it can
be defined as a fluid which looks isotropic or star in its rest frame. The most simple
example of the perfect fluid is dust. Perfect fluids are often used in general relativity
to model idealized distribution.

Definition 1.1. An n-dimensional Lorentzian manifolds is said to be a perfect fluid
spacetime if its non-vanishing Ricci tensor S satisfies

(1.1) S = ag + bη ⊗ η,

where a, b are scalars fields (not simultaneously zero) and η is a 1-form, that is
g(X, ξ) = η(X) for all X and g(ξ, ξ) = −1.

Definition 1.2. [14] A Lorentzian manifold M with dim(M) ≥ 3 is said to be
a generalized Robertson-Walker spacetime (GRW ) if and only if it admits a unit
timelike torse-forming vector field ∇Eζ = ωE + γ(E)ζ, that is also an eigenvector of
the Ricci tensor.

The energy-momentum tensor plays the major role as a matter content of the
spacetime, matter is assumed to be fluid having density, pressure and having dynami-
cal and kinematic quantities like velocity, acceleration, vorticity, shear and expansion
[19]. The matter content of the universe is assumed to perform like a perfect fluid in
standard cosmological models. Therefore, a perfect fluid can be completely charac-
terized by its rest mass density and isotropic pressure. It has neither shear, stresses,
viscosity, nor heat condition and is characterized by an energy-momentum tensor of
the form ([15], [16]):

(1.2) T (X,Y ) = pg(X,Y ) + (σ + p)η(X)η(Y ),

where σ, p are the energy density and isotropic pressure respectively, g is the metric
tensor of Minkowski spacetime, η(X) = g(X, ξ) is 1-form, equivalent to the velocity
vector of the perfect fluid ξ and g(ξ, ξ) = −1.

Further, example of energy-momentum tensor are energy-momentum tensor of
electromagnetism and scalar field theory.

The field equation governing the perfect fluid motion is Einstein’s gravitational
equation [16]

(1.3) S(X,Y ) +
(
λ− r

2

)
g(X,Y ) = κT (X,Y ),



128 Aliya Naaz Siddiqui and Mohammed Danish Siddiqi

for any X,Y ∈ χ(M), where λ is the cosmological constant, κ is the gravitational
constant (which can be taken 8πG, with G the universal gravitational constant), S is
the Ricci tensor and r is the scalar curvature of g. They are obtained from Einstein’s
equations by adding a cosmological constant in order to get a static universe, according
to Einstein’s idea. In modern cosmology, it is considered as a candidate for dark
energy, the cause of the acceleration of the expansion of the universe.

From equations (1.2) and (1.3) we obtain the Einstein’s equation for perfect fluid
as

(1.4) S(X,Y ) = −
(
λ− r

2
+ κp

)
g(X,Y ) + κ(σ + p)η(X)η(Y ).

By the the property of the manifold that the Ricci tensor S is a functional com-
bination of g and η ⊗ η, for η a 1-form g dual to a unitary vector field, is called
quasi-Einstein ([8], [9]). Perfect fluid spacetime are extensively studied in many man-
ners of views, we may refer to (see [2], [7],[11],[13], [18] and references therein). In [1],
[3], [4], [20], [21], [23], Ricci solitons are studied extensively within the background of
pseudo-Riemannian geometry.

On the other hand, geometric flows are most significant tools to explain the geo-
metric structures in relativistic perfect fluid spacetime (semi-Riemannian geometry).
A special class of solutions on which the metric evolves by dilations and diffeomor-
phisms plays a vital part in the study of singularities of the flows as they appear as
possible singularity models. They are often called soliton solutions.

In 1981, the notion of Ricci-Bourguignon flow as a generalization of Ricci flow [12]
has been introduced by J. P. Bourguinon [5]. Ricci-Bourguignon flow is an intrinsic ge-
ometric flow on pseudo-Riemannian manifolds, whose fixed points are solitons. The
Ricci-Bourguignon-soliton, generates self-similar solution to the Ricci-Bourguignon
flow is described by [6]

(1.5)
∂g

∂t
= −2(S − ρRg), g(0) = g0,

where S is the Ricci curvature tensor, R is the scalar curvature with respect to the
g and ρ is a real non-zero constant. It should be noticed that for special values of
the constant ρ in equation (1.5), we obtain the following situations for the tensor
S−ρRg appearing in equation. The PDE system (1.5) defines the evolution equation
of special interest, in particular [6]

1. ρ = 1
2 , the Einstein tensor S − R

2 g (Einstein soliton),

2. ρ = 1
n , the traceless Ricci tensor S − R

n g,

3. ρ = 1
2(n−1) , the Schouten tensor S − R

2(n−1) (Schouten soliton),

4. ρ = 0, the Ricci tensor S (Ricci soliton).

In dimension two, the first three tensors are zero, hence the flow is static and in higher
dimension the value of ρ are strictly ordered as above in descending order.

Short time existence and uniqueness for the solution of this geometric flow has
been proved in [6]. In fact, for sufficiently small t the equation has a unique solution
for ρ < 1

2(n−1) .
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In the other hand, quasi Einstein metrics or Ricci solitons serve as a solution to
Ricci flow equation. This motivates a more general type of Ricci soliton by considering
the Ricci-Bourguignon flow. In fact, a pseudo-Riemannian manifold of dimension
n ≥ 3 is said to be Ricci-Bourguignon soliton if

(1.6) LV g(X,Y ) + 2S(X,Y ) + 2(µ+ ρR)g(X,Y ) = 0,

where LV denotes the Lie derivative operator along vector field V and µ is an arbi-
trary real constant. Similar to Ricci solitons, a Ricci-Bourguignon soliton is called
expanding if µ > 0, steady if µ = 0 and shrinking if µ < 0.

Perturbing the equation that defines (1.6) Ricci-Bourguignon soliton by multi-
ple of a certain (0, 2)-tensor field η ⊗ η, we obtain slightly more general notion,
namely η-Ricci-Bourguignon soliton, which we shall consider in a relativistic per-
fect fluid spacetime, that is, in a 4-dimensional pseudo-Riemannian manifold M with
Lorentzian metric g whose content is perfect fluid.

According to Pigola et al. [17] if we assume that the constant µ in (1.6) as a
smooth function µ ∈ C∞(M), called soliton function, then we say that (M, g) is
almost Ricci-Bourguignon soliton and almost η-Ricci-Bourguignon soliton see. This
concept drags the attention of many geometers. Therefore, in recent years much effort
has been devoted to the classification of self-similar solutions of geometric flows.

As an application to relativity by investigating the kinematic and dynamic nature
of relativistic spacetime, we present a physical models of three classes namely, shrink-
ing, steady and expanding of perfect fluid solution of Ricci-Bourguignon soliton and
spacetime.

Geometry of almost Ricci-Bourguignon solitons, can develop a bridge between a
curvature inheritance symmetry of imperfect fluid spacetime (semi-Riemannian man-
ifold) and class of Ricci-Yamabe solitons. In support of this affair we construct three
mathematical models of semi-conformally flat almost Ricci-Bourguignon soliton man-
ifolds. As an application to relativity by investigating the kinematic and dynamic
nature of spacetime, we present a physical models of three classes namely, shrinking,
steady and expanding of perfect fluid solution of almost Ricci-Bourguignon soliton
spacetime.

To deal with three special classes of almost Ricci-Bourguignon solitons, namely,
shrinking (λ < 0) which exists on a maximal time interval −∞ < t < b where b <∞,
steady (λ = 0) that which exists for all time or expanding (λ > 0) which exists on
maximal time interval a < t <∞, where a > −∞ [10]. These classes yields example
of ancient, eternal and immortal solution, respectively. Also, solutions of Einstein
gravity coupled to a free mass less scalar field with nonzero cosmological constant are
associated with shrinking or expanding almost Ricci-Bourguignon solitons.

In this paper, we will study some geometrical aspects of almost Ricci-Bourguignon
soliton and almost η-Ricci-Bourguignon soliton in relativistic perfect fluid spacetime
with torse-forming vector field ξ.
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2 Properties of relativistic perfect fluid spacetime
with torse-forming vector field

Let (M4, g) be a relativistic viscous fluid spacetime satisfying (1.5). Contracting (1.3)
and assumed that g(ξ, ξ) = −1, we obtain

(2.1) r = 4λ+ κ[(σ − 3p)].

Therefore,

(2.2) S(X,Y ) =

(
λ+

κ(σ − p)
2

)
g(X,Y ) + κ(σ + p)η(X)η(Y ).

Also,

(2.3) S(ξ, ξ) = −λ+
κ

2
[σ + 3p].

Example 2.1. A radiation fluid (σ = 3p) has constant scalar curvature r equal to
4λ.

Now, we have the following useful definitions:

Definition 2.2. A vector field ξ is called torse-forming if it satisfies [24]

(2.4) ∇Xξ = fX + η(X)ξ,

for a vector field X on M4 and η is a 1-form and a smooth function f ∈ C∞(M).

Definition 2.3. A vector field ξ is called conformal vector field if

(2.5) Lξg = αg,

for some smooth function α : M −→ R, particularly ξ is called conformal killing if
α = 0.

Definition 2.4. A Riemannian manifold M is said to admit a Ricci collineation if
there is a vector field ξ such that

(2.6) LξS = 0,

where S is the Ricci curvature tensor. It is clear that every killing vector field is a
curvature collineation.

Theorem 2.1. On a relativistic perfect fluid spacetime with torse-forming vector field
ξ, the following relations hold [24]:

η(∇ξξ) = 0, ∇ξξ = 0,(2.7)

(∇Xη)(Y ) = g(X,Y ) + η(X)η(Y ),(2.8)

R(X,Y )ξ = η(Y )X − η(X)Y,(2.9)

R(X, ξ)ξ = −X − η(X)ξ,(2.10)

η(R(X,Y )Z) = η(X)g(Y, Z)− η(Y )g(X,Z),(2.11)

(Lξg)(X,Y ) = 2f [g(X,Y ) + η(X)η(Y )].(2.12)
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Proof. We calculate

(∇Xη)(Y ) = X(η(Y ))− η(∇XY ) = X(g(Y, ξ))− g(∇XY, ξ)
= g(Y,∇Xξ) = f [g(X,Y ) + η(X)η(Y )].

In particular (∇ξη)(Y ) = 0. The relation (2.8) can be obtained by (2.4).
Now, using (2.4) in

R(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ,

and from direct calculation, we get the relation (2.9). Additionally (2.10) and (2.11)
follow from (2.9). �

3 Almost Ricci-Bourguignon soliton in relativistic
perfect fluid spacetime

In this section, we study almost Ricci-Bourguignon soliton structure in a relativistic
perfect fluid spacetime whose timelike velocity vector field ξ is torse-forming [3].

Now replacing V = ξ, equation (1.6)

(3.1) Lξg(X,Y ) + 2S(X,Y ) + 2(µ+ ρR)g(X,Y ) = 0.

From (2.12), we have

(3.2) S(X,Y ) = − [µ+ f + ρR] g(X,Y )− fη(X)η(Y ).

Now, from (1.1) and (3.2) we can conclude that

Theorem 3.1. A Lorentzian manifold of dimension n ≥ 4 admits almost Ricci-
Bourguignon soliton, whose soliton filed is a unit time like torse-forming filed, is a
perfect fluid spacetime.

The Definition 1.2 together with Theorem 3.1 state the following result:

Theorem 3.2. A generalized Robertson-Walker (GRW)-spacetime admitting almost
Ricci-Bourguignon soliton is a perfect fluid spacetime.

Next, putting X = Y = ξ in (3.2), we obtain

(3.3) S(ξ, ξ) = (µ+ ρR).

Now, using (2.3) in the equation (3.3), we obtain

(3.4) µ =
κ

2
[σ + 3p]− (λ+ ρR).

Thus, we have the following theorem:

Theorem 3.3. If a relativistic perfect fluid spacetime with torse-forming vector field ξ
admits an almost Ricci-Bourguignon soliton (g, ξ, µ, ρ), then almost Ricci-Bourguignon
soliton is expending, steady and shrinking according as
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1. κ
2 (σ + 3p) > λ+ ρR,

2. κ
2 (σ + 3p) = λ+ ρR, and

3. κ
2 (σ + 3p) < λ+ ρR,

respectively.

Corollary 3.4. If a GRW -spacetime with torse-forming vector field ξ admits an
almost Ricci-Bourguignon soliton (g, ξ, µ, ρ), then almost Ricci-Bourguignon soliton
is expending, steady and shrinking according as κ

2 (σ+3p) > λ+ρR, κ2 (σ+3p) = λ+ρR,
and κ

2 (σ + 3p) < λ+ ρR,

Corollary 3.5. If a relativistic perfect fluid spacetime with torse-forming vector field ξ
admits an almost Einstein soliton (g, ξ, µ), then almost Einstein soliton is expending,
steady and shrinking according as κ

2 (σ + 3p) > λ + R
2 , κ

2 (σ + 3p) = λ + R
2 , and

κ
2 (σ + 3p) < λ+ R

2 , respectively.

Corollary 3.6. If a relativistic perfect fluid spacetime with torse-forming vector field ξ
admits an almost Schouten soliton (g, ξ, µ), then almost Schouten soliton is expending,
steady and shrinking according as κ

2 (σ + 3p) > λ + R
2(n−1) , κ

2 (σ + 3p) = λ + R
2(n−1) ,

and κ
2 (σ + 3p) < λ+ R

2(n−1) , respectively.

Corollary 3.7. If a relativistic perfect fluid spacetime with torse-forming vector field
ξ admits an almost Ricci soliton (g, ξ, µ), then almost Ricci soliton is expending,
steady and shrinking according as κ

2 (σ+ 3p) > λ, κ
2 (σ+ 3p) = λ, and κ

2 (σ+ 3p) < λ,
respectively.

Remark 3.1. According to the above corollaries (3.5), (3.6), and (3.7) we can easily
obtain the similar results for GRW -spacetime with almost Einstein soliton, almost
Schouten soliton, and almost Ricci soliton, respectively.

4 Almost η-Ricci-Bourguignon soliton in relativistic
perfect fluid spacetime

Consider the equation

(4.1) Lξg + 2S + 2(µ+ ρR)g + 2ωη ⊗ η = 0,

where g is a pseudo-Riemannian metric, S is the Ricci curvature, ξ is a vector field,
η is a 1-form and µ and ω are real constant. The data (g, ξ, µ, ω) which satisfy the
equation (4.1) is said to be an almost η-Ricci-Bourguignon soliton in M [23]. In
particular if ω = 0, (g, ξ, µ) is an almost Ricci-Bourguignon soliton ([4], [21]) and it
is called shrinking, steady or expanding according as µ is negative, zero or positive,
respectively [21].

Writing explicitly the Lie derivative Lξg we get

(4.2) (Lξg)(X,Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)
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and form (4.1) we obtain

(4.3) S(X,Y ) = −(µ+ ρR)g(X,Y )− ωη(X)η(Y )− 1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)],

for any X,Y ∈ χ(M).

Contracting (4.3) we get

(4.4) r = −(µ− ρR)dim(M) + ω − div(ξ).

Let (M4, g) be a general relativistic perfect fluid spacetime and (g, ξ, µ, ω) be an
almost η-Ricci-Bourguignon soliton in M . From (1.3) and (4.3) we obtain

(4.5)

[
λ+

κ(σ − p+ J)

2
+ µ+ ρR

]
g(X,Y ) + [κ(σ + p) + ω]η(X)η(Y )

+κP (X,Y ) +
1

2
g(∇Xξ, Y ) + g(X,∇Y ξ) = 0,

for any X,Y ∈ χ(M).

Consider {ei}1≤i≤4 an orthonormal frame field and ξ =
∑4
i=1ξ

iei. We have∑4
i=1εii(ξ

i)2 = −1 and η(ei) = εiiξ
i. Multiplying (4.5) by εii and summing over

i for X = Y = ei, we get

(4.6) 4µ− ω = −4λ− κ(σ − 3p)− ρR− div(ξ).

Writing (4.5) for X = Y = ξ, we obtain

(4.7) µ− ω = −λ+
κ

2
[σ − 3p]− ρR.

Therefore, we have

(4.8)

{
µ = λ+ κ

2 (σ3 − 3p)− ρR− div(ξ)
3

ω = κ( 2
3σ − 3p)− div(ξ)

3

Using (4.8), we can state the following result:

Theorem 4.1. Let (M4, g) be a 4-dimensional pseudo-Riemannaian manifold and η
be the g-dual 1-form of the gradient vector field ξ = grad(ψ) with g(ξ, ξ) = −1. If (4.1)
defines an almost η-Ricci-Bourguignon soliton for relativistic perfect fluid spacetime
in M4, then the Poisson-Laplacian equation for relativistic perfect fluid spacetime,
satisfied by ψ, becomes

(4.9) ∇2(ψ) = 3[ω − κ(
2

3
σ − 3p)].

From Plebanski energy conditions for relativistic perfect fluid we deduce that σ ≥
max

{
−λκ ,

λ
2κ

}
for steady case, σ > λ

2κ and σ > −λκ for the expanding and shrinking
case, respectively.
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Example 4.1. An almost η-Ricci-Bourguignon soliton (g, ξ, µ, ω) in a relativistic
radiation fluid is give by{

µ = λ+ κ
2

(
σ
3 − 3p

)
− ρR− div(ξ)

3

ω = κ
(
2
3σ − 3p

)
− div(ξ)

3

Example 4.2. An almost η-Einstein soliton (g, ξ, µ, ω) in a relativistic radiation fluid
is give by {

µ = λ+ κ
2

(
σ
3 − 3p

)
− R

2 −
div(ξ)

3

ω = κ
(
2
3σ − 3p

)
− div(ξ)

3

Example 4.3. An almost η-Schouten soliton soliton (g, ξ, µ, ω) in a relativistic radi-
ation fluid is give by {

µ = λ+ κ
2

(
σ
3 − 3p

)
− R

2(n−1) −
div(ξ)

3

ω = κ
(
2
3σ − 3p

)
− div(ξ)

3

From this example 4.3, we deduce that almost Ricci-Bourguignon soliton in radi-
ation fluid is steady if p = λ

3κ , expanding if p > λ
3κ and shrinking if p < λ

3κ .

5 Physical significance of Poisson-Laplace equation

Now, we consider the case if ψ be the gravitational field, ρ the mass density and G
the gravitational constant. The Gauss’s law of gravitational in differential form is

∇ψ = −4πGρ.(5.1)

In case of gravitational field ψ is conservative and can be expressed as the negative
gradient of gravitational potential, that is, ψ = −gradf then by the Gauss’s law of
gravitational, we have

∇2f = 4πGρ.(5.2)

This physical phenomena is directly identical with Theorem 4.1 and equation
(4.9), which is Poisson-Laplacian equation with potential vector field of gradient type.
Poisson-Laplace equation for gravitational fields if the right hand side is specified as
given function h and for homogeneous version. The basis for Newtonian cosmology
is Poisson-Laplace equation for the gravitational field ∇2f = 4πGρ this equation for
the universe pre suppose that matter is continuously distributed with mass density
ρ, while G stands for Newton’s gravitational constant and f is the gravitational po-
tential. Therefore, Newtonian gravitational potential also satisfy the Poisson-Laplace
equation with Newtonian cosmological constant Λ such that

∇2f = 4πGρ− Λ.(5.3)

Poisson-Laplace equation obey the principal of relativity, it describes gravitational
field. The Azimuthally symmetric theory of gravitons (ASTG-model), Magneto-
Hydro-Dynamic (MHD) modelling of molecular clouds are also based on the Poisson-
Laplace equation.
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Remark 5.1. If the vector field ξ is conformally killing, that is, Lξg = αg with α a
nonzero real number, then the existence of almost Ricci-Bourguignon soliton given by
(4.1) for ω = 0, implies the vacuum case. Moreover, the almost Ricci-Bourguignon
soliton is steady if p = λ

κ + α
2κ −

σ
3 + ρR

3 , expanding if p > λ
κ + α

2κ −
σ
3 + ρR

3 and

shrinking if p < λ
κ + α

2κ −
σ
3 + ρR

3 .

Let ξ is a killing vector field and from (1.6), we have

(5.4)
1

2
LξLξg(X,Y ) + LξS(X,Y ) = (µ+ ρR)Lξg(X,Y ).

A vector field ξ is killing if LξLξg = 0. Thus, the equation (5.4) reveals the following
results:

Theorem 5.1. Let the data (g, µ, ξ, ρ) be an almost Ricci-Bourguignon soliton where
ξ is conformal killing vector field if and only if (M, g) is Einstein and Einstein factor
is (µ+ ρR).

Theorem 5.2. Let the data (g, µ, ξ, ρ) be a almost Ricci-Bourguignon soliton where
ξ is conformal killing vector field if and only if ξ is an almost Ricci-Bourguignon-
collineation.

6 Example of a 4-dimensional Lotrentzian manifold
admitting an almost η-Ricci-Bourguignon soliton

Example 6.1. Let 4-dimensional manifold M =
{

(x, y, z, t) ∈ R4 : t 6= 0
}

where
(x, y, z, t) are the standard coordinates of R4.

Let (e1, e2, e3, e4) be the set of linearly independent vector fields of M , and is
defined as

(6.1) e1 = t

(
∂

∂x
+ y

∂

∂y

)
, e2 = t

∂

∂y
, e3 = t

(
∂

∂y
+

∂

∂z

)
, e4 = (t)3

∂

∂t
.

Let g be the Riemannian metric M defined by

(6.2) g(e1, e1) = g(e2, e2) = g(e3, e3) = 1, g(e4, e4) = −1, g(ei, ej) = 0,

for i 6= j, i, j = 1, 2, 3, 4.

Let η be the 1-form defined by η(Z) = g(Z, e4), for any Z ∈ χ(M). Also, let ϕ be
the (1, 1) tensor field, defined by

(6.3) ϕ(e1) = e1, ϕ(e2) = e2, ϕ(e3) = e3, ϕ(e4) = 0, ξ = (t)3
∂

∂t
.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g.
Then, by using the linearity of ϕ and g, we have

(6.4) [e1, e2] = −(t)e2, [e1, e4] = −(t)2e1, [e2, e4] = −(t)2e2, [e3, e4] = −(t)2e3.
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Then for e4 = ξ and using Koszul’s formula for the Lorentzian metric g, we have

∇e1e1 = −(t)2e4, ∇e2e1 = te2, ∇e1e4 = −(t)2e1, ∇e2e4 = −(t)2e2

∇e3e4 = −(t)2e3, ∇e3e3 = −(t)2e4, ∇e2e2 = −(t)2e4 − te1.

We find that the structure (ϕ, ξ, η, g) is a Lorentzian structure on M . Conse-
quently, M4(ϕ, ξ, η, g) is an Lorentzian manifold (4-dimensional relativistic spacetime
model).

The non-vanishing components of Riemannian curvature and the Ricci tensors are
given by

R(e1, e4)e1 = (t)4e4, R(e2, e4)e2 = (t)4e4, R(e3, e4)e3 = (t)4e4,

R(e1, e3)e3 = (t)4e1, R(e1, e3)e1 = −(t)4e3, R(e2, e3)e2 = −(t)4e3,

R(e1, e4)e4 = (t)4e1, R(e2, e4)e4 = (t)4e2, R(e1, e2)e2 = [(t)4 − (t)2]e1,

R(e2, e3)e3 = (t)4e2, R(e3, e4)e4 = (t)4e3, R(e1, e2)e1 = −[(t)4 − (t)2]e2.

From the above expression of the curvature tensor we can easily calculate the
non-vanishing components of the Ricci tensor S as

(6.5) S(e1, e1) = 3(t)4 − (t)2, S(e2, e2) = 3(t)4 − (t)2.

Similarly, we have

(6.6) S(e3, e3) = 3(t)4, S(e4, e4) = 3(t)4.

Therefore,

(6.7) R = S(e1, e1) + S(e2, e2) + S(e3, e3) + S(e4, e4) = 2[6(t)4 − (t)2].

Now, from equations (2.12) and (4.1), we obtain

(6.8) 2[g(ei, ei) + η(ei)η(ei)] + 2S(ei, ei) + 2(2µ+ ρR)g(ei, ei) + 2ωη(ei)η(ei) = 0,

for all i ∈ {1, 2, 3, 4}, and we have

(6.9) 2[(−1 + δi4] + 2S(ei, ei) + 2(2µ+ ρR)g(ei, ei) + 2ωδi4 = 0,

for all i ∈ {1, 2, 3, 4}, we get

(6.10) µ = [(t)2(1 + ρ)− 3(t)4(1 + 4ρ) + 1], ω = [(t)
2
(1− ρ)− 3(t)2 + 2].

Thus the data (g, ξ, µ, ω) is an η-Ricci-Bourguignon on (M4, φ, ξ, η, g), which is
expanding if (t)2(1 +ρ) > 3(t)4(1 + 4ρ) + 1, shrinking if (t)2(1 +ρ) < 3(t)4(1 + 4ρ) + 1
or steady if (t)2(1 + ρ) = 3(t)4(1 + 4ρ) + 1.

Moreover,

1. for ρ = 1
2 , (M4, φ, ξ, η, g) also admits η-Einstein soliton, which is expanding if

3
2 (t)2 + 1 > 9(t)4, shrinking if 3

2 (t)2 + 1 < 9(t)4 or steady if 3
2 (t)2 + 1 = 9(t)4;

2. for ρ = 1
2(n−1) , (M4, φ, ξ, η, g) admits η-Schouten soliton, which is expanding if

(t)2 + t2

2(n−1) > 3(t)4 + 6t4

(n−1) , shrinking if (t)2 + t2

2(n−1) < 3(t)4 + 6t4

(n−1)or steady

if (t)2 + t2

2(n−1) = 3(t)4 + 6t4

(n−1) ;

3. for ρ = 0, (M4, φ, ξ, η, g) admits η-Ricci soliton, which is expanding if (t)2 +1 >
3(t)4, shrinking if (t)2 + 1 < 3(t)4 or steady if (t)2 + 1 = 3(t)4.
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7 Conclusions

In general theory of relativity, the matter of content of the relativistic spacetime is
described by choosing the suitable energy-momentum tensor T . Since the matter
content of the universe is considered to working like a perfect fluid such as dust fluid
and viscous fluid in the standard cosmological models as a connected 4-dimensional
Lorentzian manifold. In this framework Einstein’s equation play the fundamental role
to construct the cosmological model.

The relativistic perfect fluid spacetime manifold modeled as 4-dimensional Lorentzian
manifold admitting the almost Ricci-Bourguignon soliton and also almost η-Ricci-
Bourguignon soliton. Solitons are the natural extension of the Einstein’s metric.
Therefore, Einstein manifolds arose during the study of exact solution of the Einstein’s
field equation. We have obtained the condition such as steady, expanding and shrink-
ing for the almost Ricci-Bourguignon soliton. Further, we generalized the notion of
almost Ricci-Bourguignon soliton called almost η-Ricci-Bourguignon soliton. More-
over, we have proved that relativistic perfect fluid spacetime admitting the almost
η-Ricci-Bourguignon soliton and satisfies the Poission-Laplacian equation with po-
tential vector field ψ of gradient type. Therefore, gradient almost Ricci-Bourguignon
soliton are natural generalization of Einstein manifold.
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