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Abstract. This research article attempts to explain the characteristics of
Riemannian submersions in terms of almost 7-Ricci-Bourguignon soliton,
almost n-Ricci soliton, almost n-Einstein soliton, and almost 7-Schouten
soliton with the potential vector field. Also, we discuss the various condi-
tions for which the target manifold of Riemannian submersion is n-Ricci-
Bourguignon soliton, almost n-Ricci soliton, almost n-Einstein soliton, and
almost n-Schouten soliton with the potential vector field and Killing vector
field. Finally, we illustrate an example which verify some of our results.
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1 Introduction

Over the last two decades, the analysis of geometric flows are most significant geo-
metrical tools to explain the geometric structures in Riemannian geometry. A certain
section of solutions on which the metric evolves by dilations and diffeomorphisms
plays an important part in the study of singularities of the flows as they appear as
possible singularity models. They are often called soliton solutions.

Hamilton [14] first time introduced the concept of Ricci flow and Yamabe flow
simultaneously in 1988. Ricci soliton and Yamabe soliton emerge as the limit of the
solutions of the Ricci flow and Yamabe flow, respectively. In dimension n = 2 the
Yamabe soliton is equivalent to Ricci soliton. However, in dimension n > 2, the Yam-
abe and Ricci solitons do not agree as the first preserves the conformal class of the
metric but the Ricci soliton does not in general.

Ricci flow [14] and Yamabe flow [14] have been the focus of attraction of many
geometers in over the years. Although Ricci solitons and Yamabe soliton are same
in two dimensional study, they are essentially different in higher dimensions. An
interpolation soliton between Ricci and Yamabe solitons is considered in [6] where
the name Ricci-Bourguignon soliton corresponding to Ricci-Bourguignon flow but its
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depend on a single scalar [4, 5].

In 1981, the conception of Ricci-Bourguignon flow as a extension of Ricci flow [14]
has been initiated by J. P. Bourguignon [4] based on some unprinted work of Lich-
nerowicz and a paper of Aubin [1]. Ricci-Bourguignon flows are intrinsic geometric
flows on Riemannian manifolds, whose fixed points are solitons. Ricci-Bourguignon
soliton, which generates self-similar solution to the Ricci-Bourguignon flow [4]

0 :
(1.1) a—‘;’ = —2(Ric — pRyg), g(0) = go,

where Ric is the Ricci curvature of the Riemannian manifold, R is the scalar curvature
with respect to the metric g and p is a non-zero real constant. It should be noticed
that for special values of the constant p in equation (1.1) we obtain the following
situations for the tensor Ric — pRg appearing in equation (1.1). The PDE (1.1)
defines the evolution equation is of special interest, in particular [4, 26]

(i) p = 3, the Einstein tensor Ric — £g, (for Einstein soliton) [24]

)
(i) p= L, the traceless Ricci tensor Ric — g,

(iil) p= 2(%71), the Schouten tensor Ric — ﬁ, (for Schouten soliton)
(iv) p =0, the Ricci tensor Ric (for Ricci soliton).

In dimension two, the first three tensors are zero, hence the flow is static and in higher
dimension the value of p are strictly ordered as above in descending order.

Short time existence and uniqueness for the solution of this geometric flow has
been proved in [4, 5]. In fact, for sufficiently small ¢ the equation (1.1) has a unique
solution for p < ﬁ

On the other hand, the quasi-Einstein metrics or Ricci solitons serve as a solution
to Ricci flow equation [14]. This motivates a more general type of Ricci soliton by
considering the Ricci-Bourguignon flow [27]. In fact, a Riemannian manifold M of
dimension n > 3 is said to be a Ricci-Bourguignon soliton [1] if

(1.2) Lyvg+2Ric+2(A—pR)g =0,

where Ly denotes the Lie derivative operator along vector field V' and A is an arbi-
trary real constant. Similar to Ricci solitons, a Ricci-Bourguignon soliton is called
expanding if A > 0, steady if A = 0 and shrinking if A < 0.

According to Pigola et al. [21] if we replace the constant A in (1.2) with a smooth
function A € C°°(M), called soliton function, then we say that (M, g) is an almost
Ricci-Bourguignon soliton. It is worth to remark that they arise from the Ricci-
Bourguignon flow [27] recently studied by G. Cantino and L. Mazzieri [6, 7].

Perturbing the equation that define (1.2) Ricci-Bourguignon soliton by multiple
of a certain (0, 2)-tensor field 7 ® n, we obtain slightly more general notion, namely
almost n-Ricci-Bourguignon soliton which is a generalization of almost 7-Ricci soli-
ton, almost n-Einstein soliton, and almost 7-Schouten soliton ( for more details see
(3, 8,9, 10, 11, 24, 26, 27, 28, 30, 31]. Therefore, from (1.2), we have

(1.3) Lyg+2Ric+2(A — pR)g + 2wn @1 = 0.
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Here 7 is the 1-form and w denotes some smooth function on M.

On the other end, the notion of Riemannian immersion has been intensively stud-
ied since the very beginning of Riemannian geometry. Indeed, initially the Rieman-
nian manifolds to be studied were surfaces embedded in R3. In 1956, Nash [19] proved
that a revolution for Riemannian manifold that every Riemannian manifold can be
isometrically embedded in any small part of Euclidean space. As a consequences, the
differential geometry of Riemannian immersions are well known.

On the contrary “dual” concepts of Riemannian submersions have been studied
and its differential geometry was first exposed by O’ Neill [20] in 1966 and Gray [13]
in 1967.

We note that the Riemannian submersions have been studied widely not only in
mathematics, but also in theoretical physics, because of their applications in the Yang-
Mills theory, Kaluza Klein theory, super gravity, relativity and super-string theories
(see [4], [5], [15], [16], [29]). Most of the studies related to Riemannian submersion
can be found in the books ([12], [22]).

Recently, Meri¢ et al.[17, 18] introduced and studied Riemannian submersions
whose total manifolds admits a Ricci soliton and an almost Yamabe soliton. In 2020,
Siddigi and Akyol [23] also have discussed n-Ricci-Yamabe solitons along Riemannian
submersion. Recently, Siddiqi et al. [25] studied clairaut anti-invariant submersions
from Lorentzian trans-Sasakian manifolds. In this paper, we will study Riemannian
submersions whose total space admits an almost n-Ricci-Bourguignon soliton.

2 Riemannian submersions

In this section, we provide the necessary background for Riemannian submersions.
Let (M,g) and (N, g) be Riemannian manifolds, where dim(M) > dim(N). A

surjective map v : (M, g) = (N, gn) is called a Riemannian submersion [20] if

(S1) Rank(yp) = dim(N).

In this case, for each ¢ € N, ¥ ~'(q) = m; ! is a k-dimensional submanifold of M and

called a fiber, where k = dim(M) — dim(N). A vector field on M is called vertical

(resp. horizontal) if it is always tangent (resp. orthogonal) to fibers. A vector field

X on M is called basic if X is horizontal and i-related to a vector field X, on N,

ie. , ¥.(Xp) = X,y for all p € M, where v, is derivative or differential map of

1. We will denote by V and H the projections on the vertical distribution keri,,

and the horizontal distribution kery;-, respectively. As usual, the manifold (M, g) is

called total manifold and the manifold (N, §) is called base manifold of the submersion

b (M,g) — (N,9).

(S2) 1. preserves the lengths of the horizontal vectors.

These conditions are equivalent to say that the derivative map ¥, of v, restricted to

keri-, is a linear isometry. If X and Y are the basic vector fields, ¢-related to X,Y,

we have the following facts:

L g(X,Y) = g(X,Y) o,
2. h[X,Y] is the basic vector field 1-related to [X, Y],

3. h(VxY) is the basic vector field ¢-related to VY.
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The geometry of Riemannian submersions is characterized by O’Neill’s tensors 7 and
A, defined as follows:

(2.1) TeF =VVygHF + HVyEVEF,

(2.2) ApF = VVygHF + HVygVF

for any vector fields £ and F on M, where V is the Levi-Civita connection of g
[20]. Tt is easy to see that Tr and Ag are skew-symmetric operators on the tangent
bundle of M reversing the vertical and the horizontal distributions. We summarize
the properties of tensor fields 7 and A. Let V, W be vertical and X,Y are horizontal
vector fields on M, then we have

ToW = TwV, AxY = —Ay X = %V[X, Y],

On the other hand, from (2.1) and (2.2), we obtain

(2.3) VyW =Ty W + Vy W,
(2.4) VvX =TvX +HVy X,
(2.5) VxV =AxV +VVxV,
(2.6) VxY = HVxY + AxY,

where Vi W = VWV, W. Moreover, if X is basic, then we have HVy X = AxV. It is
not difficult to observe that 7 acts on the fibers as the second fundamental form while
A acts on the horizontal distribution and measures the obstruction to the integrability
of this distribution. For details on the Riemannian submersions, we refer to O’Neill’s
paper [20] and to the book [12].

Finally, we recall that the notion of second fundamental form of a map between
Riemannian manifolds. Let (M,g) and (N, g) be Riemannian manifolds and f :
(M,g) = (N, g) is a smooth map. Then the second fundamental form of f is given
by

(VENE, F) = VLf.F — f.(VpF)

for E,F € T(TM), where V/ is the pull back connection and we denote for conve-
nience by V the Riemannian connection of the metrics g and §. It is well-known that
the second fundamental form is symmetric. Moreover, f is said to be totally geodesic
(harmonic map) if (Vf)(E,F) =0 (trace(Vf.) =0) for all E, F € T'(TM) (see [2],
page 73).

3 Curvature properties

In this section, we discuss some useful curvature properties of Riemannian submer-
sions.
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Proposition 3.1. If the Riemannian curvature tensors of (M,g), (N,g) and any
fiber of m are denoted by Riem, Riem and Riem, respectively. Then we have

(Z) R’Lem(E7 F7G7H) = RZ@TTL(E,F,G,H) _g(TEH7TFG) +g(TFHa TEG)a
(i) Riem(X,Y,Z,W) = Riem(X,Y,Z,W) o1+ 29(AxY, Az W)
*g(AyZ, Axw) + g(AXZ, .AyW).
for any E,F,G,H ¢ TV(M) and X,Y,Z,W € TH(M).

Proposition 3.2. Let Ric, Ric and Ric denote the Ricci tensors of (M, g), (N,g)
and any fiber of 1, respectively. Then we have

(3.1)
Ric(E, F) = Ric(E, F)+g(N,TgF) = > {g(Vx,T)(E, F), X;) — g(Ax, B, Ax,F)},
=1

(3.2) Ric(X,Y) = Ric(X,Y) ot — % {g(VxN,Y) +g(VyN, X)}

42 g(Ax X, Ay Xa) + > g(Tu, X, To, YY),

i=1 j=1

Rie(E, X) = ~g(VeN. X) + > g((Vu,T)(E}, B), X)

—Z{g (Vx, A)(X:, X), B) — 29(Ax, X, ToX0)}
where {X;} and {E;} are the orthonormal basis of H (horizontal) and V (vertical),
respectively, for any E,F € TV(M) and X, Y €e TH(M) [13, 20].

On the other side, for any fiber of Riemannian submersion 7, the mean curvature
vector field H is given by rH = N such that

(3.3) N=> TgkE
j=1

Also, the dimension of any fiber of 7 is denoted by r and {Fy, Es, ..., E,.} represents

an orthonormal basis on vertical distribution. We point that the horizontal vector

field N vanishes if and only if any fiber of Riemannian submersion 7 is minimal.
Now, from (3.3) we find

VUNX Zg VUT ) )

for any U e I'(TM) and X € TH(M).
Horizontal divergence of any vector field X on T'H(M) denoted by div(X) and given
by

(3.4) div(X) =Y g(Vx,X,X;),
i=1
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where {X1, Xo,...., X} is an orthonormal basis of horizontal space I'H (M ). Hence,
after considering (3.4) we have

div(N) = Z Z 9(Vx,T)(E;, Ej), Xi).

i=1 j=1

We infer from equations (3.1) and (3.2) that the extrinsic vertical scalar curvature
Ry and the extrinsic horizontal scalar Ry are given by

(35) Ry =Y Ric(E;, Ej) = - Y {9(Vx.T)E; Ey), Xi) — 9(Ax. Ej, Ax, Ej)}

+ {Ric(E;, E;) + g(N, T, E;)}

(3.6) Ru =Y Rie(X;, Xi) =Y Rie(X;, Xi) oo+ 9(Tw, Xi, Ti, Xi),

1
+229(AX1XZ’AX1X1) - 5 {g(VXsz Xi) +g(vX1N7 Xl)}a
where i =1,2,...,nand j =1,2,...,7. In view of (3.5) and (3.6) we turn up

(3.7) Ry =R — [[AI]* + [|N|]* — div(N),

(3.8) Ry =Ro+2||A|° +||T]? - div(N),

where R and R are the scalar curvatures of any fiber of v and N, respectively, such
that

(3.9) IT)? = ZQ(TEijTEin),
]

(310) H'AH2 = Zg(AXiEj7AXiEj)'
(]

Finally from (3.7)-(3.10), the scalar curvature R on the base manifold M is given by

R =R+ (Ry o)+ [NI* +[|T* + | AlI* — 2div(N).

4 Almost n-Ricci-Bourguignon soliton along Rieman-
nian submersions

This section deals with the study of almost n-Ricci-Bourguignon soliton on Rieman-
nian submersion ¢ : (M,g) — (N, g) from Riemannian manifold and discuss the
nature of fiber of such submersion with target manifold (N, g):

As a consequences of equations (2.3)-(2.6) in case of Riemannian submersion, we
obtain the following characteristics of A and 7.
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Theorem 4.1. Let ¢ : (M,g) — (N, g) be a Riemannian submersion between Rie-
mannian manifolds. Then the vertical distribution V is parallel with respect to the
connection V if the horizontal parts TrH and Ax F of (2.3) and (2.5) vanish identi-
cally. Similarly, the horizontal distribution H is parallel with respect to the connection
V if the vertical parts TrX and AxY of (2.4) and (2.6) vanish identically for any
X,YeTHM) and F,H € TV(M).

Theorem 4.2. Let (M,g,V,A,w,p) be an almost n-Ricci-Bourguignon soliton with
vertical potential field V and ¢ : (M,g) — (N,g) is a Riemannian submersion
between Riemannian manifolds. If the vertical distribution V is parallel, then any
fiber of Riemannian submersion v is an almost n-Ricci-Bourguignon soliton.

Proof. Let (M, g) be an almost n-Ricci-Bourguignon soliton, then from (1.3) we have
1
§EVg+Ric+(A—pR)g+wn®n=0

for any E, F € TV (M). Using equation (3.1) in the above equation, we have

S {9(VEV, F) + g(VeV, B)} + Fic(B, F) + (N, T F)

=2 {o(VX.T)(E, F), X;) = g(Ax, B, Ax, F)}+ (A= pRy )g(B, F) +wn(E)n(F) = 0,
i=1
where {X;}!" , denotes an orthonormal basis of the horizontal distribution # and V
is the Levi-Civita connection on M. Then using Theorem 4.1, equations (2.2), (2.3)
and (3.7) we find the following equation.
1
2
(A1) A= p{R= AP + NI — div(N) })a(B, F) + wn(E)n(F) = 0.

[§(VEV,F) + §(VEV, E)] + aRic(E, F)

If we denote A = A — p(||A||> + | N||* — div(N)), then (4.1) follows
1 ~ ~ ~ ~
(42) SO(VEV.F) +§(VrV, E)] + Ric(E, F) + (A = pR)(E, F) +wn(E)n(F) = 0

for any E, F' € TV (M), which means that a fiber of ¢ is an almost 7-Ricci-Bourguignon
soliton. ]

For particular values of p, easily, we can also obtain the similar results for other
solitons.
Case I. If p =0 and w # 0, then from equation (4.2) we turns up

ST BV, F) + (T V. B)] + RicB, F) + \i(B, F) + wn(E)(F) = 0.

This entails the following result:

Corollary 4.3. Let (M,g,V,\,w,p = 1) be an almost n-Ricci soliton with vertical
potential field V and ¢ : (M,g) — (N,g) is a Riemannian submersion belween
Riemannian manifolds. If the vertical distribution V is parallel, then any fiber of
Riemannian submersion ¥ is an almost n-Ricci soliton.
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Case I1.If p = % and w # 0, then from equation (4.2) we get

9(VEV. F) + §(VEV, E)] + Ric(E, F) + (A = 5)3(E, F) +wn(E)n(F) = 0.

! R
2 2
Thus we have the following result:

Corollary 4.4. Let (M, g,V,\,w,p = %) be an almost n-Einstein soliton with vertical
potential field V and v : (M,g) — (N,§) is a Riemannian submersion between
Riemannian manifolds. If the wvertical distribution V is parallel, then any fiber of
Riemannian submersion 1 is an almost n-Einstein soliton.

Case II1. If p = ﬁ and w # 0, then from equation (4.2) we find

R

[G(VEV,F) + §(VFV,E)] + Ric(E,F) + (A — @n-1)

; 9B, F) + wn(E)(F) = 0.

Thus we have the following:

Corollary 4.5. Let (M,g,V,\,w,p = Qn%l) be an almost n-Schouten soliton with

vertical potential field V and ¢ : (M,g) — (N,g) is a Riemannian submersion
between Riemannian manifolds. If the vertical distribution V is parallel, then any
fiber of Riemannian submersion i is an almost n-Schouten soliton.

Since the total space (M, g) of Riemannian submersion ¢ : (M,g) — (N, gn)
admits an almost n-Ricci-Bourguignon soliton, therefore from equations (3.1) and
(4.2) we find

(4.3) % {9(VEV,F) + g(V¥V, E)} + Ric(E, F) + ZT:Q(TEJ-E]',TEF)

Jj=1

=D A9V, TIE,F), Xi) — 9(Ax, B, Ax, F)} + (A= pRv)§(E, F) +en(E)n(F) = 0

i=1
for any E,F € TV(M). Also, the almost n-Ricci-Bourguignon soliton has totally
umbilical fibers and using equation (2.3) in equation (4.3), we find

1 N R R r
S{9(VEVH) + g(VaV.B) | + Ric(E, H) + Y (T, B, ToH)

=1

n

=Y A(Vx.9)(B, H)g(W, X;) — g(Vx, W, X,)§(E, H)} = > g(Ax, E, Ax,H)

i=1 i=1
+ (A= p{R=IIAI* + NI = div(N) } ) §(E, H) +wn(E)n(H) = .
Since the horizontal distribution H is integrable, we have

(Lvg)(E, H) + Ric(E,H) =Y g(Vx,W, X;)§(E, H) +r |W| §(E, H)

=1

1
2
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+ (A= p{R = 1A + INIP = div(N) }) 4(B, H) +wn(En(H) = o,

where W is the mean curvature vector of any fiber of . From (3.4), we find
1 . .
S (LV) (B, H) + Rie(B, H) + [r | W = div(W) + X~ pRIg(E, H) +wn(E)n(H) =0,

where A = p(||A||> = | N||* + div(N)), which shows that any fiber of ¢ is an almost
n-Ricci-Bourguignon soliton. Thus, we can state the following result:

Theorem 4.6. Let (M, g, A,w, p) be an almost n-Ricci-Bourguignon soliton with the
vertical potential field V and v : (M,g) — (N,g) is a Riemannian submersion
between Riemannian manifolds with totally umbilical fibers. If the horizontal distri-
bution H is integrable, then any fiber of the Riemannian submersion ¢ is an almost
n-Ricci-Bourguignon soliton.

Note that, once again for specific values of p (p = 0, %, ﬁ), one can also, obtain

the similar kind of result for an almost n-Ricci soliton, almost n-Einstein soliton, and
almost n-Schouten soliton, respectively.
Again, assuming the Theorem 4.6, we obtain the following:

Corollary 4.7. Let (M, g, A, w,p) be an almost n-Ricci-Bourguignon soliton and ¢
be a Riemannian submersion between Riemannian manifolds, such that the horizontal
distribution H is integrable. Then any fiber of Riemannian submersion i is an almost
n-Ricci- Bourguignon soliton, provided any fiber of 1 is totally umbilical and has a
constant mean curvature.

Corollary 4.8. Let (M, g, A, w,p) be an almost n-Ricci-Bourguignon soliton and ¢
is a Riemannian submersion between Riemannian manifolds, such that the horizontal
distribution H is integrable. Then any fiber of Riemannian submersion i is an almost
n-Ricci- Bourguignon soliton, if any fiber of w is totally geodesic.

Now, we have the following:

Theorem 4.9. Let (M, g, A,w, p) be an almost n-Ricci-Bourguignon soliton with the
potential field U € T'(TM) and ¢ is a Riemannian submersion between Riemannian
manifolds. If the horizontal distribution H is parallel, then we have

1. If the vector field U is vertical, then (N, g) is an n-Finstein manifold.

2. If the vector field U is horizontal, then (N, g) is an almost n-Ricci-Bourguignon
soliton with potential vector field Uy such that .U = U.

Proof. Since the total space (M, g) of Riemannian submersion ¢ admits an almost
n-Ricci-Bourguignon soliton with potential field U € T'(T'M), then using (3.1) and
(1.3) we have

(4.4) %[g(vXU, V) +9(VyU, X)] + Rie(X, V) 0 = (9(VxN,Y) + g(Vy N, X))

+2) g(Ax X, Ay Xi) + > 9(T, X, T, Y) + (2A — pR)g(X,Y) +wn(X)n(Y) =0,

i=1 j=1
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where X and Y are t-related to X and Y respectively, for any X,Y € TH (M).
Applying Theorem 4.1 to the above equation (4.4), we have

(4.5) %[g(VXU, Y)+g(VyU, X)|+Ric(X,Y)otp+(A—pR)g(X,Y ) +wn(X)n(Y) = 0.

1. If vector field U is vertical, then from the equation (2.5) it follows

S9AXU,Y) + g(Ay U, X Ric(X,¥) 0 + (A~ pRY)G(X, ¥) +wn(X)n(¥) = 0.

Since H is parallel, we get
Rie(X,Y) ot = ag(X,Y) + fn(X)n(Y) = 0,

which shows that (N, §) is 7-Einstein, where o = —(A — p&¥) and b = —w.
2. If the vector field U is horizontal, then equation (4.5) becomes
1 PR R
(46)  S(Lug)(X,Y)+ Ric(X,Y) 0 th + (A = p=)g(X.Y) + wn(X)n(Y) =0,

which shows that the Riemannian manifold (V, §) is an almost n-Ricci-Bourguignon
soliton with horizontal potential field U. This completes the proof. O

Again using Theorem 4.1 and equation (3.2) together, we obtain the following one:

Lemma 4.10. Let (M, g,&,A,w, p) be an almost n-Ricci-Bourguignon soliton on Rie-
mannian submersion 1 between Riemannian manifolds with horizontal potential field
& such that H is parallel. Then the vector field N is Killing on the horizontal distri-
bution H.

Since (M, g,&, A, p) is an almost n-Ricci-Bourguignon soliton, therefore equations

(3.2) and (1.3) give

SL)X,Y) + Rie(X, ¥) o0~ {g(VxN,Y) + g(Ty N, X)}

+2 ZQ(AXXu Ay X;) + ZQ(TUjX, To,Y) + (A = pR)g(X,Y) + pun(X)n(Y) = 0,
i J

where {X;}!"_; denotes an orthonormal basis of H for any X,Y € TH(M). In view
of Theorem 4.1, the above equation reduces to

(Leg)(X,Y) + Ric(X,Y) o+ (A — pR)g(X,Y) + wn(X)n(Y) = 0.

Since the Riemannian manifold (N, g) is n-Einstein, therefore we can find that £ is
conformal Killing. Thus we can state the following result:

Theorem 4.11. Let (M,g,&, A, w, p) be an almost n-Ricci-Bourguignon soliton on
Riemannian submersion v from Riemannian manifold to an n-Einstein manifold with
horizontal potential field & such that horizontal distribution H is parallel. Then the
vector field € is conformal Killing on the horizontal distribution H.
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5 Examples

Example 5.1. Let M°® = {(x1, 22, 23,74, 75, 26)|26 # 0} be a six-dimensional differ-
entiable manifold, where {z;, i = 1,2,3,4,5,6} denotes the standard coordinates of
a point in RS. Suppose

E1 = 81‘1, E2 = 81‘2, E3 = 65637 E4 = 3I4, E5 = 8175, E6 = (91’6

are linearly independent vector fields at each point of the manifold M6, and therefore
they form a basis for the tangent space T(M%). We define a positive definite metric
g on MY as
[ 1 for i=3j
gij_{ 0 for i#£j °’

where 4,5 = 1,2,3,4,5,6 and it is given by g = Z?.j:l dr; ® dxj. Let the 1-
form 7n be defined by n(X) = ¢g(X, P), where P = Eg. Then it is obvious that
(M5, g) is a Riemannian manifold of dimension 6. Moreover, let V be the Levi-
Civita connection with respect to metric g. Then we have [Ey, E3] = 0. Similarly,
[Er, Eg] = En, [Ea, Eg|] = Ea, [Es,Ee¢| = Es, [Ey, Eg] = E4, [Es, Eg] = Eg and
[Es, Ej] = 0, where 1 <4,j <5, ¢ # j. The Riemannian connection V of the metric
g is given by

29(VxY,Z) = Xg(Y,2) +Yg(Z, X) - Zg(X,Y)
- g(X, [Y, Z]) - g(Y, [X7 Z]) + 9(27 [X’ Y]),

where V denotes the Levi-Civita connection corresponding to the metric g.
By using Koszul’s formula and (2.3) together, we obtain the following equations

(5.1) Vi E1 = Es, Vg, By = Eg, Vg, B3 = Bs, Vig,Ey = Es, Vi, Es = Eg,

Ve, Fe=0, Vg, E; =0, Vg, Es=E;, 1<i<5

and @EE2 =0 for all 1 <4, j <5. Now, from equation (5.1) and Proposition 3.1
we can notice the non-vanishing components of Riemannian curvature tensor Riem,
Ricci tensor Ric and scalar curvature R of fiber are given by

Riem(E1, E2)Ey = Ea, Riem(Ey, E3)Ey = —E1, Riem(E1, E3)Ey = —Fs,

Riem(E,, F3)Es = Ev, Riem(Ey, E,;)Ey = —Ey4, Riem(Ey, E4)Ey = E1,
Riem(Ey, E5)Ey = —Es, Riem(Ey, E5)Es = Ey, Riem(Ey, Eg)E, = —Ej,
Riem(E1, Eg)Eg = —E1, Riem(Ey, E3)Ey = —E3, Riem(Es, E3)Es = Es,
Riem(By, E4)Ey = Ey, Riem(By, Ey)Ey = —E», Riem(By, E5)Es = E,
Riem(E», Es)Es = —Es, Riem(Ey, Eg)Es = Eg, Riem(Es, Eg)Eg = —Ba,
Riem(Es, E4)Es = Ey, Riem(Es, E4)E, = Es, Riem(Es, Es)Es = —Fs,
Riem(Es, Eg)Es = —Eg, Riem(Fs, Eg)Es = —Eg, Riem(Fs, Eg)Eg = —FEs,
Riem(E,, Es)Ey = Es, Riem(Ey, E5)Es = —Ey, Riem(Ey, E¢)Ey = —FE,
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Riem(E,, E¢)Es = —E4, Riem(Es, Eg)Es = —FEg, Riem(Es, Eg)Eg = —Fs,
-3 0 0 0 0

0
0

Ric(E;, E;) = 0 -3 0 0 8
0

o O o oo
o
o
&
o

0 0 0 0 =5
and R = Trace(Ric) = —20.

From equation (1.3), we have
[6(V e, Ee, E;) + §(Vg, Es, E;)] + 2Ric(E;, E;) + (2A — pR)§(E;, E;) + 2wd} = 0

for all i € {1,2,3,4,5,6}. Therefore for A = 10p — 4 and w = 22 — 30p, the data
(9, Es, A, w, p) is an almost n-Ricci-Bourguignon soliton, which verifies equation (3.1).
Also the data (V,g,A,0,p) is expanding. Also the data (V,§,A,w, p) is admitting
the expanding, shrinking and steady almost n-Ricci-Bourguignon soliton according
10p > 45, 10p < 4 or 10p = 4 respectively.

Now, we have following three main cases for particular values of p.
Case 1. In an almost n-Ricci soliton, we find A = —4 and w = 22, then the data
(g, Eg, A,w, p = 0) represents an almost 7-Ricci soliton.This verifies Theorem 4.3.
Case 2. For an almost n-Einstein soliton, we find A = 1 and w = 7, then the data
(g, E¢, A\ ,w,p = %) admits almost 7-Einstein soliton. This case verifying Theorem
4.4.
Case 3. For an almost n-Schouten soliton, we find A = 101 —4 and w = 22 —

2n—
720 Therefore the data (V, §, A,w, p = 5= ) is admitting the expanding, shrinking

and steady almost 7-Schoute soliton according 2591 > 44, % <4dor 22 =4

2n—1
respectively This case verifying Theorem 4.4.

Example 5.2. Let ¢ : RS — R3 be a submersion defined by

1/}(1‘171‘2, xﬁ) = (ylv y27y3)a

where

y _T1+ 22 y T3+ x4 and y T5 + Tg
1 \/§ y Y2 \/§ 3 \/5 .
Then the Jacobian matrix of ¢ has rank 3. That means ¢ is a submersion. A
straight computations yields

keriy, = span{V; = %(—Bxl + O0xs), Vo =

1
Vs = 5 (=05 +0z6)}

1
ﬁ(—amg + 0z4),

and

(kery,)* = span{H, = %(83@1 + 0x2), Hy = %(8953 + 0z4),
1
H3 = (5$5+81’6)}

Sl

2
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Also, by direct computations we find
Vs (Hy) = Oy1, . (H2) = Oy2 and . (Hs) = Oys.
It is easy to see that
grs (Hi, Hi) = gpa (o (Hi), o (Hy)), 1 =1,2,3.

Thus v is a Riemannian submersion.

Now, we can compute the components of Riemannian curvature tensor Riem, Ricci
tensor Ric and scalar curvature R for keri, (vertical space) and keryy (horizontal
space), respectively. For the vertical space, we have

Riem(Vy, Vo)Vi = —2Vi,  Riem(Vy,Va)Va = 2Vi, Riem(Vy, V3)Vy = —2Vs,
Riem(Vi,Va)Vs = Vi, Riem(Va,Va)Vs = Vo,  Riem(Va, V3)Va = Va,

) 2.0 0
Rie(Vi,V;)= 10 2 0],
00 1

R = Trace(Ric) = 5.
Using (1.3), we obtain A = % — 1 and w = 1. Therefore, the data (kery., g, A,w) is
an almost 7-Ricci-Bourguignon soliton. Moreover, for particular values of p, we can
also find the similar conclusions for almost 7-Ricci soliton, almost n-Einstein soliton
and almost 7-Schouten soliton.
Next, for the horizontal space we have

Riem(1p, (Hy), 1. (H2) )00 (Hy) = = (05 + Oxy),

N | =

Riem (4. (Hy), u(Hz))thu(Hs) = —= (06 — Os),

—_
[\

Riem(. (Hn), v (Hs) ), (Hn) = 506,

Riem(ih,(Ha), . (Hy)) b, (Hz) = % —1)0ze,

Riem (. (Ha), g (Hs) o (H) = —5 (0 + 0s),

Riem(ip, (Hy ), s () s (Ha) = Qlﬁwxl 1 de),

55 0 0
Ric(yoHiyb Hy) = | 0 —% 0 |,
0 0 -7
and Ry = Trace(Ric) = —2V/2.
Again using (1.3), we obtain A = %—ﬂp and w = —2—\1@. Therefore (ker, g, A, w)

is an almost n-Ricci-Bourguignon soliton.
In addition, for specific values of p, we can also find the conditions for almost
n-Ricci soliton, almost n-Einstein soliton, and almost 7-Schouten soliton.
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