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Abstract. In the present paper, our main objective is to study spacetimes
which admit a semiconformal curvature tensor. First, we prove that the
energy-momentum tensor with vanishing semiconformal curvature tensor,
satisfying Einstein’s field equations (with cosmological constant), is co-
variantly constant. Next, we prove that if in a perfect fluid spacetime
with divergence-free semiconformal curvature tensor satisfying Einstein
field equations without cosmological constant, has constant pressure and
density. Finally, we prove that if the perfect fluid spacetime has van-
ishing semiconformal curvature tensor satisfying Einstein field equations
without cosmological constant, then the spacetime has constant energy
density and isotropic pressure, and the perfect fluid always behaves as
having a cosmological constant.
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1 Introduction

In Riemannian manifolds, the structure of the Lorentzian manifold is the most impor-
tant subclass of semi-Riemannian manifolds and plays a significant role in Cosmology
and in General Relativity. The spacetime of General Relativity can be viewed as an
associated four-dimensional semi-Riemannian manifold with the Lorentzian metric of
signature (—, +, 4+, +).

The distribution of matter contents and its energy-momentum in the spacetime
of General Relativity manifests through the components of energy the momentum
tensor, which is divergence-free, due to the Einstein field equations ([15]), and this
will be done if it is covariantly constant ([7]). M.C. Chaki and Sarbari Ray ([7])
also showed that a spacetime admitting covariantly constant energy-momentum ten-
sor is Ricci symmetric, i.e.,, VR = 0, where R is the Ricci tensor of the spacetime.
The study of different tensors for the spacetime of General Relativity attracted many
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researchers. Recently, Z. Ahsan and M. Ali studied the symmetries along different
tensors for Petrov type D ([2]), Petrov type N ([3]) gravitational fields and vanishing
of a curvature tensor in perfect fluid settings ([1]). The spacetimes with semisym-
metric energy-momentum tensor were discussed by U.C. De and L. Velimirovi¢ ([9]),
spacetimes with pseudo-quasi-conformal curvature tensor, by Y. J. Suh et al. in
([19]), pseudo Z symmetric spacetimes, by C. A. Mantica and Y. J. Suh ([14]) and
the literature is still expanding.

The motivational aspect of the study of spacetime models in cosmology is to
acquire data about stages of the Universe evolution that are categorized into three
stages, namely, the initial phase soon after the Big Bang when the viscosity and
heat flux effects were very articulated, the intermediate phase when the viscosity
impact was no longer important but the heat flux was not negligible, and the final
phase (extending to the current state) when the impact of both viscosity and heat
flux become negligible. It is notable that, in the standard cosmological models, the
matter content of the universe is assumed to behave like a perfect fluid.

Recently in 2017, J. Kim ([12], [13]) introduced a curvature-like tensor such that
its (1, 3) components remains invariant under conharmonic transformations ([18]);
this curvature-like tensor P of type (1, 3) on a Riemannian manifold, is called semi-
conformal curvature tensor, and is defined by

(1.1) Pl = —(n — bWy + [a+ (n — 2)bHL,,

where W is the Weyl conformal curvature tensor, A is the conharmonic curvature
tensor and a, b are constants which are not simultaneously zero. The conformal and
the conharmonic curvature tensor of the type (1, 3) are defined respectively, by
(1.2)

1 T
h h h h h h h h
Wijk = Riji =+ m(éj Rir =0y Rij +9ixRj — 9iRy) + m(%%‘ — 8, 9ik),
and
1
(1.3) Hige = Rige + — (5 Rar = 0 Raj + 9 R} — 95 RR),

If b =0, then from equation (1.1) it follows that the semiconformal curvature tensor
reduces to the conharmonic curvature tensor, provided that a # 0, and if a+(n—2)b =
0, then the semiconformal curvature tensor is equivalent to the conformal curvature
tensor, provided that b # 0. In view of equation (1.1), we can easily verify that the
curvature tensor Pp;ji of the type (0, 4) satisfies the following properties

(1.4) Prij = =Pinjk = —Phikj = Pjrin
and
(1.5) Phrijr + Pinik + Pijnk = 0.

U.C. De and Y.J. Suh ([10]) obtained certain notable results on weakly semiconfor-
mally symmetric manifolds. Further, the semiconformal symmetry of spacetime was
studied by N. A. Pundeer et al. ([17]). They introduced a new symmetry known
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as the semiconformal curvature collineation, which is helpful in solving the Einstein
field equations. However, the semiconformal curvature tensor is not used directly in
solving these equations.

The plan of this paper is as follows. In Section 2, we show that the covariant
derivative of energy-momentum tensor vanishes in semiconformally flat spacetimes.
In Section 3, we consider the perfect fluid and semiconformally flat spacetimes and
we obtain the expression of the Ricci operator and derive some results regarding the
behavior of the fluid.

2 Semiconformal curvature tensor with perfect fluid
spacetime

The semiconformal curvature tensor for n = 4 is defined as

ij

1 br
(2.1) Pihjk =a[Rl, + 5(5?73% — 6pRij + gikR;‘l - gi; R — 3(51}59@‘ - 5?9%)-
If P/1; = 0, then (2.1) leads to

br

a
(2.2) aR}y, = —5(5?7%19 — 00 Raj + gik Ry — gi; RE) — 5(51}591‘]‘ — 0% gin)-

Now, taking the transvection over h and j, we get

a-+2b\r
2. R —— 2 g
(2.3) ik < P >4gzk

Einstein’s field equation with cosmological constant is given by
r

(2.4) Rij— 5

9ij + Agij = KT5;.

Using the relation (2.3) in (2.4), we get

1 3a+2b\r
(2.5) Ti‘zlc{)\— ( a )ng‘j-
Now, taking the covariant derivative of (2.5), we obtain
A 3a+2b\ r
9. Ty = | 2 — g
z o 2 (252 ]

Since a semiconformally flat spacetime is an Einstein space, the scalar curvature r is
constant, that is, thhe equation will take the following form, as the metric tensor is
covariantly constant:

(2.7) Tijie = 0.

)

Thus, we have the following theorem.
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Theorem 2.1. The energy-momentum tensor of a semiconformally flat spacetime
satisfying the Finstein field equations with cosmological term, is covariantly constant.

The energy-momentum tensor for a perfect fluid spacetime is given by
(2.8) Tij = (1 + p)uju; + pgij,

where p is the energy density, p is the isotropic pressure and w; is the fluid-four
velocity. After transvecting (2.8) and using u;u’ = —1, we get

(2.9) T = —p+ 3p.

The Einstein field equations without cosmological constant are

1
(2.10) Rij — 59" = KT,

which, after transvection, takes the form
(2.11) r=—KT.

M. Ali et al. ([5]), defined the divergence of the semiconformal curvature tensor as

1 1 b
(2.12) Plin = a| (Rij — irgij);k‘ — (Rix — §T9ik);j - g(r;kgij — T3 ik)-
Using (2.10) and (2.11), we note that (2.12) leads to
(2.13) Pijen = alTije = Tiwg] + 5 [Tirgij — T i)

Now, for spacetimes having a divergence-free semiconformal curvature tensor, (2.13),
reduces to

5

bKC
(2.14) a[Tijir — Tingj) + ?[T;kgij —T.jgi]) = 0.
By substituting expression of T;; and T' from (2.8) and (2.9) respectively, we get
al(p + p)iwwing + (1 + p)uiku; + (1 + P)uivjik + pirgi; — (1 + p)ijttiuk

bIC
= (p+pluijur — (1 + p)uity; — pjgix] — §[(u —3p);kgij — (1 —3p);j951] =0

By contracting the above equation by u*, we yield
al(p + p)uiw; + (p+ pluju; + (p+ plusws +pgi + (1 + p):jus
(215)  + (p+pui; — pyui — %[(M = 3p)'gi; — (1 = 3p),ui] =0,
were we denote by a overhead dot the covariant derivative along the fluid flow vector.

Also, from the conservation of energy-momentum tensor (Tijj =0), we get

(W+pu; = —ps +pu; (force equation)
(2.16) and

pw=—(u+p)o (energy equation),
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where 6 = 1ﬂz is the expansion scalar. The covariant derivative of the velocity vector
can be split into kinematical quantities (see [11]):

1
(217) Uj5 = 59(9” + Uiu]‘) — ’U,,'L-'LLJ' + Oij + Wij,
Making use of the (2.15) and (2.16), we get
alpugug + 3puiug — pag + P gij 4 piui + (1 p)ui — pijul
b

- ?[M'Qij — 3P gij — pyjui + 3pu] =0

Now, contracting the above equation by u’, we get

3a + bK 3a + bK
(2.18) —( 3 )u‘uj — (3a —bK)pu; — ( 3 )/J;j + (a+ bK)p,; = 0.

We can state now the following result

Theorem 2.2. For a perfect fluid spacetime with divergence-free semiconformal cur-
vature tensor, both pressure and density are constant.

3 Cosmological models with vanishing
semiconformal curvature tensor

In this section, we consider a perfect fluid spacetime admitting a vanishing semicon-
formal curvature tensor, which satisfies the Einstein field equations (without cosmo-
logical constant).

In view of equations (2.8) and (2.10), we get
r
(3.1) Rij = 59i5 = Klpgij + (1 + p)uiug].
Transvecting (3.1), we obtain
(3.2) r=K(u—3p).

In view of (2.3) and (3.2), the Ricci tensor of the semiconformally flat spacetime can

be written as
(a + 25) (K (= 3p)]
Rij = —

a 4 9ij,

or, in global form,

g(X,Y).

(3.3) R(X.,Y) = _(a - 2b) (e 3p)

Let Q be the Ricci operator given by

(3.4) g(QX,Y)=R(X,Y) and TR(QX,Y)=R*X,Y).
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Now, with the help of (3.3) and (3.4), we obtain

- R(QX.Y) - <a—;2b>2{/C(/i4—3p)rg(X7y).

By contraction over X and Y, we get

56 |QX|2:(a—:2b)2[/C(M—3p)r.

2
Thus, we obtain the following

Theorem 3.1. If in a semiconformally flat perfect fluid spacetime the Einstein field
equations without cosmological constant hold good, then the square of the length of the

2 2
o ; +2b K(n—3p)
Ricci operator is <aa> {2} .
The energy-momentum tensor for the dust case is
(37) Tij = HU;Uj .

In view of equations (2.10) and (3.7), we get

r
(38) ’R,ij — 591‘]’ = Kuuiuj.
Now, multiplying equation (3.8) by g;;, we infer
(3.9) r=Ku.

Making use of (2.3) and (3.9), we have

a+2b\ Ku
Rij =— <> 3 Yid»

a

or,

(3.10) R(X,Y) = — <“22b> %g(x, Y).
From (3.4) and (3.10), we yield

(3.11) R(QX,Y) = (“ Z%)Q |:’C4M:|2Q(X, Y)

Now, putting X =Y, we get

(312) lox| = (”’))[’2“]

Thus, we may state the following
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Theorem 3.2. In a dust cosmological model for the semiconformally flat spacetime
in which the Einstein equations without consmological constant hold, the square of the

2 2
. N 12\ |k
length of the Ricci operator is given by <“a> {2“} .

By virtue of (2.3), equation (3.1) may take the form:

3a +2b
(3.13) {222 ko =+
After contraction by g%, equation (3.13) leads to

Ka
‘r:
3a + 2b

(3.14) (1 —3p).

Again, by multiplying with ¢°* and putting k¥ = j = [ in (3.13), we get

A au

(3.15) T

Equations (3.14) and (3.15) imply p + p = 0. Further, (2.8) leads to
(3.16) Tij = pgij-

M. Ali and N. A. Pundeer ([4]) proved that the scalar curvature r of a semiconformally
flat spacetime is constant, and therefore from (3.15), we readily find that y = constant,
and thus from g+ p = 0 we obtain p = constant. Now, p + p = 0 implies that the
fluid behaves as a cosmological constant ([16]). This is also known as the phantom
barrier ([8]). In Cosmology, such a choice p = —p leads to a rapid expansion of the
spacetime, which is now termed as inflation ([6]).

Thus, we may state the following

Theorem 3.3. If a perfect fluid spacetime with vanishing semiconformal curvature
tensor obeys the Einstein field equations without cosmological constant, then the energy
density and the isotropic pressure are constant. Also, the spacetime represents an
inflation and the fluid behaves as a cosmological constant.
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