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1 Introduction

In 1993, Chen [3] initiated the theory of δ-invariants and established a sharp inequal-
ity for a submanifold into the real space form using the scalar curvature and the
sectional curvature, both being intrinsic invariants, and squared mean curvature, the
main extrinsic invariant. Chen [2] established simple relationships between the main
intrinsic invariants and the main extrinsic invariants of a submanifold in real space
forms with any codimension. Now it has become one of the most interesting research
topics in differential geometry of submanifolds. Instead of concentrating on the sec-
tional curvature with the extrinsic squared mean curvature, the Casorati curvature
of a submanifold in a Riemannian manifold was considered as an extrinsic invariant
defined as the normalized square of the length of the second fundamental form.

The notion of Casorati curvature extends the concept of the principal direction
of a hypersurface of a Riemannian manifold. It was preferred by Casorati over the
traditional Gauss curvature. Several geometers [4, 5, 8, 16, 17, 18, 19, 20, 23, 24]
found geometrical meaning and the importance of the Casorati curvature. Therefore,
it attracts the geometers to obtain optimal inequalities for the Casorati curvatures of
submanifolds in different ambient spaces. Decu, Haesen and Verstraelen introduced
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the normalized δ-Casorati curvatures δC(n − 1) and δ̂C(n − 1) and established in-

equalities involving δC(n− 1) and δ̂C(n− 1) for submanifolds in real space forms [4].
Moreover, the same authors proved in [5] an inequality in which the scalar curva-
ture is estimated from above by the normalized Casorati curvatures. Recently, Lee
et al. in [11] obtained optimal inequalities for submanifolds in real space forms, en-
dowed with a semi-symmetric metric connection. Many authors obtained the optimal
inequalities for the Casorati curvatures of submanifolds in different ambient spaces
[9, 10, 12, 21, 22, 30]. The idea of a semi-symmetric linear connection in a differen-
tiable manifold was introduced by Friedmann and Schouten in [6]. Later, Hayden [7]
introduced the idea of a metric connection with torsion in a Riemannian Manifold.

Yano [29] studied semi-symmetric metric connection in a Riemannian manifold.
Many other geometers have used this idea of connection in different ambient spaces
such as real space forms, complex space forms, Sasakian space forms and so on (see
[13, 15]). The paper is structured as follows: Section 2 is devoted to preliminaries. Sec-
tion 3 deals with the study of Casorati curvatures for any submanifold of n-dimension.
In Section 4, we establish two sharp inequalities that relate the normalized scalar cur-
vature with generalized normalized δ-Casorati curvature for any submanifold in a real
space form with quarter-symmetric connection with some immediate consequences.

2 Preliminaries

Let N be a Riemannian manifold with Riemannian metric g. A linear connection ∇̄
on N is called a quarter-symmetric connection if its torsion tensor T given by

T (X,Y ) = ∇̄XY − ∇̄YX − [X,Y ]

satisfies

T (X,Y ) = π(Y )φX − π(X)φY,

where π is a 1-form and V is a vector field such that π(X) = g(X,V) and φ is a (1,1)
tensor field. If ∇̄g = 0, then ∇̄ is known as quarter-symmetric metric connection
and ∇̄g ̸= 0, then ∇̄ is known as quarter symmetric non-metric connection. In
this setting, it is shown in [25], one can easily obtain a special quarter-symmetric
connection defined as

∇̄XY = ˜̄∇XY + ψ1π(Y )X − ψ2g(X,Y )V.(2.1)

This is a general class of connection in the sense of (2.1) can be obtained as

1. when ψ1 = ψ2 = 1, then the above connection reduces to semi-symmetric metric
connection.

2. when ψ1 = 1 and ψ2 = 0. then the above connection reduces to semi-symmetric
non metric connection.
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The curvature tensor with respect to ∇̄ is given by

R̄(X,Y )Z = ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z.(2.2)

The curvature tensor ˜̄R can be defined in the same way. Let

α(X,Y ) = ( ˜̄∇Xπ)(Y )− ψ1π(X)π(Y ) +
ψ2

2
g(X,Y )π(V),

and

β(X,Y ) =
π(V)
2

g(X,Y ) + π(X)π(Y )

are (0, 2) tensors. Then the curvature tensor of N is given by [26]

R̄(X,Y, Z,W ) = ˜̄R(X,Y, Z,W ) + ψ1α(X,Z)g(Y,W )− ψ1α(Y,Z)g(X,W )

+ψ2α(Y,W )g(X,Z)− ψ2α(X,W )g(Y,Z)

+ψ2(ψ1 − ψ2)g(X,Z)β(Y,W )− ψ2(ψ1 − ψ2)g(Y,Z)β(X,W ).

(2.3)

For simplicity, we denote by tr(α) = β1 and tr(β) = β2.

Let M be an m-dimensional submanifold of a Riemannian manifold N and ∇, ∇̃
be the induced quarter symmetric-metric connection and Levi-Civita connection M,
respectively. Then the Gauss formula are given by:

∇̄XY = ∇XY + h(X,Y ), X, Y ∈ Γ(TM),(2.4)

˜̄∇XY = ∇̃XY + h̃(X,Y ), X, Y ∈ Γ(TM).(2.5)

Here h̃ is the second fundamental form given by

h(X,Y ) = h̃(X,Y )− ψ2g(X,Y )V⊥,

where V⊥ is the normal component of the vector field V on M.
Furthermore, the equation Gauss is given by [26]

R̄(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,W ), h(Y,Z)) + g(h(Y,W ), h(X,Z))

+(ψ1 − ψ2)g(h(Y,Z),V⊥)g(X,W )

+(ψ2 − ψ1)g(h(X,Z),V⊥)g(Y,W ).(2.6)

LetNn+p be a real space form of constant sectional curvature c endowed with quarter-

symmetric connection. The curvature tensor ˜̄R with respect to the Levi–Civita con-

nection ˜̄∇ on Nn+p(c) is expressed by

˜̄R(X,Y, Z,W ) = c
{
g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

}
,(2.7)

for any X,Y, Z,W ∈ Γ(TN ).
From (2.3) and (2.7), we get

R̄(X,Y, Z,W ) = c
{
g(X,W )g(Y,Z)− g(X,Z)g(Y,W )

}
+ ψ1α(X,Z)g(Y,W )

−ψ1α(Y, Z)g(X,W ) + ψ2α(Y,W )g(X,Z)− ψ2α(X,W )g(Y, Z)

+ψ2(ψ1 − ψ2)g(X,Z)β(Y,W )− ψ2(ψ1 − ψ2)g(Y, Z)β(X,W ).

(2.8)
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3 Casorati Curvatures

In this section, we study the Casorati curvature of any submanifold M of dimension
n in (n + p)-dimensional Riemannian manifold N of real space forms with a semi-
symmetric non-non metric connection. Consider the local orthonormal tangent frame
{E1, ..., En} of the tangent bundle TM of M and a local orthonormal normal frame
{En+l, ..., En+p} of the normal bundle T⊥M of M in Nn+p. At any p ∈ M the scalar
curvature tau at that point is given by

τ =
∑

1≤i<j≤k+l

R(Ei, Ej , Ej , Ei)(3.1)

and the normalized scalar curvature ρ of M is defined as

ρ =
2τ

n(n− 1)
.(3.2)

The mean curvature H of submanifold is given by

H =
1

n

n∑
i=1

h(Ei, Ei).

Conveniently, let us put

hrij = g(h(Ei, Ej), Er)

for any i, j = {1, ..., n} and r = {n+1, ..., n+p}, the squared mean curvature is given
by

||H||2 =
1

n2

n+p∑
r=n+1

{ n∑
i,j=1

hrii
}2

(3.3)

and the Casorati curvature C is defined as the squared norm of second fundamental
form h, given by

C =
1

(n)
||h||2,(3.4)

where

||h||2 =
1

n

n+p∑
n+1

n∑
i,j=1

(hrij)
2.

If we suppose that L is an s-dimensional subspace of TM, s ≥ 2 and {E1, ..., Es} is
an orthonormal basis of L, then the scalar curvature of the s-plane section L is given
as

τ =
∑

1≤i<j≤s

κ(ei ∧ ej)
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and the Casorati curvature C of subspace L is as follows

C(L) = 1

s

n+p∑
r=n+1

s∑
i,j=1

(hrij)
2.

A point p ∈ M is said to be an invariantly quasi-umbilical point if there exist
n + p − n − 1 mutually orthogonal unit vectors ξn+1, ..., ξn+p, such that the shape
operator with respect to all the directions ξα have an eigenvalue of multiplicity n− 1
and that for each ξα the distinguished eigen direction is the same. The submanifold
is said to be an invariantly quasi-umbilical submanifold if each of its points is an
invariantly quasi-umbilical point.

The normalized δ-Casorati curvature δC(n− 1) and δ̃C(n− 1) are defined as

[δC(n− 1]x =
1

2
Cx +

n+ 1

2n
inf{C(L)|L : a hyperplane of TxM},

(3.5)

and

[δ̂C(n− 1]x =
1

2
Cx +

2n− 1

2n
sup{C(L)|L : a hyperplane of TxM}.

(3.6)

For a positive real number t ̸= n(n− 1), put

b(t) =
1

nt
(n− 1)(n+ t)(n2 − n− t),(3.7)

then the generalized normalized δ-casortai curvatures δC(t;n−1) and δ̃C(t;n−1) are
given as

[δC(t;n− 1)]x = tCx + b(t)inf{C(L)|L : a hyperplane of TxM},

if 0 < t < n2 − n, and

[δ̂C(t;n− 1)]x = tCx + b(t)sup{C(L)|L : a hyperplane of TxM},

if t > n2 − n.

For any orthonormal basis {E1, ..., En} of the tangent space TxMn, the scalar curva-
ture τ at x is given by

τ(x) =
∑

1≤i<j≤n

K(Ei ∧ Ej).(3.8)

Finally, in this section we recall the following well-known algebraic lemma for later
use

Lemma 3.1. [1] let n ≥ 2 and a1 and a1, ..., an, b real numbers such that( n∑
i=1

ai

)2

= (n− 1)

( n∑
i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = ... = an.



6 Mohd Aslam and Aliya Naaz Siddiqui

4 Main Inequalities

Theorem 4.1. let Mn, n ≥ 3, be an n-dimensional submanifold of n+p-dimensional
real space form Nn+p of constant sectional curvature c endowed with a quarter-
symmetric. Then for the generalized normalized δ-Casorati curvatures, we have the
following optimal relationships:

(i) For any real number t such that 0 < t < n(n− 1):

ρ ≤ δC(t;n− 1)

n(n− 1)
+ c−

{
(ψ1 + ψ2)

β1
n

+ ψ2(ψ1 − ψ2)
β2
n

− (ψ2 − ψ1)π(H)
}
.

(4.1)

(ii) For any real number t > n(n− 1):

ρ ≤ δ̂C(t;n− 1)

n(n− 1)
+ c−

{
(ψ1 + ψ2)

β1
n

+ ψ2(ψ1 − ψ2)
β2
n

− (ψ2 − ψ1)π(H)
}
.

(4.2)

Moreover, the equality holds in (4.1) and (4.20) if and only if M is invari-
antly quasi-umbilical with trivial normal connection in N , such that with respect
to suitable tangent orthonormal frame {E1, ..., En} and normal orthonormal frame
{En+1, ..., En+p}, the shape operator Sr ≡ Ser , r ∈ {n+ 1, ..., n+ p}, take the follow-
ing form

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 . . . b .

0 0 0 . . . 0 n(n−1)
t

b


Sn+2 = ... = Sn+p = 0.

(4.3)

Proof. Let x ∈ M and {E1, ..., En} and {En+1, ..., En+p} be the orthonormal basis
of TxM and T⊥

x M, respectively at any point x ∈ M. Putting X = W = Ei and
Y = Z = Ej into (2.8) with (2.6) and considering i ̸= j ,Then we obtain

n∑
i,j=1

R(Ei, Ej , Ej , Ei) =

n∑
i,j=1

{
c
{
g(Ei, Ei)g(Ej , Ej)− g(Ei, Ej)g(Ej , Ei)

}
+ψ1α(Ei, Ej)g(Ej , Ei)− ψ1α(Ej , Ej)g(Ei, Ei)

+ψ2g(Ei, Ej)α(Ej , Ei)− ψ2g(Ej , Ej)α(Ei, Ei)

+ψ2(ψ1 − ψ2)g(Ei, Ej)β(Ej , Ei)− ψ2(ψ1 − ψ2)g(Ej , Ej)β(Ei, Ei),

−(ψ1 − ψ2)g(h(Ej , Ej),V⊥)g(Ei, Ei)

−(ψ2 − ψ1)g(h(Ei, Ej),V⊥)g(Ej , Ei)

+g(h(Ej , Ej), h(Ei, Ei))− g(h(Ei, Ej), h(Ej , Ei)

}
.(4.4)
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By summation after i ≤ i, j ≤ n, it follows that

2τ(x) = n2H− nC + n(n− 1)c+ (ψ1 + ψ2)(1− n)β1 + ψ2(ψ1 − ψ2)(1− n)β1

+(ψ2 − ψ1)n(n− 1)π(H).(4.5)

We define the following function , denoted by Q, which is a quadratic polynomial in
the components of second fundamental form

Q = tC + b(t)C(L)− 2τ(x) + n(n− 1)c+ (ψ1 + ψ2)(1− n)β1 + ψ2(ψ1

−ψ2)(1− n)β1 + (ψ2 − ψ1)n(n− 1)π(H),(4.6)

where L is the hyperplane of TxM. Without loss of generality, we suppose that L is
spanned by {E1, ..., En−1}, it follow 4.6 that

Q =
(n+ t)

n

n+p∑
r=n+1

n∑
i,j=1

(hrij)
2 +

b(t)

(n− 1)

n+p∑
r=n+1

n−1∑
i,j=1

(hrij)
2 −

n+p∑
r=n+1

( n∑
i=1

(hrii)
2,

which can be easily written as

Q =

n+p∑
r=n+1

n−1∑
i,j=1

[(
n+ t

n
+

b(t)

n− 1

)
(hrii)

2 + 2
n+ t

n
(hrin)

2

]

+

n+p∑
r=n+1

[
2
(n+ t

n
+

b(t)

n− 1
− 1

) n−1∑
i<j

(hrij)
2 − 2

n∑
i<j

hriih
r
jj

+
t

n
(hrnn)

2

]
.(4.7)

From (4.7), we can see the critical points

hc =
{
hn+1
11 , hn+1

12 , ..., hn+1
nn , ..., hn+p

11 , ..., hn+p
nn

}
of Q are the solutions of the followings system of homogeneous equations:

∂Q
∂hii

= 2
(
n+t
n + b(t)

n−1 − 1
)
hrii − 2

∑n
q=1 h

r
qq = 0

∂Q
∂hnn

= 2t
n h

r
nn − 2

∑n−1
q=1 h

r
qq = 0

∂Q
∂hij

= 4
(
n+t
n + b(t)

n−1

)
hrij

∂Q
∂hin

= 4
(
n+t
n

)
hrin,

(4.8)

where i, j = {1, 2, ..., n−1}, i ̸= j and r ∈ {n+1, ...., n+p}. Hence, every solution hc

and hrij = 0 for i ̸= j and the corresponding determinant to the first two equations of
the above system is zero. Moreover, the Hessian matrix of Q is of the following form

H(Q) =

H1 0 0
0 H2 0
0 0 H3

 .
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H1 =



2
(
n+t
n + b(t)

n−1

)
− 2 −2 . . . −2 −2

−2 2
(
n+t
n + b(t)

n−1

)
− 2 . . . −2 −2

. . . . .

. . . . .

. . . . .

−2 −2 . . . 2
(
n+t
n + b(t)

n−1

)
− 2 −2

−2 −2 . . . −2 2t
n


(4.9)

H2 and H3 are the diagonal matrices and 0 is the null matrix of the respective di-
mensions, given by

H2 = diag

[
4(
n+ t

n
+

b(t)

n− 1
− 1), 4(

n+ t

n
+

b(t)

n− 1
− 1), . . . ,

4(
n+ t

n
+

b(t)

n− 1
− 1)

]
,

and

H3 = diag

[
4
(n+ t)

n
, 4

(n+ t)

n
, . . . , 4

(n+ t)

n

]
.

Hence, we find that H(Q) has the following eigenvalues:

λ11 = 0, λ22 = 2( 2tn + b(t)
n−1 ), λ33 = ..... = λnn = 2(n+t

n + b(t)
n−1 ), λij = 4(n+t

n + b(t)
n−1 ),

λin = 4(n+t
n ), ∀i, j ∈ {1, 2, ..., n− 1}, i ̸= j.

Thus, Q is parabolic and reaches at minimum Q(hc) = 0 for some solution hc of the
system (4.8). Therefore, Q ≥ 0 and hence we have

2τ(x) ≤ tC + b(t)C(L) + n(n− 1)c+ (ψ1 + ψ2)(1− n)β1 + ψ2(ψ1 − ψ2)(1− n)β1

+(ψ2 − ψ1)n(n− 1)π(H),(4.10)

whereby, we obtain

ρ ≤ t

n(n− 1)
C +

b(t)

n(n− 1)
C(L) + c− 1

n
(ψ1 + ψ2)β1 −

1

n
ψ2(ψ1 − ψ2)β1

+(ψ2 − ψ1)π(H),(4.11)

For each tangent hyperplane L of M. If we take infimum over all tangent hyperplanes
L, the result trivially follows. Moreover, the equality sign holds if and only if

hrij = 0, ∀i, j ∈ {1, ..., n}, i ̸= j, r ∈ {n+ 1, ..., n+ p}(4.12)

and

hrnn = 2hr11 = ... = 2hrn−1n−1, ∀r ∈ {n+ 1, ..., n+ p}.(4.13)

From (4.12) and (4.13), we conclude that the equality sign holds if and only if the sub-
manifold M is invariantly quasi-umbilical submanifold with normal connection Nn+p
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such that shape operator takes the (4.21) with respect to the orthonormal tangent
and orthonormal normal frames.

In the same manner, we can establish the inequality (4.20) as a second part of the
theorem. □

Corollary 4.2. let Mn, n ≥ 3, be an n-dimensional submanifold of n+p-dimensional
real space form Nn+p of constant sectional curvature c endowed with a quarter-
symmetric. Then, we have

(i) The normalized δ-Casorati curvature δC(n− 1)

ρ ≤ δC(n− 1) + c−
{
(ψ1 + ψ2)

β1
n

+ ψ2(ψ1 − ψ2)
β2
n

− (ψ2 − ψ1)π(H)
}
.

(4.14)

Moreover, the equality holds in if and only if M is invariantly quasi-umbilical with
trivial normal connection in N , such that with respect to suitable tangent orthonor-
mal frame {E1, ..., En} and normal orthonormal frame {En+1, ..., En+p}, the shape
operator Sr ≡ Ser , r ∈ {n+ 1, ..., n+ p}, take the following form

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 . . . b .
0 0 0 . . . 0 2b


, Sn+2 = ... = Sn+p = 0.

(4.15)

(ii) The normalized δ-Casorati curvature δ̂C(n− 1)

ρ ≤ δ̂C(n− 1) + c−
{
(ψ1 + ψ2)

β1
n

+ ψ2(ψ1 − ψ2)
β2
n

− (ψ2 − ψ1)π(H)
}
.

(4.16)

Moreover, the equality holds if and only if M is invariantly quasi-umbilical with trivial
normal connection in N , such that with respect to suitable tangent orthonormal frame
{E1, ..., En} and normal orthonormal frame {En+1, ..., En+p}, the shape operator Sr ≡
Ser , r ∈ {n+ 1, ..., n+ p}, take the following form

Sn+1 =



2b 0 0 . . . 0 0
0 2b 0 . . . 0 0
0 0 2b . . . 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 . . . 2b .
0 0 0 . . . 0 b


, Sn+2 = ... = Sn+p = 0.

(4.17)
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Proof. (i) One can easily see that

[
δC(n(n− 1);n− 1)

2
]x = n(n− 1)[δC(n− 1)],(4.18)

ar any point x ∈ M. Therefore, putting t = n(n−1)
2 in (4.1) and taking into account

(4.18), we have our assertion. Similarly, we can prove (ii). □

For semi-symmetric metric connection ψ1 = ψ2 = 1, we have the result in [11]. And
for semi-symmetric non-metric connection ψ1 = 1 and ψ2 = 0, we have the following:

Theorem 4.3. let Mn, n ≥ 3, be an n-dimensional submanifold of an n + p-
dimensional real space form Nn+p of constant sectional curvature c endowed with
a quarter-symmetric. Then for the generalized normalized δ-Casorati curvature, we
have the following optimal relationships:

(i) For any real number t such that 0 < t < n(n− 1):

ρ ≤ δC(t;n− 1)

n(n− 1)
+ c− β1

n
− π(H).(4.19)

(ii) For any real number t > n(n− 1):

ρ ≤ δ̂C(t;n− 1)

n(n− 1)
+ c− β1

m
− π(H).(4.20)

Moreover, the equality holds in (4.1) and (4.20) if and only if M is invari-
antly quasi-umbilical with trivial normal connection in N , such that with respect
to suitable tangent orthonormal frame {E1, ..., En} and normal orthonormal frame
{En+1, ..., En+p}, the shape operator Sr ≡ Ser , r ∈ {n+ 1, ..., n+ p}, take the follow-
ing form

Sn+1 =



b 0 0 . . . 0 0
0 b 0 . . . 0 0
0 0 b . . . 0 0
. . . . . .
. . . . . .
. . . . . .
0 0 0 . . . b .

0 0 0 . . . 0 n(n−1)
t

b


, Sn+2 = ... = Sn+p = 0.

(4.21)
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