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Abstract. In the present paper we study 3-dimensional C12-manifolds ad-
mitting Ricci solitons and generalized Ricci solitons and then we introduce
a new generalization of η-Ricci soliton. We give a class of examples.
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1 Introduction

In the classification of D. Chinea and C. Gonzalez [4] of almost contact metric man-
ifolds there is a class C12-manifolds which can be integrable but never normal. Re-
cently, in [7], The authors have developed a systematic study of the curvature of the
Chinea-Gonzalez class C5 ⊕ C12 and obtain some classification theorems for those
manifolds that satisfy suitable curvature conditions. This class is defined by using a
certain function α and when this function vanishes the class C5⊕C12 reduces to class
C12.

Recently, in [2], the authors have study some properties of three dimensional C12-
manifolds and construct some relations between class C12 and other classes as C6 and
C2 ⊕ C9 or |C|.

Here, we investigate these manifolds to construct Ricci soliton and generalized
Ricci soliton. It is shown that if in a 3-dimensional C12-manifolds the metric is Ricci
soliton, where potential vector field V is collinear with the characteristic vector field
ξ, then the manifold is η-Einstein. We also prove that an η-Einstein 3-dimensional
C12-manifold with

S = µg + ση ⊗ η µ+ σ = −divψ V = βξ and gradβ = βψ − σξ

admits a Ricci soliton. On the other hand, it is shown that any 3-dimensional C12-
manifold with |ψ|2 − 2divψ − r

2 = 0 satisfies the generalized Ricci soliton equation.
This paper is organized in the following way:

Section 2, is devoted to some basic definitions for 3-dimensional C12-manifold. In
Section 3, we obtain some results for a 3-dimensional C12-manifold admitting Ricci
soliton. In the last section, we present a study on 3-dimensional C12-manifold which
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satisfies the generalized Ricci soliton equation and we give concrete examples. Finally,
we introduce a generalization of η-Ricci soliton and we prove the existence through
several examples.

2 Preliminaries

The notion of Ricci soliton was introduced by Hamilton [10] in 1982. A Ricci soliton is
a natural generalization of an Einstein metric. A pseudo-Riemannian manifold (M, g)
is called a Ricci soliton if it admits a smooth vector field V (potential vector field) on
M such that

(2.1) (LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 0,

where LXg is the Lie-derivative of g along X given by:

(2.2) (LXg)(Y, Z) = g(∇YX,Z) + g(∇ZX,Y ),

λ is a constant and X,Y are arbitrary vector fields on M .
A Ricci soliton is said to be shrinking, steady or expanding according to λ being
negative, zero or positive, respectively. It is obvious that a trivial Ricci soliton is an
Einstein manifold with V zero or Killing.

The generalized Ricci soliton equation in Riemannian manifold (M, g) is defined
by (see [12]):

(2.3) LXg = −2c1X
♭ ⊙X♭ + 2c2 S+2λg,

where X♭(Y ) = g(X,Y ) and c1, c2, λ ∈ R.
Equation (2.3), is a generalization of Killing’s equation (c1 = c2 = λ = 0), Equation
for homotheties (c1 = c2 = 0), Ricci soliton (c1 = 0, c2 = −1), Cases of Einstein-Weyl
(c1 = 1, c2 = −1

n−2 ), Metric projective structures with skew-symmetric Ricci tensor in

projective class (c1 = 1, c2 = −1
n−1 , λ = 0), Vacuum near-horzion geometry equation

(c1 = 1, c2 = 1
2 ), and is also a generalization of Einstein manifolds (For more details,

see [1], [5], [8], [9], [12]).

An odd-dimensional Riemannian manifold (M2n+1, g) is said to be an almost
contact metric manifold if there exist on M a (1, 1)-tensor field φ, a vector field ξ
(called the structure vector field) and a 1-form η such that

(2.4) η(ξ) = 1, φ2(X) = −X + η(X)ξ and g(φX,φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y on M . In particular, in an almost contact metric manifold
we also have φξ = 0 and η ◦ φ = 0.

The fundamental 2-form ϕ is defined by ϕ(X,Y ) = g(X,φY ). It is known that
the almost contact structure (φ, ξ, η) is said to be normal if and only if

(2.5) N (1)(X,Y ) = Nφ(X,Y ) + 2dη(X,Y )ξ = 0,

for any X, Y on M , where Nφ denotes the Nijenhuis torsion of φ, given by

(2.6) Nφ(X,Y ) = φ2[X,Y ] + [φX,φY ]− φ[φX, Y ]− φ[X,φY ].



28 Bayour Benaoumeur, Gherici Beldjilali

Given an almost contact structure, one can associate in a natural manner an
almost CR-structure (D, φ|D), where D := Ker(η) = Im(φ) is the distribution of
rank 2n transversal to the characteristic vector field ξ. If this almost CR-structure is
integrable (i.e., Nφ = 0) the manifold M2n+1 is said to be CR-integrable. It is known
that normal almost contact manifolds are CR-manifolds.

In the classification of D. Chinea and C. Gonzalez [4], the almost contact metric
structures have been completely classifled. The C5 ⊕C12 class was recently discussed
by S. de Candia and M. Falcitelli [7]. We just recall the defining relations of C5⊕C12

class, which will be used in this study.
The C5 ⊕ C12-manifolds can be characterized by:

(∇Xφ)Y = α
(
g(φX, Y )ξ − η(Y )φX

)
−η(X)

(
(∇ξη)(φY )ξ + η(Y )φ∇ξξ

)
.(2.7)

It is known that any almost contact metric manifold (φ, ξ, η, g) from C5 ⊕ C12 class
satisfies (see [7])

(2.8)

 ∇Xξ = −αφ2X + η(X)∇ξξ,
dη = η ∧∇ξη,
d(∇ξη) = −

(
α∇ξη +∇ξ(∇ξ)η

)
∧ η,

where dim M = 2n+1 and α = − 1
2nδη. Furthermore, if dim M ≥ 5, the Lee form of

M is ω = −αη and it is closed. Applying (2.8), one has

(2.9) dα = ξ(α)η + α∇ξη.

In this paper, we will focus on the class C12. So, putting α = 0, ω = −
(
∇ξξ

)♭
=

−∇ξη and if ψ is the vector field given by ω(X) = g(X,ψ) for all X vector field on
M , from formula (2.7) M is of class C12 if and only if

(2.10) (∇Xφ)Y = η(X)
(
ω(φY )ξ + η(Y )φψ

)
.

Moreover, from (2.8) it follow,

(2.11)

 ∇Xξ = −η(X)ψ,
dη = ω ∧ η,
dω = 0.

Notice that ∇ξξ = −ψ.
In [2], we have given a characterization of class C12 as follows:

Theorem 2.1. An almost contact metric manifold is of class C12 if and only if there
exists a 1-form ω such that

(2.12) dη = ω ∧ η dϕ = 0 and Nφ = 0.

Now, we denote by R,S, r the curvature tensor, the Ricci curvature and the scalar
curvature respectively, which are defined for all X,Y, Z ∈ X(M) by

(2.13) R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,
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(2.14) S(X,Y ) =

2n+1∑
i=1

g
(
R(ei, X)Y, ei

)
,

(2.15) r =

2n+1∑
i=1

S(ei, ei),

with {e1, ..., e2n+1} is a local orthonormal basis . The divergence of a vector field X
on M is defined by:

(2.16) divψ =

2n+1∑
i=1

g(∇eiψ, ei).

(For more details of previous definitions, see for example [11]).
Then, from Corollary 3.1 of [7] we have,

(2.17) R(X,Y )ξ = −2dη(X,Y )ψ − η(Y )∇Xψ + η(X)∇Y ψ,

(2.18) S(X, ξ) = −η(X)divψ.

Proposition 2.2. In a 3-dimensional C12-manifold, Ricci tensor and curvature ten-
sor are given respectively by

S(X,Y ) =
(r
2
+ divψ

)
g(X,Y ) +

(
|ψ|2 − 2divψ − r

2

)
η(X)η(Y )

− ω(X)ω(Y )− g(∇Xψ, Y ),(2.19)

and

R(X,Y )Z =
(
|ψ|2 − 2divψ − r

2

)
η(Z)

(
η(Y )X − η(X)Y

)
− g(Y,Z)

(
ω(X)ψ +∇Xψ −

(
2divψ +

r

2

)
X
)

+ g(X,Z)
(
ω(Y )ψ +∇Y ψ −

(
2divψ +

r

2

)
Y
)

(2.20)

+
(
|ψ|2 + 2divψ − r

2

)(
g(Y, Z)η(X)− g(X,Z)η(Y )

)
ξ

− ω(Z)
(
ω(Y )X − ω(X)Y

)
+ g(∇Xψ,Z)Y − g(∇Y ψ,Z)X.

Proof. Suppose that (M,φ, ξ, ψ, η, ω, g) is a 3-dimensional C12-manifold.
Setting Y = Z = ξ in the well known formula (which holds for any 3-dimensional
Riemannian manifold [3]):

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X − S(X,Z)Y

− r

2

(
g(Y,Z)X − g(X,Z)Y

)
,(2.21)

where Q is the Ricci operator defined by

(2.22) S(X,Y ) = g(QX,Y ).
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We get

(2.23) R(X, ξ)ξ = QX − (divψ)X + 2(divψ)η(X)ξ +
r

2
φ2X.

Again, Setting Y = ξ in formula (2.17), we obtain

(2.24) R(X, ξ)ξ = −g(∇ξξ,X)ψ −∇Xψ + η(X)∇ξψ.

On the other hand, we have

2dω(ξ,X) = 0 ⇔ g(∇ξψ,X) = g(∇Xψ, ξ)

= −g(ψ,∇Xξ)

= ω(ψ)η(X),

which gives

(2.25) ∇ξψ = ω(ψ)ξ.

So, using (2.11) and (2.25) in formula (2.24) we get

(2.26) R(X, ξ)ξ = −ω(X)ψ −∇Xψ + |ψ|2η(X)ξ.

In view of (2.23) and (2.26), we obtain

(2.27) QX = −ω(X)ψ −∇Xψ + (divψ +
r

2
)X + (|ψ|2 − 2divψ − r

2
)η(X)ξ.

Finally, equation (2.19) follows from (2.27) and (2.22). Using (2.22) and (2.27) in
(2.21), the curvature tensor in a 3-dimensional C12-manifold is given by (2.20). □

Example 2.1. We denote the Cartesian coordinates in a 3-dimensional Euclidean
space R3 by (x, y, z) and define a symmetric tensor field g by

g = e2f

 ρ2 + τ2 0 −τ
0 ρ2 0
−τ 0 1

 ,

where f = f(y), τ = τ(x) and ρ = ρ(x, y) are functions on R3 with f ′ = ∂f
∂y . Further,

we define an almost contact metric (φ, ξ, η) on R3 by

φ =

 0 −1 0
1 0 0
0 −τ 0

 , ξ = e−f

 0
0
1

 , η = ef (−τ, 0, 1).

The fundamental 1-form η and the 2-form ϕ have the forms,

η = ef (dz − τdx) and ϕ = −2ρ2e2fdx ∧ dy,

and hence
dη = f ′ef

(
τdx ∧ dy + dy ∧ dz

)
,
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dϕ = 0.

By a direct computation the non trivial components of N
(1) i
kj are given by

N
(1) 3
12 = τf ′, N

(1) 3
23 = f ′.

But, ∀i, j, k ∈ {1, 2, 3}

(Nφ)
i
kj = 0,

implying that the structure (φ, ξ, η, g) is CR-integrable.
Therefore, to continue studying this example, it suffices to take f ′ ̸= 0 to ensure that
the structure is CR-integrable not normal.

In order to define the closed 1-form ω, putting ω = adx + bdy + cdz where a, b
and c are functions on R3, and using formulas dη = ω∧ η and ω(ξ) = 0, we can check
that is very simply as follows:

(2.28) ω = f ′ dy,

notice that dω = 0.
Knowing that ω is the g-dual of ψ i.e. ω(X) = g(X,ψ), we have immediately that

(2.29) ψ =
f ′

ρ2
e−2f ∂

∂y
.

Thus, (φ, ξ, ψ, η, ω, g) becomes a C12 structure on R3.
Now we have{

e1 =
e−f

ρ

( ∂

∂x
+ τ

∂

∂z

)
, e2 =

e−f

ρ

∂

∂y
, e3 = ξ = e−f

∂

∂z

}
form an orthonormal basis. To verify result in formula (2.10), the non zero components
of the Levi-Civita connection corresponding to g are given by:

∇e1e1 = − (f ′ρ+ ρ2)

ρ2ef
e2, ∇e1e2 =

(f ′ρ+ ρ2)

ρ2ef
e1,

∇e2e1 =
ρ1
ρ2ef

e2, ∇e2e2 = −ρ1
ρ2ef

e1,

∇e3e2 =
f ′

ρ ef
e3, ∇e2e2 = − f ′

ρ ef
e2.

Then, one can easily check that for all i, j ∈ {1, 2, 3}

(∇eiφ)ej = ∇eiφej − φ∇eiej

= η(ei)
(
ω(φej)ξ + η(ej)φψ

)
.
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3 Ricci soliton

In this section, we consider a 3-dimensional C12-manifoldM admitting a Ricci soliton
defined by (2.1). Let V be a pointwise collinear vector field with the structure vector
field ξ, that is V = βξ, where β is a function on M . From (2.1) we write

(3.1) g(∇Xβξ, Y ) + g(∇Y βξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0,

for all X and Y vector fields on M . Then, we have

X(β)η(Y ) + βg(∇Xξ, Y ) + Y (β)η(X)

+βg(∇Y ξ,X) + 2S(X,Y ) + 2λg(X,Y ) = 0,

which implies

X(β)η(Y )− βη(X)ω(Y ) + Y (β)η(X)

−βη(Y )ω(X) + 2S(X,Y ) + 2λg(X,Y ) = 0,(3.2)

by virtue of (2.11). By putting Y = ξ in (3.2) and using (2.18) we obtain

X(β)− βω(X) +
(
ξ(β)− 2divψ + 2λ

)
η(X) = 0.(3.3)

Taking X = ξ in the previous equation gives

ξ(β) = divψ − λ.(3.4)

If we replace (3.4) in (3.3), we get

X(β) = βω(X) +
(
divψ − λ

)
η(X),(3.5)

again, if we replace (3.5) in (3.2), we obtain

S(X,Y ) = −λg(X,Y ) +
(
λ− divψ

)
η(X)η(Y ),(3.6)

for all X and Y vector fields on M . Hence we have

Theorem 3.1. Let (M,φ, ξ, ψ, η, ω, g) be a 3-dimensional C12-manifold. If M admits
a Ricci soliton and V is pointwise collinear with the structure vector field ξ, then M
is an η-Einstein manifold.
In addition, if λ = divψ = constant then M is an Einstein manifold.

Let assume the converse, that is, letM be a 3-dimensional η-Einstein C12-manifold
with V = βξ. Then we can write

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),(3.7)

where a and b are scalars and X,Y are vector fields on M . From (2.2) we have

(LV g)(Y, Y ) = g(∇XV, Y ) + g(∇Y V,X)

= X(β)η(Y ) + Y (β)η(X)− βη(X)ω(Y )− βη(Y )ω(X),
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which implies that

(LV g)(X,Y ) + 2S(X,Y ) + 2λg(X,Y ) = 2(a+ λ)g(X,Y )

+ η(X)
(
bη(Y )− βω(Y ) + Y (β)

)
+ η(Y )

(
bη(X)− βω(X) +X(β)

)
.

From the previous equation it is obvious that M admits a Ricci soliton (g, V, λ) if

a+ λ = 0 and bη(Y )− βω(Y ) + Y (β) = 0.

Equating the right hand sides of (3.7) and (2.18) and taking X = Y = ξ gives

a+ b = −divψ,

Thus, we get

Theorem 3.2. Let (M,φ, ξ, ψ, η, ω, g) be a 3-dimensional C12-manifold with divψ is
constant. If M is an η-Einstein manifold with S = ag + bη ⊗ η and a+ b = −divψ ,
then the manifold admits a Ricci soliton (g, βξ, a) with gradβ = βψ − bξ.

4 Generalized Ricci soliton

In this section we will study the generalized Ricci soliton equation (2.3) on a C12-
manifold of dimension three. let’s start with our main result

Theorem 4.1. Any three-dimensional C12-manifold satisfies the generalized Ricci
soliton equation (2.3) with X = ψ, c1 = 1, c2 = −1 and λ = |ψ|2 − divψ if and only
if

(4.1) |ψ|2 − 2divψ − r

2
= 0.

Proof. Suppose that (M,φ, ξ, ψ, η, ω, g) is a C12-manifold of dimension three which
satisfies the generalized Ricci soliton equation (2.3) with X = ψ, that is, for all
Y, Z ∈ Γ(TM)

(4.2)
(
Lψg

)
(Y,Z) = −2c1ω(Y )ω(Z) + 2c2S(Y,Z) + 2λg(Y,Z).

Since ω is closed then g(∇Y ψ,Z) = g(∇Zψ, Y ). Therefore, we can express the gen-
eralized soliton equation as

(4.3) ∇Y ψ = −c1ω(Y )ψ + c2QY + λY.

Now, from (2.27) we get

(4.4) ∇Y ψ = −ω(Y )ψ −QY + (divψ +
r

2
)Y + (|ψ|2 − 2divψ − r

2
)η(Y )ξ.

In view of (4.4) and (4.3) the proof is complete. □

Proposition 4.2. Let (M,φ, ξ, ψ, η, ω, g) be a C12-manifold of dimension three which
satisfies the generalized Ricci soliton equation (2.3) with X = ψ. If |ψ| = 1 then
r = constant.
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Proof. The proof is direct, it suffices to use Theorem 4.1. □

Example 4.1. Let’s go back to the class of the previous examples . With simple but
long calculations, we can get the following:

|ψ|2 =
f ′2

ρ2
e−2f , divψ =

e−2f

ρ2
(f ′2 + f ′′), λ =

f ′′e−2f

ρ2
,

r =
2e−2f

ρ4
(ρ21 − ρρ11 + ρ22 − ρρ22 − 2f ′′ρ2 − f ′2ρ2),

where ρi =
∂ρ
∂xi

. Then, the condition (4.1) gives the following differential equation

(4.5) ρ21 − ρρ11 + ρ22 − ρρ22 = 0.

Henceforth, we can construct a non-trivial generalized Ricci soliton.
For example:
(1): ρ = 1, λ = f ′′e−2f ,
∇e1ψ = e−2ff ′2e1, Qe1 = −e−2f (f ′′ + f ′2)e1,
∇e2ψ = e−2f (−f ′2 + f ′′)e2, Qe2 = −2e−2ff ′′e2,
∇e3ψ = e−2ff ′2e3, Qe3 = −e−2f (f ′2 + f ′′)e3.

(2): ρ = ey, λ = f ′′e−2(y+f),
∇e1ψ = e−2(y+f)(f ′(f ′ + 1)e1, Qe1 = −e−2(y+f)(f ′′ + f ′2 + f ′)e1,
∇e2ψ = e−2(y+f)(−f ′2 + f ′′ − f ′)e2, Qe2 = −2e−2(y+f)(f ′′ + f ′2)e2,
∇e3ψ = e−2(y+f)f ′2e3, Qe3 = −e−2(y+f)(f ′2 + f ′′)e3.

(3): ρ = e−f , λ = 0,
∇e1ψ = 0, Qe1 = 0,
∇e2ψ = f ′′e2, Qe2 = −

(
f ′2 + f ′′

)
e2,

∇e3ψ = f ′2e3, Qe3 = −(f ′2 + f ′′)e3.
Of course, we must choose f so that λ is constant. We can construct further

examples of generalized Ricci soliton on a 3-dimensional C12-manifold by the similar
way.

At the end of this section, we present the concept of the generalized η-Ricci soliton
as a generalization of the η-Ricci soliton given by Cho-Kimura in [6] by the following
equation:

(4.6) LV g + 2S + 2λg + µη ⊗ η = 0,

where the tensor product notation (η ⊗ η)(X,Y ) = η(X)η(Y ) is used and λ, µ are
real constants.

The generalized η-Ricci soliton equation in Riemannian manifold (M, g) is defined
by:

(4.7) LXg = −2c1X
♭ ⊙X♭ + 2c2 S+2λg + µη ⊗ η,

where c1, c2, λ, µ ∈ R.
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With the same reasoning above, we can express formula (4.7) as follows

(4.8) ∇Xψ = −c1ω(X)ψ + c2QX + λX + µη ⊗ ξ.

Now, based on equation (4.4), we declare the following result

Theorem 4.3. Any 3-dimensional C12-manifold satisfies the generalized η-Ricci soli-
ton equation with

c1 = 1 c2 = −1 λ = |ψ|2 − divψ and µ = |ψ|2 − 2divψ − r

2
.

Example 4.2. From Example 4.1, we can construct several non-trivial cases, namely:

1) If f = y and ρ = 4
e2y−c with c ∈ R, then we get

c1 = 1, c2 = −1, λ = 0, and µ = c.

2) If f = ln
(

1
sin2 y

)
and ρ = c sin y, then we get

c1 = 1, c2 = −1, λ = − 2

c2
, µ = − 1

c2
.

Of course, while taking into account the necessary conditions on f and ρ.
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