Ricci solitons on 3-dimensional C_{12}-manifolds

Bayour Benaoumeur, Gherici Beldjilali

Abstract

In the present paper we study 3-dimensional C_{12}-manifolds admitting Ricci solitons and generalized Ricci solitons and then we introduce a new generalization of η-Ricci soliton. We give a class of examples.

M.S.C. 2010: 42A20, 42A32.

Key words: Almost contact metric structure; C_{12}-manifolds; Ricci soliton; generalized Ricci soliton.

1 Introduction

In the classification of D. Chinea and C. Gonzalez [4] of almost contact metric manifolds there is a class C_{12}-manifolds which can be integrable but never normal. Recently, in [7], The authors have developed a systematic study of the curvature of the Chinea-Gonzalez class $C_{5} \oplus C_{12}$ and obtain some classification theorems for those manifolds that satisfy suitable curvature conditions. This class is defined by using a certain function α and when this function vanishes the class $C_{5} \oplus C_{12}$ reduces to class C_{12}.

Recently, in [2], the authors have study some properties of three dimensional $C_{12^{-}}$ manifolds and construct some relations between class C_{12} and other classes as C_{6} and $C_{2} \oplus C_{9}$ or $|C|$.

Here, we investigate these manifolds to construct Ricci soliton and generalized Ricci soliton. It is shown that if in a 3 -dimensional C_{12}-manifolds the metric is Ricci soliton, where potential vector field V is collinear with the characteristic vector field ξ, then the manifold is η-Einstein. We also prove that an η-Einstein 3-dimensional C_{12}-manifold with

$$
S=\mu g+\sigma \eta \otimes \eta \quad \mu+\sigma=-\operatorname{div} \psi \quad V=\beta \xi \quad \text { and } \quad \operatorname{grad} \beta=\beta \psi-\sigma \xi
$$

admits a Ricci soliton. On the other hand, it is shown that any 3 -dimensional $C_{12^{-}}$ manifold with $|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}=0$ satisfies the generalized Ricci soliton equation.

This paper is organized in the following way:
Section 2, is devoted to some basic definitions for 3 -dimensional C_{12}-manifold. In Section 3, we obtain some results for a 3-dimensional C_{12}-manifold admitting Ricci soliton. In the last section, we present a study on 3 -dimensional C_{12}-manifold which

[^0]satisfies the generalized Ricci soliton equation and we give concrete examples. Finally, we introduce a generalization of η-Ricci soliton and we prove the existence through several examples.

2 Preliminaries

The notion of Ricci soliton was introduced by Hamilton [10] in 1982. A Ricci soliton is a natural generalization of an Einstein metric. A pseudo-Riemannian manifold (M, g) is called a Ricci soliton if it admits a smooth vector field V (potential vector field) on M such that

$$
\begin{equation*}
\left(\mathcal{L}_{V} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{2.1}
\end{equation*}
$$

where $\mathcal{L}_{X} g$ is the Lie-derivative of g along X given by:

$$
\begin{equation*}
\left(\mathcal{L}_{X} g\right)(Y, Z)=g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right) \tag{2.2}
\end{equation*}
$$

λ is a constant and X, Y are arbitrary vector fields on M.
A Ricci soliton is said to be shrinking, steady or expanding according to λ being negative, zero or positive, respectively. It is obvious that a trivial Ricci soliton is an Einstein manifold with V zero or Killing.

The generalized Ricci soliton equation in Riemannian manifold (M, g) is defined by (see [12]):

$$
\begin{equation*}
\mathcal{L}_{X} g=-2 c_{1} X^{b} \odot X^{b}+2 c_{2} \mathrm{~S}+2 \lambda g \tag{2.3}
\end{equation*}
$$

where $X^{\mathrm{b}}(Y)=g(X, Y)$ and $c_{1}, c_{2}, \lambda \in \mathbb{R}$.
Equation (2.3), is a generalization of Killing's equation $\left(c_{1}=c_{2}=\lambda=0\right)$, Equation for homotheties $\left(c_{1}=c_{2}=0\right)$, Ricci soliton $\left(c_{1}=0, c_{2}=-1\right)$, Cases of Einstein-Weyl $\left(c_{1}=1, c_{2}=\frac{-1}{n-2}\right)$, Metric projective structures with skew-symmetric Ricci tensor in projective class $\left(c_{1}=1, c_{2}=\frac{-1}{n-1}, \lambda=0\right)$, Vacuum near-horzion geometry equation ($c_{1}=1, c_{2}=\frac{1}{2}$), and is also a generalization of Einstein manifolds (For more details, see [1], [5], [8], [9], [12]).

An odd-dimensional Riemannian manifold $\left(M^{2 n+1}, g\right)$ is said to be an almost contact metric manifold if there exist on M a $(1,1)$-tensor field φ, a vector field ξ (called the structure vector field) and a 1-form η such that

$$
\begin{equation*}
\eta(\xi)=1, \varphi^{2}(X)=-X+\eta(X) \xi \quad \text { and } \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.4}
\end{equation*}
$$

for any vector fields X, Y on M. In particular, in an almost contact metric manifold we also have $\varphi \xi=0$ and $\eta \circ \varphi=0$.

The fundamental 2-form ϕ is defined by $\phi(X, Y)=g(X, \varphi Y)$. It is known that the almost contact structure (φ, ξ, η) is said to be normal if and only if

$$
\begin{equation*}
N^{(1)}(X, Y)=N_{\varphi}(X, Y)+2 d \eta(X, Y) \xi=0 \tag{2.5}
\end{equation*}
$$

for any X, Y on M, where N_{φ} denotes the Nijenhuis torsion of φ, given by

$$
\begin{equation*}
N_{\varphi}(X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-\varphi[X, \varphi Y] \tag{2.6}
\end{equation*}
$$

Given an almost contact structure, one can associate in a natural manner an almost CR-structure $\left(\mathcal{D},\left.\varphi\right|_{\mathcal{D}}\right)$, where $\mathcal{D}:=\operatorname{Ker}(\eta)=\operatorname{Im}(\varphi)$ is the distribution of rank $2 n$ transversal to the characteristic vector field ξ. If this almost CR-structure is integrable (i.e., $N_{\varphi}=0$) the manifold $M^{2 n+1}$ is said to be CR-integrable. It is known that normal almost contact manifolds are CR-manifolds.

In the classification of D. Chinea and C. Gonzalez [4], the almost contact metric structures have been completely classifled. The $C_{5} \oplus C_{12}$ class was recently discussed by S. de Candia and M. Falcitelli [7]. We just recall the defining relations of $C_{5} \oplus C_{12}$ class, which will be used in this study.

The $C_{5} \oplus C_{12}$-manifolds can be characterized by:

$$
\begin{align*}
\left(\nabla_{X} \varphi\right) Y= & \alpha(g(\varphi X, Y) \xi-\eta(Y) \varphi X) \\
& -\eta(X)\left(\left(\nabla_{\xi} \eta\right)(\varphi Y) \xi+\eta(Y) \varphi \nabla_{\xi} \xi\right) \tag{2.7}
\end{align*}
$$

It is known that any almost contact metric manifold (φ, ξ, η, g) from $C_{5} \oplus C_{12}$ class satisfies (see [7])

$$
\left\{\begin{array}{l}
\nabla_{X} \xi=-\alpha \varphi^{2} X+\eta(X) \nabla_{\xi} \xi \tag{2.8}\\
\mathrm{d} \eta=\eta \wedge \nabla_{\xi} \eta \\
\mathrm{d}\left(\nabla_{\xi} \eta\right)=-\left(\alpha \nabla_{\xi} \eta+\nabla_{\xi}\left(\nabla_{\xi}\right) \eta\right) \wedge \eta
\end{array}\right.
$$

where $\operatorname{dim} M=2 n+1$ and $\alpha=-\frac{1}{2 n} \delta \eta$. Furthermore, if $\operatorname{dim} M \geq 5$, the Lee form of M is $\omega=-\alpha \eta$ and it is closed. Applying (2.8), one has

$$
\begin{equation*}
\mathrm{d} \alpha=\xi(\alpha) \eta+\alpha \nabla_{\xi} \eta \tag{2.9}
\end{equation*}
$$

In this paper, we will focus on the class C_{12}. So, putting $\alpha=0, \omega=-\left(\nabla_{\xi} \xi\right)^{b}=$ $-\nabla_{\xi} \eta$ and if ψ is the vector field given by $\omega(X)=g(X, \psi)$ for all X vector field on M, from formula (2.7) M is of class C_{12} if and only if

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=\eta(X)(\omega(\varphi Y) \xi+\eta(Y) \varphi \psi) \tag{2.10}
\end{equation*}
$$

Moreover, from (2.8) it follow,

$$
\left\{\begin{array}{l}
\nabla_{X} \xi=-\eta(X) \psi \tag{2.11}\\
\mathrm{d} \eta=\omega \wedge \eta \\
\mathrm{d} \omega=0
\end{array}\right.
$$

Notice that $\nabla_{\xi} \xi=-\psi$.
In [2], we have given a characterization of class C_{12} as follows:
Theorem 2.1. An almost contact metric manifold is of class C_{12} if and only if there exists a 1-form ω such that

$$
\begin{equation*}
\mathrm{d} \eta=\omega \wedge \eta \quad \mathrm{d} \phi=0 \quad \text { and } \quad N_{\varphi}=0 \tag{2.12}
\end{equation*}
$$

Now, we denote by R, S, r the curvature tensor, the Ricci curvature and the scalar curvature respectively, which are defined for all $X, Y, Z \in \mathfrak{X}(M)$ by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{2.13}
\end{equation*}
$$

$$
\begin{align*}
S(X, Y) & =\sum_{i=1}^{2 n+1} g\left(R\left(e_{i}, X\right) Y, e_{i}\right) \tag{2.14}\\
r & =\sum_{i=1}^{2 n+1} S\left(e_{i}, e_{i}\right) \tag{2.15}
\end{align*}
$$

with $\left\{e_{1}, \ldots, e_{2 n+1}\right\}$ is a local orthonormal basis . The divergence of a vector field X on M is defined by:

$$
\begin{equation*}
\operatorname{div} \psi=\sum_{i=1}^{2 n+1} g\left(\nabla_{e_{i}} \psi, e_{i}\right) \tag{2.16}
\end{equation*}
$$

(For more details of previous definitions, see for example [11]).
Then, from Corollary 3.1 of [7] we have,

$$
\begin{gather*}
R(X, Y) \xi=-2 \mathrm{~d} \eta(X, Y) \psi-\eta(Y) \nabla_{X} \psi+\eta(X) \nabla_{Y} \psi \tag{2.17}\\
S(X, \xi)=-\eta(X) \operatorname{div} \psi \tag{2.18}
\end{gather*}
$$

Proposition 2.2. In a 3-dimensional C_{12}-manifold, Ricci tensor and curvature tensor are given respectively by

$$
\begin{align*}
S(X, Y) & =\left(\frac{r}{2}+\operatorname{div} \psi\right) g(X, Y)+\left(|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(X) \eta(Y) \\
& -\omega(X) \omega(Y)-g\left(\nabla_{X} \psi, Y\right) \tag{2.19}
\end{align*}
$$

and

$$
\begin{align*}
R(X, Y) Z & =\left(|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(Z)(\eta(Y) X-\eta(X) Y) \\
& -g(Y, Z)\left(\omega(X) \psi+\nabla_{X} \psi-\left(2 \operatorname{div} \psi+\frac{r}{2}\right) X\right) \\
& +g(X, Z)\left(\omega(Y) \psi+\nabla_{Y} \psi-\left(2 \operatorname{div} \psi+\frac{r}{2}\right) Y\right) \tag{2.20}\\
& +\left(|\psi|^{2}+2 \operatorname{div} \psi-\frac{r}{2}\right)(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)) \xi \\
& -\omega(Z)(\omega(Y) X-\omega(X) Y)+g\left(\nabla_{X} \psi, Z\right) Y-g\left(\nabla_{Y} \psi, Z\right) X
\end{align*}
$$

Proof. Suppose that $(M, \varphi, \xi, \psi, \eta, \omega, g)$ is a 3-dimensional C_{12}-manifold.
Setting $Y=Z=\xi$ in the well known formula (which holds for any 3-dimensional Riemannian manifold [3]):

$$
\begin{align*}
R(X, Y) Z & =g(Y, Z) Q X-g(X, Z) Q Y+S(Y, Z) X-S(X, Z) Y \\
& -\frac{r}{2}(g(Y, Z) X-g(X, Z) Y) \tag{2.21}
\end{align*}
$$

where Q is the Ricci operator defined by

$$
\begin{equation*}
S(X, Y)=g(Q X, Y) \tag{2.22}
\end{equation*}
$$

We get

$$
\begin{equation*}
R(X, \xi) \xi=Q X-(\operatorname{div} \psi) X+2(\operatorname{div} \psi) \eta(X) \xi+\frac{r}{2} \varphi^{2} X \tag{2.23}
\end{equation*}
$$

Again, Setting $Y=\xi$ in formula (2.17), we obtain

$$
\begin{equation*}
R(X, \xi) \xi=-g\left(\nabla_{\xi} \xi, X\right) \psi-\nabla_{X} \psi+\eta(X) \nabla_{\xi} \psi \tag{2.24}
\end{equation*}
$$

On the other hand, we have

$$
\begin{aligned}
2 \mathrm{~d} \omega(\xi, X)=0 \Leftrightarrow g\left(\nabla_{\xi} \psi, X\right) & =g\left(\nabla_{X} \psi, \xi\right) \\
& =-g\left(\psi, \nabla_{X} \xi\right) \\
& =\omega(\psi) \eta(X)
\end{aligned}
$$

which gives

$$
\begin{equation*}
\nabla_{\xi} \psi=\omega(\psi) \xi \tag{2.25}
\end{equation*}
$$

So, using (2.11) and (2.25) in formula (2.24) we get

$$
\begin{equation*}
R(X, \xi) \xi=-\omega(X) \psi-\nabla_{X} \psi+|\psi|^{2} \eta(X) \xi \tag{2.26}
\end{equation*}
$$

In view of (2.23) and (2.26), we obtain

$$
\begin{equation*}
Q X=-\omega(X) \psi-\nabla_{X} \psi+\left(\operatorname{div} \psi+\frac{r}{2}\right) X+\left(|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(X) \xi \tag{2.27}
\end{equation*}
$$

Finally, equation (2.19) follows from (2.27) and (2.22). Using (2.22) and (2.27) in (2.21), the curvature tensor in a 3 -dimensional C_{12}-manifold is given by (2.20).

Example 2.1. We denote the Cartesian coordinates in a 3-dimensional Euclidean space \mathbb{R}^{3} by (x, y, z) and define a symmetric tensor field g by

$$
g=\mathrm{e}^{2 f}\left(\begin{array}{ccc}
\rho^{2}+\tau^{2} & 0 & -\tau \\
0 & \rho^{2} & 0 \\
-\tau & 0 & 1
\end{array}\right)
$$

where $f=f(y), \tau=\tau(x)$ and $\rho=\rho(x, y)$ are functions on \mathbb{R}^{3} with $f^{\prime}=\frac{\partial f}{\partial y}$. Further, we define an almost contact metric (φ, ξ, η) on \mathbb{R}^{3} by

$$
\varphi=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & -\tau & 0
\end{array}\right), \quad \xi=\mathrm{e}^{-f}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right), \quad \eta=\mathrm{e}^{f}(-\tau, 0,1)
$$

The fundamental 1-form η and the 2-form ϕ have the forms,

$$
\eta=\mathrm{e}^{f}(d z-\tau d x) \quad \text { and } \quad \phi=-2 \rho^{2} \mathrm{e}^{2 f} d x \wedge d y
$$

and hence

$$
\mathrm{d} \eta=f^{\prime} \mathrm{e}^{f}(\tau d x \wedge d y+d y \wedge d z)
$$

$$
\mathrm{d} \phi=0
$$

By a direct computation the non trivial components of $N_{k j}^{(1) i}$ are given by

$$
N_{12}^{(1) 3}=\tau f^{\prime}, \quad N_{23}^{(1) 3}=f^{\prime} .
$$

But, $\forall i, j, k \in\{1,2,3\}$

$$
\left(N_{\varphi}\right)_{k j}^{i}=0
$$

implying that the structure (φ, ξ, η, g) is CR-integrable.
Therefore, to continue studying this example, it suffices to take $f^{\prime} \neq 0$ to ensure that the structure is CR-integrable not normal.

In order to define the closed 1-form ω, putting $\omega=a d x+b d y+c d z$ where a, b and c are functions on \mathbb{R}^{3}, and using formulas $\mathrm{d} \eta=\omega \wedge \eta$ and $\omega(\xi)=0$, we can check that is very simply as follows:

$$
\begin{equation*}
\omega=f^{\prime} d y \tag{2.28}
\end{equation*}
$$

notice that $\mathrm{d} \omega=0$.
Knowing that ω is the g-dual of ψ i.e. $\omega(X)=g(X, \psi)$, we have immediately that

$$
\begin{equation*}
\psi=\frac{f^{\prime}}{\rho^{2}} \mathrm{e}^{-2 f} \frac{\partial}{\partial y} \tag{2.29}
\end{equation*}
$$

Thus, $(\varphi, \xi, \psi, \eta, \omega, g)$ becomes a C_{12} structure on \mathbb{R}^{3}.
Now we have

$$
\left\{e_{1}=\frac{\mathrm{e}^{-f}}{\rho}\left(\frac{\partial}{\partial x}+\tau \frac{\partial}{\partial z}\right), \quad e_{2}=\frac{\mathrm{e}^{-f}}{\rho} \frac{\partial}{\partial y}, \quad e_{3}=\xi=\mathrm{e}^{-f} \frac{\partial}{\partial z}\right\}
$$

form an orthonormal basis. To verify result in formula (2.10), the non zero components of the Levi-Civita connection corresponding to g are given by:

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=-\frac{\left(f^{\prime} \rho+\rho_{2}\right)}{\rho^{2} \mathrm{e}^{f}} e_{2}, \quad \nabla_{e_{1}} e_{2}=\frac{\left(f^{\prime} \rho+\rho_{2}\right)}{\rho^{2} \mathrm{e}^{f}} e_{1} \\
\nabla_{e_{2}} e_{1}=\frac{\rho_{1}}{\rho^{2} \mathrm{e}^{f}} e_{2}, \quad \nabla_{e_{2}} e_{2}=-\rho_{1} \frac{}{\rho^{2} \mathrm{e}^{f}} e_{1} \\
\nabla_{e_{3}} e_{2}=\frac{f^{\prime}}{\rho \mathrm{e}^{f}} e_{3}, \quad \nabla_{e_{2}} e_{2}=-\frac{f^{\prime}}{\rho \mathrm{e}^{f}} e_{2}
\end{gathered}
$$

Then, one can easily check that for all $i, j \in\{1,2,3\}$

$$
\begin{aligned}
\left(\nabla_{e_{i}} \varphi\right) e_{j} & =\nabla_{e_{i}} \varphi e_{j}-\varphi \nabla_{e_{i}} e_{j} \\
& =\eta\left(e_{i}\right)\left(\omega\left(\varphi e_{j}\right) \xi+\eta\left(e_{j}\right) \varphi \psi\right)
\end{aligned}
$$

3 Ricci soliton

In this section, we consider a 3-dimensional C_{12}-manifold M admitting a Ricci soliton defined by (2.1). Let V be a pointwise collinear vector field with the structure vector field ξ, that is $V=\beta \xi$, where β is a function on M. From (2.1) we write

$$
\begin{equation*}
g\left(\nabla_{X} \beta \xi, Y\right)+g\left(\nabla_{Y} \beta \xi, X\right)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{3.1}
\end{equation*}
$$

for all X and Y vector fields on M. Then, we have

$$
\begin{aligned}
& X(\beta) \eta(Y)+\beta g\left(\nabla_{X} \xi, Y\right)+Y(\beta) \eta(X) \\
& +\beta g\left(\nabla_{Y} \xi, X\right)+2 S(X, Y)+2 \lambda g(X, Y)=0
\end{aligned}
$$

which implies

$$
\begin{align*}
& X(\beta) \eta(Y)-\beta \eta(X) \omega(Y)+Y(\beta) \eta(X) \\
& -\beta \eta(Y) \omega(X)+2 S(X, Y)+2 \lambda g(X, Y)=0 \tag{3.2}
\end{align*}
$$

by virtue of (2.11). By putting $Y=\xi$ in (3.2) and using (2.18) we obtain

$$
\begin{equation*}
X(\beta)-\beta \omega(X)+(\xi(\beta)-2 \operatorname{div} \psi+2 \lambda) \eta(X)=0 \tag{3.3}
\end{equation*}
$$

Taking $X=\xi$ in the previous equation gives

$$
\begin{equation*}
\xi(\beta)=\operatorname{div} \psi-\lambda \tag{3.4}
\end{equation*}
$$

If we replace (3.4) in (3.3), we get

$$
\begin{equation*}
X(\beta)=\beta \omega(X)+(\operatorname{div} \psi-\lambda) \eta(X) \tag{3.5}
\end{equation*}
$$

again, if we replace (3.5) in (3.2), we obtain

$$
\begin{equation*}
S(X, Y)=-\lambda g(X, Y)+(\lambda-\operatorname{div} \psi) \eta(X) \eta(Y) \tag{3.6}
\end{equation*}
$$

for all X and Y vector fields on M. Hence we have
Theorem 3.1. Let $(M, \varphi, \xi, \psi, \eta, \omega, g)$ be a 3-dimensional C_{12}-manifold. If M admits a Ricci soliton and V is pointwise collinear with the structure vector field ξ, then M is an η-Einstein manifold.
In addition, if $\lambda=\operatorname{div} \psi=$ constant then M is an Einstein manifold.
Let assume the converse, that is, let M be a 3 -dimensional η-Einstein C_{12}-manifold with $V=\beta \xi$. Then we can write

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{3.7}
\end{equation*}
$$

where a and b are scalars and X, Y are vector fields on M. From (2.2) we have

$$
\begin{aligned}
\left(\mathcal{L}_{V} g\right)(Y, Y) & =g\left(\nabla_{X} V, Y\right)+g\left(\nabla_{Y} V, X\right) \\
& =X(\beta) \eta(Y)+Y(\beta) \eta(X)-\beta \eta(X) \omega(Y)-\beta \eta(Y) \omega(X)
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\left(\mathcal{L}_{V} g\right)(X, Y)+2 S(X, Y)+2 \lambda g(X, Y) & =2(a+\lambda) g(X, Y) \\
& +\eta(X)(b \eta(Y)-\beta \omega(Y)+Y(\beta)) \\
& +\eta(Y)(b \eta(X)-\beta \omega(X)+X(\beta))
\end{aligned}
$$

From the previous equation it is obvious that M admits a Ricci soliton (g, V, λ) if

$$
a+\lambda=0 \quad \text { and } \quad b \eta(Y)-\beta \omega(Y)+Y(\beta)=0
$$

Equating the right hand sides of (3.7) and (2.18) and taking $X=Y=\xi$ gives

$$
a+b=-\operatorname{div} \psi
$$

Thus, we get
Theorem 3.2. Let $(M, \varphi, \xi, \psi, \eta, \omega, g)$ be a 3-dimensional C_{12}-manifold with $\operatorname{div} \psi$ is constant. If M is an η-Einstein manifold with $S=a g+b \eta \otimes \eta$ and $a+b=-\operatorname{div} \psi$, then the manifold admits a Ricci soliton $(g, \beta \xi, a)$ with $\operatorname{grad} \beta=\beta \psi-b \xi$.

4 Generalized Ricci soliton

In this section we will study the generalized Ricci soliton equation (2.3) on a $C_{12^{-}}$ manifold of dimension three. let's start with our main result

Theorem 4.1. Any three-dimensional C_{12}-manifold satisfies the generalized Ricci soliton equation (2.3) with $X=\psi, c_{1}=1, c_{2}=-1$ and $\lambda=|\psi|^{2}-\operatorname{div} \psi$ if and only if

$$
\begin{equation*}
|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}=0 \tag{4.1}
\end{equation*}
$$

Proof. Suppose that $(M, \varphi, \xi, \psi, \eta, \omega, g)$ is a C_{12}-manifold of dimension three which satisfies the generalized Ricci soliton equation (2.3) with $X=\psi$, that is, for all $Y, Z \in \Gamma(T M)$

$$
\begin{equation*}
\left(\mathcal{L}_{\psi} g\right)(Y, Z)=-2 c_{1} \omega(Y) \omega(Z)+2 c_{2} S(Y, Z)+2 \lambda g(Y, Z) \tag{4.2}
\end{equation*}
$$

Since ω is closed then $g\left(\nabla_{Y} \psi, Z\right)=g\left(\nabla_{Z} \psi, Y\right)$. Therefore, we can express the generalized soliton equation as

$$
\begin{equation*}
\nabla_{Y} \psi=-c_{1} \omega(Y) \psi+c_{2} Q Y+\lambda Y \tag{4.3}
\end{equation*}
$$

Now, from (2.27) we get

$$
\begin{equation*}
\nabla_{Y} \psi=-\omega(Y) \psi-Q Y+\left(\operatorname{div} \psi+\frac{r}{2}\right) Y+\left(|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}\right) \eta(Y) \xi \tag{4.4}
\end{equation*}
$$

In view of (4.4) and (4.3) the proof is complete.
Proposition 4.2. Let $(M, \varphi, \xi, \psi, \eta, \omega, g)$ be a C_{12}-manifold of dimension three which satisfies the generalized Ricci soliton equation (2.3) with $X=\psi$. If $|\psi|=1$ then $r=$ constant.

Proof. The proof is direct, it suffices to use Theorem 4.1.
Example 4.1. Let's go back to the class of the previous examples. With simple but long calculations, we can get the following:

$$
\begin{gathered}
|\psi|^{2}=\frac{f^{\prime 2}}{\rho^{2}} \mathrm{e}^{-2 f}, \quad \operatorname{div} \psi=\frac{\mathrm{e}^{-2 f}}{\rho^{2}}\left(f^{\prime 2}+f^{\prime \prime}\right), \quad \lambda=\frac{f^{\prime \prime} \mathrm{e}^{-2 f}}{\rho^{2}} \\
r=\frac{2 \mathrm{e}^{-2 f}}{\rho^{4}}\left(\rho_{1}^{2}-\rho \rho_{11}+\rho_{2}^{2}-\rho \rho_{22}-2 f^{\prime \prime} \rho^{2}-f^{\prime 2} \rho^{2}\right)
\end{gathered}
$$

where $\rho_{i}=\frac{\partial \rho}{\partial x_{i}}$. Then, the condition (4.1) gives the following differential equation

$$
\begin{equation*}
\rho_{1}^{2}-\rho \rho_{11}+\rho_{2}^{2}-\rho \rho_{22}=0 \tag{4.5}
\end{equation*}
$$

Henceforth, we can construct a non-trivial generalized Ricci soliton.
For example:
(1): $\rho=1, \quad \lambda=f^{\prime \prime} \mathrm{e}^{-2 f}$,
$\nabla_{e_{1}} \psi=\mathrm{e}^{-2 f} f^{\prime 2} e_{1}, \quad Q e_{1}=-\mathrm{e}^{-2 f}\left(f^{\prime \prime}+f^{\prime 2}\right) e_{1}$,
$\nabla_{e_{2}} \psi=\mathrm{e}^{-2 f}\left(-f^{\prime 2}+f^{\prime \prime}\right) e_{2}$, $Q e_{2}=-2 \mathrm{e}^{-2 f} f^{\prime \prime} e_{2}$,
$\nabla_{e_{3}} \psi=\mathrm{e}^{-2 f} f^{\prime 2} e_{3}, \quad Q e_{3}=-\mathrm{e}^{-2 f}\left(f^{\prime 2}+f^{\prime \prime}\right) e_{3}$.
(2): $\rho=\mathrm{e}^{y}, \quad \lambda=f^{\prime \prime} \mathrm{e}^{-2(y+f)}$,
$\nabla_{e_{1}} \psi=\mathrm{e}^{-2(y+f)}\left(f^{\prime}\left(f^{\prime}+1\right) e_{1}, \quad Q e_{1}=-\mathrm{e}^{-2(y+f)}\left(f^{\prime \prime}+f^{\prime 2}+f^{\prime}\right) e_{1}\right.$,
$\nabla_{e_{2}} \psi=\mathrm{e}^{-2(y+f)}\left(-f^{\prime 2}+f^{\prime \prime}-f^{\prime}\right) e_{2}, \quad Q e_{2}=-2 \mathrm{e}^{-2(y+f)}\left(f^{\prime \prime}+f^{\prime 2}\right) e_{2}$,
$\nabla_{e_{3}} \psi=\mathrm{e}^{-2(y+f)} f^{\prime 2} e_{3}, \quad Q e_{3}=-\mathrm{e}^{-2(y+f)}\left(f^{\prime 2}+f^{\prime \prime}\right) e_{3}$.
(3): $\rho=\mathrm{e}^{-f}, \quad \lambda=0$,
$\nabla_{e_{1}} \psi=0, \quad Q e_{1}=0$,
$\nabla_{e_{2}} \psi=f^{\prime \prime} e_{2}, \quad Q e_{2}=-\left(f^{\prime 2}+f^{\prime \prime}\right) e_{2}$,
$\nabla_{e_{3}} \psi=f^{\prime 2} e_{3}, \quad Q e_{3}=-\left(f^{\prime 2}+f^{\prime \prime}\right) e_{3}$.
Of course, we must choose f so that λ is constant. We can construct further examples of generalized Ricci soliton on a 3 -dimensional C_{12}-manifold by the similar way.

At the end of this section, we present the concept of the generalized η-Ricci soliton as a generalization of the η-Ricci soliton given by Cho-Kimura in [6] by the following equation:

$$
\begin{equation*}
\mathcal{L}_{V} g+2 S+2 \lambda g+\mu \eta \otimes \eta=0 \tag{4.6}
\end{equation*}
$$

where the tensor product notation $(\eta \otimes \eta)(X, Y)=\eta(X) \eta(Y)$ is used and λ, μ are real constants.

The generalized η-Ricci soliton equation in Riemannian manifold (M, g) is defined by:

$$
\begin{equation*}
\mathcal{L}_{X} g=-2 c_{1} X^{\mathrm{b}} \odot X^{b}+2 c_{2} \mathrm{~S}+2 \lambda g+\mu \eta \otimes \eta \tag{4.7}
\end{equation*}
$$

where $c_{1}, c_{2}, \lambda, \mu \in \mathbb{R}$.

With the same reasoning above, we can express formula (4.7) as follows

$$
\begin{equation*}
\nabla_{X} \psi=-c_{1} \omega(X) \psi+c_{2} Q X+\lambda X+\mu \eta \otimes \xi \tag{4.8}
\end{equation*}
$$

Now, based on equation (4.4), we declare the following result
Theorem 4.3. Any 3-dimensional C_{12}-manifold satisfies the generalized η-Ricci soliton equation with

$$
c_{1}=1 \quad c_{2}=-1 \quad \lambda=|\psi|^{2}-\operatorname{div} \psi \quad \text { and } \quad \mu=|\psi|^{2}-2 \operatorname{div} \psi-\frac{r}{2}
$$

Example 4.2. From Example 4.1, we can construct several non-trivial cases, namely:

1) If $f=y$ and $\rho=\frac{4}{\mathrm{e}^{2 y}-c}$ with $c \in \mathbb{R}$, then we get

$$
c_{1}=1, \quad c_{2}=-1, \quad \lambda=0, \quad \text { and } \quad \mu=c
$$

2) If $f=\ln \left(\frac{1}{\sin ^{2} y}\right)$ and $\rho=c \sin y$, then we get

$$
c_{1}=1, \quad c_{2}=-1, \quad \lambda=-\frac{2}{c^{2}}, \quad \mu=-\frac{1}{c^{2}} .
$$

Of course, while taking into account the necessary conditions on f and ρ.

References

[1] A. L. Besse, Einstein manifolds, Springer-Verlag, Berlin, 1987.
[2] H. Bouzir, G. Beldjilali, B. Bayour, On three dimensional C 12-manifolds, Mediterranean Journal of Mathematics, 18 (5) (2021), 239: 1-13.
[3] D. E. Blair, T. Koufogirgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q \varphi=\varphi Q$, Kodai Math. J., 13 (1990), 391-401.
[4] D. Chinea, C. Gonzalez, A classification of almost contact metric manifolds, Ann. Mat. Pura Appl. 156(4) (1990), 15-36.
[5] P. T. Chrusciel, H.S. Reall, and P. Tod, On non-existence of static vacuum black holes with degenerate components of the event horizon, Class. Quantum Grav., 23 (2006), 549-554.
[6] J. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61 (2) (2009), 205-212.
[7] S. de Candia and M. Falcitelli, Curvature of $C_{5} \oplus C_{12}$-Manifolds, Mediterr. J. Math. 16 (4) (2019), 105: 1-23.
[8] J. Jezierski, On the existence of Kundt's metrics and degenerate (or extremal) Killing horizons, Class. Quant. Grav., 26 (2009), 035011.
[9] H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Relativity, 16 (8)(2013).
[10] R.S. Hamilton, Three-manifolds with positive Ricci curvature, J. Diff. Geom., 17 (1982), 255-306.
[11] O'Neil, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[12] P. Nurowski and M. Randall, Generalised Ricci solitons, J. Geom. Anal., 26 (2016), 1280-1345.

Authors' address:
Bayour Benaoumeur and Beldjilali Gherici
Laboratory of Quantum Physics and Mathematical Modeling (LPQ3M),
University of Mascara, Algeria.
E-mail addresses: b.bayour@univ-mascara.dz, gherici.beldjilali@univ-mascara.dz

[^0]: Balkan Journal of Geometry and Its Applications, Vol.27, No.2, 2022, pp. 26-36.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2022.

