Reidemeister-Franz torsion of compact orientable surfaces via pants decomposition

E. D. Erdal, Y. Sozen

Abstract

Let $\Sigma_{g, n}$ denote the compact orientable surface with genus $g \geq 2$ and boundary disjoint union of n circles. By using a particular pants decomposition of $\Sigma_{g, n}$, we obtain a formula that computes the Reidemeister-Franz torsion of $\Sigma_{g, n}$ in terms of the Reidemeister-Franz torsions of pairs of pants.

M.S.C. 2010: 55U99, 18G99, 57Q10.

Key words: Reidemeister-Franz torsion; compact orientable surfaces; pair of pants; period matrix.

1 Introduction

The Reidemeister-Franz torsion (or R-torsion) was introduced by Reidemeister to classify 3 dimensional lens spaces [5]. This invariant was later generalized by Franz to other dimensions [10] and shown to be a topological invariant by Kirby-Siebenmann [2]. The R-torsion is also an invariant of the basis of the homology of a manifold [3]. Moreover, for compact orientable Riemannian manifolds the R -torsion is equal to the analytic torsion [1].

Using the combinatorial definition of the Reidemeister torsion, Witten computed the volume of the moduli space \mathcal{M} of gauge equivalence classes of flat connections on a compact Riemann surface [9]. The combinatorial torsion is equivalent to the RaySinger analytic torsion [1]. In the quantum field theory, one important ingredient was the ability to compute by decomposing a surface into elementary pieces. The pair of pants is a $(1+1)$-dimensional bordism, which corresponds to a product or coproduct (depending on its orientation) in a 2 -dimensional TQFT. Witten established a formula to compute the Ray-Singer analytic torsion of a pair of pants by using its cell decomposition. He also gave a cutting formula for orientable closed surface $\Sigma_{g, 0}$ by decomposing an orientable surface $\Sigma_{g, 0}$ of genus g into $2 g-2$ pairs of pants.

The present paper provides a formula to compute the Reidemeister-Franz torsion of a pair of pants in terms of the determinant of the period matrix of the Poincare dual basis of $H^{1}\left(\Sigma_{2,0}\right)$. Then it expresses the Reidemeister-Franz torsion of orientable

[^0]compact surface $\Sigma_{g, n}$ as the product of the Reidemeister-Franz torsions of pairs of pants.

For a manifold M and an integer η, we denote by \mathbf{h}_{η}^{M} the basis of the homology $H_{\eta}(M)=H_{\eta}(M ; \mathbb{R})$. Note that $\Sigma_{2,0}$ is the double of a pair of pants $\Sigma_{0,3}$ as in Figure 1. Let $\Delta_{0,2}\left(\Sigma_{2,0}\right)$ be the matrix of the intersection pairing of $\Sigma_{2,0}$ in the bases $\mathbf{h}_{0}^{\Sigma_{2,0}}$, $\mathbf{h}_{2}^{\Sigma_{2,0}}$, and $\mathbf{h}_{\Sigma_{2,0}}^{1}=\left\{\omega_{j}\right\}_{1}^{4}$ denote the Poincaré dual basis of $H^{1}\left(\Sigma_{2,0}\right)$ corresponding to $\mathbf{h}_{1}^{\Sigma_{2,0}}$. We first prove the following theorem for the R-torsion of the pair of pants $\Sigma_{0,3}$.
Theorem 1.1. For a given basis $\mathbf{h}_{i}^{\Sigma_{0,3}}, i \in\{0,1\}$, there is a basis $\mathbf{h}_{\eta}^{\Sigma_{2,0}}, \eta \in\{0,1,2\}$ such that the following formula holds

$$
\left|\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{i}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)\right|=\sqrt{\left|\frac{\operatorname{det} \Delta_{0,2}\left(\Sigma_{2,0}\right)}{\operatorname{det} \wp\left(\mathbf{h}_{\Sigma_{2,0}}^{1}, \Gamma\right)}\right|}
$$

where $\Gamma=\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}\right\}$ is the canonical basis for $H_{1}\left(\Sigma_{2,0}\right)$, i.e. $i \in\{1,2\}, \Gamma_{i}$ intersects Γ_{i+2} once positively and does not intersect others, and $\wp\left(\mathbf{h}_{\Sigma_{2,0}}^{1}, \Gamma\right)=\left[\int_{\Gamma_{i}} \omega_{j}\right]$ is the period matrix of $\mathbf{h}_{\Sigma_{2,0}}^{1}$ with respect to the basis Γ.

By using the pants decomposition of $\Sigma_{g, n}$ as in Figure 2, we prove the following theorem.
Theorem 1.2. Let $\mathbf{h}_{\eta}^{\Sigma_{g, n}}$ be a given basis for $\eta \in\{0,1\}$. Then there exists a basis $\mathbf{h}_{\eta}^{\Sigma_{0,3}^{\nu}}$ for each $\nu \in\{1, \ldots, 2 g-2+n\}$ such that

$$
\left|\mathbb{T}\left(\Sigma_{g, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{g, n}}\right\}_{0}^{1}\right)\right|=\prod_{\nu=1}^{2 g-2+n}\left|\mathbb{T}\left(\Sigma_{0,3}^{\nu},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{\nu}}\right\}_{0}^{1}\right)\right|
$$

where $\Sigma_{0,3}^{\nu}$ is the pair of pants in the decomposition labelled by ν.

2 R-torsion of a general chain complex

Let $C_{*}=\left(0 \rightarrow C_{n} \xrightarrow{\partial_{n}} C_{n-1} \rightarrow \cdots \rightarrow C_{1} \xrightarrow{\partial_{t}} C_{0} \rightarrow 0\right)$ be a chain complex of finite dimensional vector spaces over \mathbb{R}. Let $B_{p}\left(C_{*}\right)=\operatorname{Im} \partial_{p+1}, Z_{p}\left(C_{*}\right)=\operatorname{Ker} \partial_{p}$, and $H_{p}\left(C_{*}\right)=Z_{p}\left(C_{*}\right) / B_{p}\left(C_{*}\right)$ denote the p-th homology of the chain complex C_{*} for $p \in\{0, \ldots, n\}$. Then we have the following short exact sequences

$$
\begin{align*}
0 & \rightarrow Z_{p}\left(C_{*}\right) \xrightarrow{\mathrm{i}} C_{p}\left(C_{*}\right) \xrightarrow{\partial_{p}} B_{p-1}\left(C_{*}\right) \rightarrow 0 \tag{2.1}\\
0 & \rightarrow B_{p}\left(C_{*}\right) \xrightarrow{\mathrm{i}} Z_{p}\left(C_{*}\right) \xrightarrow{\varphi_{p}} H_{p}\left(C_{*}\right) \rightarrow 0 \tag{2.2}
\end{align*}
$$

Here, i and φ_{p} are the inclusion and the natural projection, respectively. If we apply the Splitting Lemma to the above short exact sequences, then $C_{p}\left(C_{*}\right)$ can be expressed as the following direct sum

$$
B_{p}\left(C_{*}\right) \oplus \ell_{p}\left(H_{p}\left(C_{*}\right)\right) \oplus s_{p}\left(B_{p-1}\left(C_{*}\right)\right)
$$

Let $\mathbf{c}_{\mathbf{p}}, \mathbf{b}_{\mathbf{p}}$, and $\mathbf{h}_{\mathbf{p}}$ be respectively bases of $C_{p}\left(C_{*}\right), B_{p}\left(C_{*}\right)$, and $H_{p}\left(C_{*}\right)$. Then we obtain a new basis $\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right)$ for $C_{p}\left(C_{*}\right)$.

Definition 2.1. The R-torsion of C_{*} with respect to bases $\left\{\mathbf{c}_{p}\right\}_{0}^{n},\left\{\mathbf{h}_{p}\right\}_{0}^{n}$ is defined by

$$
\mathbb{T}\left(C_{*},\left\{\mathbf{c}_{p}\right\}_{0}^{n},\left\{\mathbf{h}_{p}\right\}_{0}^{n}\right)=\prod_{p=0}^{n}\left[\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right), \mathbf{c}_{p}\right]^{(-1)^{(p+1)}}
$$

Here, $\left[\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right), \mathbf{c}_{p}\right]$ is the determinant of the change-base-matrix from basis \mathbf{c}_{p} to $\mathbf{b}_{p} \sqcup \ell_{p}\left(\mathbf{h}_{p}\right) \sqcup s_{p}\left(\mathbf{b}_{p-1}\right)$ of $C_{p}\left(C_{*}\right)$.

The R-torsion of a general chain complex C_{*} is an element of the dual of the vector space

$$
\bigotimes_{p=0}^{n}\left(\operatorname{det} H_{p}\left(C_{*}\right)\right)^{(-1)^{p}},
$$

see [9, pp.185] and [6, Thm. 2.0.6].
For a smooth m-manifold M with a cell decomposition K, there is a chain complex

$$
C_{*}(K)=\left(0 \rightarrow C_{m}(K) \xrightarrow{\partial_{m}} C_{m-1}(K) \rightarrow \cdots \rightarrow C_{1}(K) \xrightarrow{\partial_{1}} C_{0}(K) \rightarrow 0\right),
$$

where ∂_{i} is the usual boundary operator. The R-torsion of M is defined as the Rtorsion of its cellular chain complex $C_{*}(K)$ in the bases $\left\{\mathbf{c}_{i}\right\}_{0}^{m}$ and $\left\{\mathbf{h}_{i}\right\}_{0}^{m}$. Here, \mathbf{c}_{i} is the geometric basis for the i-cells $C_{i}(K), i \in\{0, \ldots, m\}$. By [6, Lem. 2.0.5], the R-torsion of M does not depend on the cell decomposition K. Thus, we write $\mathbb{T}\left(M,\left\{\mathbf{h}_{i}\right\}_{0}^{m}\right)$ instead of $\mathbb{T}\left(C_{*}(K),\left\{\mathbf{c}_{i}\right\}_{0}^{m},\left\{\mathbf{h}_{i}\right\}_{0}^{m}\right)$. For details we refer to $[6,7,8]$.

Corollary 2.1. Let $Y=\mathbb{S}^{1} \times[-\epsilon,+\epsilon]$ be a cylinder with boundary circles $\mathbb{S}^{1} \times\{-\epsilon\}$ and $\mathbb{S}^{1} \times\{+\epsilon\}$, where $\epsilon>0$. Let \mathbf{h}_{i} be a basis of $H_{i}(Y)$ for $i \in\{0,1\}$. By Künneth formula, we have the isomorphisms:

$$
\begin{gathered}
C_{i}(Y) \stackrel{\varphi_{i}}{\cong} C_{i}\left(\mathbb{S}^{1}\right) \\
H_{i}(Y) \stackrel{\left[\varphi_{i}\right]}{\cong} H_{i}\left(\mathbb{S}^{1}\right) .
\end{gathered}
$$

Then [7, Thm. 3.5] gives the following result

$$
\left|\mathbb{T}\left(Y,\left\{\mathbf{h}_{0}, \mathbf{h}_{1}\right\}\right)\right|=\left|\mathbb{T}\left(\mathbb{S}^{1},\left\{\left[\varphi_{0}\right]\left(\mathbf{h}_{0}\right),\left[\varphi_{1}\right]\left(\mathbf{h}_{1}\right)\right\}\right)\right|=1
$$

3 Proofs of main results

For any manifold M, let $C_{*}(M)$ denote the associated cellular chain complex. Moreover, 0 denotes the trivial vector space.

Proof of Theorem 1.1. Note that $\Sigma_{2,0}$ is the double of $\Sigma_{0,3}$ (see, Figure 1). Let \mathcal{B} be the intersection of the pairs of pants in $\Sigma_{2,0}$, so \mathcal{B} is homeomorphic to the disjoint union of three circles, $\mathbb{S}_{1} \amalg \mathbb{S}_{2} \amalg \mathbb{S}_{3}$. Then there is the natural short exact sequence of the chain complexes

$$
\begin{equation*}
0 \rightarrow C_{*}(\mathcal{B}) \rightarrow C_{*}\left(\Sigma_{0,3}\right) \oplus C_{*}\left(\Sigma_{0,3}\right) \rightarrow C_{*}\left(\Sigma_{2,0}\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

Figure 1: Double of the pair of pants $\Sigma_{0,3}$.
Associated with (3.1), we have the following Mayer-Vietoris sequence

$$
\begin{align*}
\mathcal{H}_{*}: 0 & \xrightarrow{\alpha} H_{2}\left(\Sigma_{2,0}\right) \xrightarrow{f} H_{1}(\mathcal{B}) \xrightarrow{g} H_{1}\left(\Sigma_{0,3}\right) \oplus H_{1}\left(\Sigma_{0,3}\right) \xrightarrow{h} H_{1}\left(\Sigma_{2,0}\right) \tag{3.2}\\
& \xrightarrow{i} H_{0}(\mathcal{B}) \xrightarrow{j} H_{0}\left(\Sigma_{0,3}\right) \oplus H_{0}\left(\Sigma_{0,3}\right) \xrightarrow{k} H_{0}\left(\Sigma_{2,0}\right) \xrightarrow{\ell} 0 .
\end{align*}
$$

Let us denote by $C_{p}\left(\mathcal{H}_{*}\right)$ the vector spaces in (3.2) for $p \in\{0, \ldots, 6\}$ and consider the short exact sequences (2.1) and (2.2) for \mathcal{H}_{*}. Let us take the isomorphism s_{p} : $B_{p-1}\left(\mathcal{H}_{*}\right) \rightarrow s_{p}\left(B_{p-1}\left(\mathcal{H}_{*}\right)\right)$ obtained by the First Isomorphism Theorem as a section of $C_{p}\left(\mathcal{H}_{*}\right) \rightarrow B_{p-1}\left(\mathcal{H}_{*}\right)$ for each p. By the exactness of \mathcal{H}_{*}, we get $Z_{p}\left(\mathcal{H}_{*}\right)=B_{p}\left(\mathcal{H}_{*}\right)$. Applying the Splitting Lemma to (2.2), we have

$$
\begin{equation*}
C_{p}\left(\mathcal{H}_{*}\right)=B_{p}\left(\mathcal{H}_{*}\right) \oplus s_{p}\left(B_{p-1}\left(\mathcal{H}_{*}\right)\right) . \tag{3.3}
\end{equation*}
$$

Then the R-torsion of \mathcal{H}_{*} with respect to basis $\left\{\mathbf{h}_{p}\right\}_{0}^{n}$ is given as follows

$$
\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{p}\right\}_{0}^{n},\{0\}_{0}^{n}\right)=\prod_{p=0}^{n}\left[\mathbf{h}_{p}^{\prime}, \mathbf{h}_{p}\right]^{(-1)^{(p+1)}},
$$

where $\mathbf{h}_{p}^{\prime}=\mathbf{b}_{p} \sqcup s_{p}\left(\mathbf{b}_{p-1}\right)$ for each p. In [3], Milnor proved that the R-torsion does not depend on bases \mathbf{b}_{p} and sections s_{p}, ℓ_{p}. Therefore, we will choose a suitable bases \mathbf{b}_{p} and sections s_{p} so that $\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{p}\right\}_{0}^{n},\{0\}_{0}^{n}\right)=1$.

Let us consider the space $C_{0}\left(\mathcal{H}_{*}\right)=H_{0}\left(\Sigma_{2,0}\right)$ in (3.3). Then $\operatorname{Im}(\ell)=0$ yields

$$
\begin{equation*}
C_{0}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(k) \oplus s_{0}(\operatorname{Im}(\ell))=\operatorname{Im}(k) . \tag{3.4}
\end{equation*}
$$

Since $\left\{\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right)\right\}$ is the given basis of $H_{0}\left(\Sigma_{0,3}\right) \oplus H_{0}\left(\Sigma_{0,3}\right)$,

$$
\left\{a_{11} k\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right)+a_{12} k\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right)\right\}
$$

can be taken as the basis $\mathbf{h}^{\operatorname{Im}(k)}$ of $\operatorname{Im}(k)$, where $\left(a_{11}, a_{12}\right)$ is a non-zero vector. By (3.4), $\mathbf{h}^{\operatorname{Im}(k)}$ becomes the obtained basis \mathbf{h}_{0}^{\prime} of $C_{0}\left(\mathcal{H}_{*}\right)$. If we take the initial basis \mathbf{h}_{0} (namely, $\mathbf{h}_{0}^{\Sigma_{2,0}}$) of $C_{0}\left(\mathcal{H}_{*}\right)$ as \mathbf{h}_{0}^{\prime}, then

$$
\begin{equation*}
\left[\mathbf{h}_{0}^{\prime}, \mathbf{h}_{0}\right]=1 . \tag{3.5}
\end{equation*}
$$

If we use (3.3) for $C_{1}\left(\mathcal{H}_{*}\right)=H_{0}\left(\Sigma_{0,3}\right) \oplus H_{0}\left(\Sigma_{0,3}\right)$, then we get

$$
\begin{equation*}
C_{1}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(j) \oplus s_{1}(\operatorname{Im}(k)) . \tag{3.6}
\end{equation*}
$$

Note that $\left\{\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right)\right\}$ is the given basis \mathbf{h}_{1} of $C_{1}\left(\mathcal{H}_{*}\right)$. Since $\operatorname{Im}(j)$ is a 1-dimensional subspace of 2-dimensional space $C_{1}\left(\mathcal{H}_{*}\right)$, there is a non-zero vector $\left(a_{21}, a_{22}\right)$ such that $\left\{a_{21}\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right)+a_{22}\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right)\right\}$ is a basis of $\operatorname{Im}(j)$. In the previous step, the basis of $\operatorname{Im}(k)$ was chosen as $\mathbf{h}^{\operatorname{Im}(k)}$ so

$$
s_{1}\left(\mathbf{h}^{\operatorname{Im}(k)}\right)=a_{11}\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right)+a_{12}\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right) .
$$

Then we obtain a non-singular 2×2 matrix $A=\left[a_{i j}\right]$ with entries in \mathbb{R}. Let us choose the basis of $\operatorname{Im}(j)$ as

$$
\mathbf{h}^{\operatorname{Im}(j)}=\left\{-(\operatorname{det} A)^{-1}\left[a_{21}\left(\mathbf{h}_{0}^{\Sigma_{0,3}}, 0\right)+a_{22}\left(0, \mathbf{h}_{0}^{\Sigma_{0,3}}\right)\right]\right\} .
$$

By (3.6), $\left\{\mathbf{h}^{\operatorname{Im}(j)}, s_{1}\left(\mathbf{h}^{\operatorname{Im}(k)}\right)\right\}$ becomes the obtained basis \mathbf{h}_{1}^{\prime} of $C_{1}\left(\mathcal{H}_{*}\right)$. Hence, we get

$$
\begin{equation*}
\left[\mathbf{h}_{1}^{\prime}, \mathbf{h}_{1}\right]=1 \tag{3.7}
\end{equation*}
$$

Considering (3.3) for $C_{2}\left(\mathcal{H}_{*}\right)=H_{0}(\mathcal{B})$, we obtain

$$
\begin{equation*}
C_{2}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(i) \oplus s_{2}(\operatorname{Im}(j)) \tag{3.8}
\end{equation*}
$$

Recall that $\left\{\mathbf{h}_{0}^{\mathbb{S}_{1}}, \mathbf{h}_{0}^{\mathbb{S}_{2}}, \mathbf{h}_{0}^{\mathbb{S}_{3}}\right\}$ is the given basis \mathbf{h}_{2} of $C_{2}\left(\mathcal{H}_{*}\right)$. Since $\operatorname{Im}(i)$ and $s_{2}(\operatorname{Im}(j))$ are respectively 2 and 1-dimensional subspaces of 3 -dimensional space $C_{2}\left(\mathcal{H}_{*}\right)$, there are non-zero vectors $\left(b_{i 1}, b_{i 2}, b_{i 3}\right), i \in\{1,2,3\}$ such that $\left\{\sum_{i=1}^{3} b_{j i} \mathbf{h}_{0}^{\mathbb{S}_{i}}\right\}_{j=1}^{2}$ is a basis of $\operatorname{Im}(i)$ and

$$
s_{2}\left(\mathbf{h}^{\operatorname{Im}(j)}\right)=\sum_{i=1}^{3} b_{3 i} \mathbf{h}_{0}^{\mathbb{S}_{i}}
$$

is a basis of $s_{2}(\operatorname{Im}(j))$. Then 3×3 real matrix $B=\left[b_{i j}\right]$ is invertible. Let us choose the basis of $\operatorname{Im}(i)$ as follows

$$
\mathbf{h}^{\operatorname{Im}(i)}=\left\{(\operatorname{det} B)^{-1} \sum_{i=1}^{3} b_{1 i} \mathbf{h}_{0}^{\mathbb{S}_{i}}, \sum_{i=1}^{3} b_{2 i} \mathbf{h}_{0}^{\mathbb{S}_{i}}\right\}
$$

By (3.8), $\left\{\mathbf{h}^{\operatorname{Im}(i)}, s_{2}\left(\mathbf{h}^{\operatorname{Im}(j)}\right)\right\}$ becomes the obtained basis \mathbf{h}_{2}^{\prime} of $C_{2}\left(\mathcal{H}_{*}\right)$ and we have

$$
\begin{equation*}
\left[\mathbf{h}_{2}^{\prime}, \mathbf{h}_{2}\right]=1 \tag{3.9}
\end{equation*}
$$

Using (3.3), $C_{3}\left(\mathcal{H}_{*}\right)=H_{1}\left(\Sigma_{2,0}\right)$ can be expressed as the following direct sum

$$
\begin{equation*}
C_{3}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(h) \oplus s_{3}(\operatorname{Im}(i)) \tag{3.10}
\end{equation*}
$$

Note that the basis of $H_{1}\left(\Sigma_{0,3}\right) \oplus H_{1}\left(\Sigma_{0,3}\right)$ is given as follows

$$
\left\{\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right),\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\}
$$

Since $\operatorname{Im}(h)$ is a 2-dimensional space, we can choose the basis of $\operatorname{Im}(h)$ as

$$
\begin{aligned}
\mathbf{h}^{\operatorname{Im}(h)}=\{ & c_{11} h\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{12} h\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{13} h\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{14} h\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right), \\
& \left.c_{21} h\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{22} h\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{23} h\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{24} h\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\} .
\end{aligned}
$$

Here, $\left(c_{i 1}, c_{i 2}, c_{i 3}, c_{i 4}\right)$ is a non-zero vector for $i \in\{1,2\}$. Using (3.10), we have that

$$
\left\{\mathbf{h}^{\operatorname{Im}(h)}, s_{3}\left(\mathbf{h}^{\operatorname{Im}(i)}\right)\right\}
$$

is the obtained basis \mathbf{h}_{3}^{\prime} of $C_{3}\left(\mathcal{H}_{*}\right)$. If we take the initial basis \mathbf{h}_{3} (namely, $\mathbf{h}_{1}^{\Sigma_{2,0}}$) of $C_{3}\left(\mathcal{H}_{*}\right)$ as \mathbf{h}_{3}^{\prime}, then we get

$$
\begin{equation*}
\left[\mathbf{h}_{3}^{\prime}, \mathbf{h}_{3}\right]=1 \tag{3.11}
\end{equation*}
$$

If we consider (3.3) for $C_{4}\left(\mathcal{H}_{*}\right)=H_{1}\left(\Sigma_{0,3}\right) \oplus H_{1}\left(\Sigma_{0,3}\right)$, then we obtain

$$
\begin{equation*}
C_{4}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(g) \oplus s_{4}(\operatorname{Im}(h)) \tag{3.12}
\end{equation*}
$$

Recall that $\left\{\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right),\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right),\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\}$ is the given basis \mathbf{h}_{4} of $C_{4}\left(\mathcal{H}_{*}\right)$. In the previous step, $\mathbf{h}^{\operatorname{Im}(h)}$ was chosen as the basis of $\operatorname{Im}(h)$ so

$$
\begin{aligned}
s_{4}\left(\mathbf{h}^{\operatorname{Im}(h)}\right)=\{ & c_{11}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{12}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{13}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{14}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right) \\
& \left.c_{21}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{22}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{23}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{24}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\}
\end{aligned}
$$

is a basis of $s_{4}(\operatorname{Im}(h))$. As $\operatorname{Im}(g)$ is a 2-dimensional subspace of 4-dimensional space $C_{4}\left(\mathcal{H}_{*}\right)$, there are non-zero vectors $\left(c_{i 1}, c_{i 2}, c_{i 3}, c_{i 4}\right)$ for $i \in\{3,4\}$ such that

$$
\begin{aligned}
& \left\{c_{31}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{32}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{33}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{34}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right. \\
& \left.c_{41}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{42}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{43}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{44}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\}
\end{aligned}
$$

is a basis of $\operatorname{Im}(g)$ and $C=\left[c_{i j}\right]$ is the non-singular 4×4 real matrix. Thus, we can choose the basis of $\operatorname{Im}(g)$ as

$$
\begin{aligned}
\mathbf{h}^{\operatorname{Im}(g)}=\left\{(\operatorname{det} C)^{-1}[\right. & \left.c_{31}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{32}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{33}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{34}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right] \\
& \left.c_{41}\left(\mathbf{h}_{1,1}^{\Sigma_{0,3}}, 0\right)+c_{42}\left(0, \mathbf{h}_{1,1}^{\Sigma_{0,3}}\right)+c_{43}\left(\mathbf{h}_{1,2}^{\Sigma_{0,3}}, 0\right)+c_{44}\left(0, \mathbf{h}_{1,2}^{\Sigma_{0,3}}\right)\right\} .
\end{aligned}
$$

By (3.12), $\left\{\mathbf{h}^{\operatorname{Im}(g)}, s_{4}\left(\mathbf{h}^{\operatorname{Im}(h)}\right)\right\}$ becomes the obtained basis \mathbf{h}_{4}^{\prime} of $C_{4}\left(\mathcal{H}_{*}\right)$ and the following equation holds

$$
\begin{equation*}
\left[\mathbf{h}_{4}^{\prime}, \mathbf{h}_{4}\right]=1 \tag{3.13}
\end{equation*}
$$

Consider the space $C_{5}\left(\mathcal{H}_{*}\right)=H_{1}(\mathcal{B})$, then (3.3) becomes

$$
\begin{equation*}
C_{5}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(f) \oplus s_{5}(\operatorname{Im}(g)) \tag{3.14}
\end{equation*}
$$

Recall that the given basis \mathbf{h}_{5} of $C_{5}\left(\mathcal{H}_{*}\right)$ is $\left\{\mathbf{h}_{1}^{\mathbb{S}_{1}}, \mathbf{h}_{1}^{\mathbb{S}_{2}}, \mathbf{h}_{1}^{\mathbb{S}_{3}}\right\}$. Since $\operatorname{Im}(f)$ and $s_{5}(\operatorname{Im}(g))$ are respectively 1 and 2 -dimensional subspaces of 3 -dimensional space $C_{5}\left(\mathcal{H}_{*}\right)$, there are non-zero vectors $\left(d_{i 1}, d_{i 2}, d_{i 3}\right), i \in\{1,2,3\}$ such that $\left\{\sum_{i=1}^{3} d_{1 i} \mathbf{h}_{1}^{\mathbb{S}_{i}}\right\}$ is a basis of $\operatorname{Im}(f)$ and

$$
s_{5}\left(\mathbf{h}^{\operatorname{Im}(g)}\right)=\left\{\sum_{i=1}^{3} d_{2 i} \mathbf{h}_{1}^{\mathbb{S}_{i}}, \sum_{i=1}^{3} d_{3 i} \mathbf{h}_{1}^{\mathbb{S}_{i}}\right\}
$$

is a basis of $s_{5}(\operatorname{Im}(g))$. Then we get a non-singular 3×3 real matrix $D=\left[d_{i j}\right]$. Let us choose the basis of $\operatorname{Im}(f)$ as

$$
\mathbf{h}^{\operatorname{Im}(f)}=\left\{(\operatorname{det} D)^{-1} \sum_{i=1}^{3} d_{1 i} \mathbf{h}_{1}^{\mathbb{S}_{i}}\right\} .
$$

By (3.14), $\left\{\mathbf{h}^{\operatorname{Im}(f)}, s_{5}\left(\mathbf{h}^{\operatorname{Im}(g)}\right)\right\}$ becomes the obtained basis \mathbf{h}_{5}^{\prime} of $C_{5}\left(\mathcal{H}_{*}\right)$. Hence, we get

$$
\begin{equation*}
\left[\mathbf{h}_{5}^{\prime}, \mathbf{h}_{5}\right]=1 \tag{3.15}
\end{equation*}
$$

Finally, let us consider $C_{6}\left(\mathcal{H}_{*}\right)=H_{2}\left(\Sigma_{2,0}\right)$. Since $\operatorname{Im}(\alpha)$ is trivial, (3.3) becomes

$$
\begin{equation*}
C_{6}\left(\mathcal{H}_{*}\right)=\operatorname{Im}(\alpha) \oplus s_{6}(\operatorname{Im}(f))=s_{6}(\operatorname{Im}(f)) \tag{3.16}
\end{equation*}
$$

From (3.16) it follows that $s_{6}\left(\mathbf{h}^{\operatorname{Im}(f)}\right)$ is the obtained basis \mathbf{h}_{6}^{\prime} of $C_{6}\left(\mathcal{H}_{*}\right)$. If we take the initial basis \mathbf{h}_{6} (namely, $\left.\mathbf{h}_{2}^{\Sigma_{2,0}}\right)$ of $C_{6}\left(\mathcal{H}_{*}\right)$ as $s_{6}\left(\mathbf{h}^{\operatorname{Im}(f)}\right)$, then we have

$$
\begin{equation*}
\left[\mathbf{h}_{6}^{\prime}, \mathbf{h}_{6}\right]=1 \tag{3.17}
\end{equation*}
$$

If we combine $(3.5),(3.7),(3.9),(3.11),(3.13),(3.15)$, and (3.17), then we get

$$
\begin{equation*}
\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{p}\right\}_{0}^{6},\{0\}_{0}^{6}\right)=\prod_{p=0}^{6}\left[\mathbf{h}_{p}^{\prime}, \mathbf{h}_{p}\right]^{(-1)^{(p+1)}}=1 \tag{3.18}
\end{equation*}
$$

As the natural bases in (3.1) are compatible, [3, Thm. 3.2] yields

$$
\begin{equation*}
\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{i}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)^{2}=\prod_{j=1}^{3} \mathbb{T}\left(\mathbb{S}_{j},\left\{\mathbf{h}_{i}^{\mathbb{S}_{j}}\right\}_{0}^{1}\right) \mathbb{T}\left(\Sigma_{2,0},\left\{\mathbf{h}_{\eta}^{\Sigma_{2,0}}\right\}_{0}^{2}\right) \mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{p}\right\}_{0}^{6},\{0\}_{0}^{6}\right) \tag{3.19}
\end{equation*}
$$

Considering [7, Thm. 3.5], (3.18), and (3.19), we obtain

$$
\begin{equation*}
\left|\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{i}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)\right|=\sqrt{\left|\mathbb{T}\left(\Sigma_{2,0},\left\{\mathbf{h}_{\eta}^{\Sigma_{2,0}}\right\}_{0}^{2}\right)\right|} \tag{3.20}
\end{equation*}
$$

By Poincaré Duality, Theorem 4.1 in [7] and (3.20), the main formula holds

$$
\left|\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{i}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)\right|=\sqrt{\left|\frac{\operatorname{det} \Delta_{0,2}\left(\Sigma_{2,0}\right)}{\operatorname{det} \wp\left(\mathbf{h}_{\Sigma_{2,0}}^{1}, \Gamma\right)}\right|}
$$

A pants decomposition of $\Sigma_{g, n}$ is a finite collection of disjoint smoothly embedded circles cutting $\Sigma_{g, n}$ into pairs of pants $\Sigma_{0,3}$ and tori with one boundary circle $\Sigma_{1,1}$. The number of complementary components is

$$
\left|\chi\left(\Sigma_{g, n}\right)\right|=2 g-2+n
$$

Figure 2: Compact orientable surface $\Sigma_{g, n}$ with genus $g \geq 2$ and bordered by $n \geq 1$ circles.

Proof of Theorem 1.2. Consider the decomposition of $\Sigma_{g, n}$, as in Figure 2, obtained by cutting the surface along the circles in the following order

$$
\mathbb{S}_{1}, \ldots, \mathbb{S}_{g}, \mathbb{S}_{g+1}, \ldots, \mathbb{S}_{2 g-3+n}
$$

This decomposition consists of

- the torus $\Sigma_{1,1}^{\nu}$ with boundary circle $\mathbb{S}_{\nu}, \nu \in\{1, \ldots, g\}$,
- the pair of pants $\Sigma_{0,3}^{g+1}$ with boundaries $\mathbb{S}_{1}, \mathbb{S}_{2}, \mathbb{S}_{g+1}$,
- the pair of pants $\Sigma_{0,3}^{\nu+g}$ with boundaries $\mathbb{S}_{g+\nu}, \mathbb{S}_{\nu+1}, \mathbb{S}_{g+\nu-1}, \nu \in\{2, \ldots, g-1\}$,
- the pair of pants $\Sigma_{0,3}^{\nu+g}$ with boundaries $\mathbb{S}_{g+\nu}, \mathbb{S}_{g+\nu-1}, \mathbb{S}_{g-\nu}, \nu \in\{g, \ldots, g+n-3\}$,
- the pair of pants $\Sigma_{0,3}^{2 g-2+n}$ with boundaries $\mathbb{S}_{2 g+n-3}, \mathbb{S}_{-(n-1)}, \mathbb{S}_{-(n-2)}$.

Consider also the decomposition $\Sigma_{1,1}^{\nu}=Y_{\nu} \cup_{\partial Y_{\nu}} \Sigma_{0,3}^{\nu}, \nu \in\{1, \ldots, g\}$, where Y_{ν} is the cylinder $\mathbb{S}_{\nu}^{\prime} \times[-\varepsilon,+\varepsilon]$ and $\Sigma_{0,3}^{\nu}$ is the pair of pants with boundaries $\mathbb{S}_{\nu}^{\prime} \times\{-\varepsilon\}$, $\mathbb{S}_{\nu}^{\prime} \times\{\varepsilon\}, \mathbb{S}_{\nu}$ for sufficiently small $\varepsilon>0$.

Case 1 : Consider the decomposition $\Sigma_{0,3} \bigcup_{\mathbb{S}_{1}} \Sigma_{0, n-1}$ of $\Sigma_{0, n}$ for $n \geq 4$, where $\Sigma_{0,3}$ and $\Sigma_{0, n-1}$ are glued along the common boundary circle \mathbb{S}_{1}. Then there is a short exact sequence of the chain complexes

$$
0 \rightarrow C_{*}\left(\mathbb{S}_{1}\right) \rightarrow C_{*}\left(\Sigma_{0,3}\right) \oplus C_{*}\left(\Sigma_{0, n-1}\right) \rightarrow C_{*}\left(\Sigma_{0, n}\right) \rightarrow 0
$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_{*}. By using the arguments stated in the proof of Theorem 1.1 for the given bases $\mathbf{h}_{\eta}^{\Sigma_{0, n}}$ and $\mathbf{h}_{\eta}^{\mathbb{S}_{1}}, \eta \in\{0,1\}$, there exist bases $\mathbf{h}_{\eta}^{\Sigma_{0,3}}$ and $\mathbf{h}_{\eta}^{\Sigma_{0, n-1}}$ such that the R-torsion of \mathcal{H}_{*} in the corresponding bases is 1 and the following formula holds

$$
\begin{align*}
\mathbb{T}\left(\Sigma_{0, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{0, n}}\right\}_{0}^{1}\right)= & \mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}}\right\}_{0}^{1}\right) \mathbb{T}\left(\Sigma_{0, n-1},\left\{\mathbf{h}_{\eta}^{\Sigma_{0, n-1}}\right\}_{0}^{1}\right) \\
& \times \mathbb{T}\left(\mathbb{S}_{1},\left\{\mathbf{h}_{\eta}^{\mathbb{S}_{1}}\right\}_{0}^{1}\right)^{-1} \tag{3.21}
\end{align*}
$$

By [7, Thm. 3.5] and (3.21), we obtain

$$
\begin{equation*}
\left|\mathbb{T}\left(\Sigma_{0, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{0, n}}\right\}_{0}^{1}\right)\right|=\left|\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)\right|\left|\mathbb{T}\left(\Sigma_{0, n-1},\left\{\mathbf{h}_{\eta}^{\Sigma_{0, n-1}}\right\}_{0}^{1}\right)\right| . \tag{3.22}
\end{equation*}
$$

Applying (3.22) inductively, we get

$$
\left|\mathbb{T}\left(\Sigma_{0, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{0, n}}\right\}_{0}^{1}\right)\right|=\prod_{\nu=1}^{n-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{\nu},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{\nu}}\right\}_{0}^{1}\right)\right|
$$

Case 2: For the decomposition $\Sigma_{1,1}=Y \cup_{\partial Y} \Sigma_{0,3}$, where

$$
\begin{gathered}
Y=\mathbb{S}^{\prime} \times[-\varepsilon,+\varepsilon] \\
\partial Y=\mathbb{S}^{\prime} \times\{-\epsilon\} \sqcup \mathbb{S}^{\prime} \times\{+\epsilon\},
\end{gathered}
$$

and $\Sigma_{0,3}$ is the pair of pants with boundaries $\mathbb{S}^{\prime} \times\{-\varepsilon\}, \mathbb{S}^{\prime} \times\{\varepsilon\}, \mathbb{S}$ for sufficiently small $\varepsilon>0$, we have the following short exact sequence of the chain complexes

$$
\begin{equation*}
0 \rightarrow C_{*}\left(\Sigma_{0,3} \cap Y\right) \rightarrow C_{*}\left(\Sigma_{0,3}\right) \oplus C_{*}(Y) \rightarrow C_{*}\left(\Sigma_{1,1}\right) \rightarrow 0 \tag{3.23}
\end{equation*}
$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_{*}. If we follow the arguments in the proof of Theorem 1.1 for the given bases $\mathbf{h}_{\eta}^{\Sigma_{1,1}}$ and $\mathbf{h}_{\eta}^{\mathbb{S}^{\prime}}, \eta \in\{0,1\}$, then we get the bases $\mathbf{h}_{\eta}^{\Sigma_{0,3}}$ and \mathbf{h}_{η}^{Y} such that the R-torsion of \mathcal{H}_{*} in the corresponding bases equals to 1 and the formula is valid

$$
\mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right)=\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}}\right\}_{0}^{1}\right) \mathbb{T}\left(Y,\left\{\mathbf{h}_{\eta}^{Y}\right\}_{0}^{1}\right) \mathbb{T}\left(\mathbb{S}^{\prime},\left\{\mathbf{h}_{\eta}^{\mathbb{S}^{\prime}}\right\}_{0}^{1}\right)^{-2}
$$

From [7, Thm. 3.5] and Corollary 2.1 it follows

$$
\left|\mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right)\right|=\left|\mathbb{T}\left(\Sigma_{0,3},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}}\right\}_{0}^{1}\right)\right|
$$

Case 3 : Let $\Sigma_{g-1,1} \cup_{\mathbb{S}_{1}} \Sigma_{1,1}$ be the decomposition of $\Sigma_{g, 0}, g \geq 2$, where $\Sigma_{1,1}$ and $\Sigma_{g-1,1}$ are glued along the common boundary circle \mathbb{S}_{1}. By the decomposition, there exists the natural short exact sequence

$$
0 \rightarrow C_{*}\left(\mathbb{S}_{1}\right) \rightarrow C_{*}\left(\Sigma_{g-1,1}\right) \oplus C_{*}\left(\Sigma_{1,1}\right) \rightarrow C_{*}\left(\Sigma_{g, 0}\right) \rightarrow 0
$$

and its corresponding Mayer-Vietoris sequence

$$
\begin{aligned}
& \mathcal{H}_{*}: 0 \rightarrow H_{2}\left(\Sigma_{g, 0}\right) \xrightarrow{\delta_{2}} H_{1}\left(\mathbb{S}_{1}\right) \xrightarrow{f} H_{1}\left(\Sigma_{g-1,1}\right) \oplus H_{1}\left(\Sigma_{1,1}\right) \xrightarrow{g} H_{1}\left(\Sigma_{g, 0}\right) \\
& \stackrel{\delta_{1}}{\rightarrow} H_{0}\left(\mathbb{S}_{1}\right) \xrightarrow{i} H_{0}\left(\Sigma_{g-1,1}\right) \oplus H_{0}\left(\Sigma_{1,1}\right) \xrightarrow{j} H_{0}\left(\Sigma_{g, 0}\right) \xrightarrow{k} 0 .
\end{aligned}
$$

For the given bases $\mathbf{h}_{\nu}^{\Sigma_{g, 0}}$ and $\mathbf{h}_{\eta}^{\mathbb{S}_{1}}$ with the condition $\delta_{2}\left(\mathbf{h}_{2}^{\Sigma_{g, 0}}\right)=\mathbf{h}_{1}^{\mathbb{S}_{1}}, \nu \in\{0,1,2\}$, $\eta \in\{0,1\}$, if we use the arguments stated in the proof of Theorem 1.1, then we obtain the bases $\mathbf{h}_{\eta}^{\Sigma_{g-1,1}}$ and $\mathbf{h}_{\eta}^{\Sigma_{1,1}}$ such that the R-torsion of \mathcal{H}_{*} in the corresponding bases becomes 1 and the following formula holds

$$
\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{\nu}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)=\mathbb{T}\left(\Sigma_{g-1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{g-1,1}}\right\}_{0}^{1}\right) \mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right) \mathbb{T}\left(\mathbb{S}_{1},\left\{\mathbf{h}_{\eta}^{\mathbb{S}_{1}}\right\}_{0}^{1}\right)^{-1}
$$

By [7, Thm. 3.5], we obtain

$$
\left|\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{\nu}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)\right|=\left|\mathbb{T}\left(\Sigma_{g-1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{g-1,1}}\right\}_{0}^{1}\right)\right|\left|\mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right)\right|
$$

Case 4 : Consider the decomposition $\Sigma_{g, n}=\Sigma_{g-1, n+1} \cup_{\mathbb{S}_{1}} \Sigma_{1,1}$ for $g \geq 2, n \geq 1$, where $\Sigma_{1,1}$ and $\Sigma_{g-1, n+1}$ are glued along the common boundary circle \mathbb{S}_{1}. Then there is the natural short exact sequence of the chain complexes

$$
\begin{equation*}
0 \rightarrow C_{*}\left(\mathbb{S}_{1}\right) \rightarrow C_{*}\left(\Sigma_{g-1, n+1}\right) \oplus C_{*}\left(\Sigma_{1,1}\right) \rightarrow C_{*}\left(\Sigma_{g, n}\right) \rightarrow 0 \tag{3.24}
\end{equation*}
$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_{*}. Using the arguments in the proof of Theorem 1.1 for the given bases $\mathbf{h}_{\eta}^{\Sigma_{g, n}}$ and $\mathbf{h}_{\eta}^{\mathbb{S}_{1}}, \eta \in\{0,1\}$, we get the bases $\mathbf{h}_{\eta}^{\Sigma_{g-1, n+1}}$ and $\mathbf{h}_{\eta}^{\Sigma_{1,1}}$ such that the R-torsion of \mathcal{H}_{*} in the corresponding bases is 1 and

$$
\mathbb{T}\left(\Sigma_{g, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{g, n}}\right\}_{0}^{1}\right)=\mathbb{T}\left(\Sigma_{g-1, n+1},\left\{\mathbf{h}_{\eta}^{\Sigma_{g-1, n+1}}\right\}_{0}^{1}\right) \mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right) \mathbb{T}\left(\mathbb{S}_{1},\left\{\mathbf{h}_{\eta}^{\mathbb{S}_{1}}\right\}_{0}^{1}\right)^{-1}
$$

By [7, Thm. 3.5], the R-torsion of $\Sigma_{g, n}$ satisfies the following formula

$$
\left|\mathbb{T}\left(\Sigma_{g, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{g, n}}\right\}_{0}^{1}\right)\right|=\left|\mathbb{T}\left(\Sigma_{g-1, n+1},\left\{\mathbf{h}_{\eta}^{\Sigma_{g-1, n+1}}\right\}_{0}^{1}\right)\right|\left|\mathbb{T}\left(\Sigma_{1,1},\left\{\mathbf{h}_{\eta}^{\Sigma_{1,1}}\right\}_{0}^{1}\right)\right|
$$

Applying the Cases 1-4 inductively, we have the following R-torsion formula for the compact orientable surfaces $\Sigma_{g, n}, g \geq 2, n \geq 0$

$$
\left|\mathbb{T}\left(\Sigma_{g, n},\left\{\mathbf{h}_{\eta}^{\Sigma_{g, n}}\right\}_{0}^{1}\right)\right|=\prod_{\nu=1}^{2 g-2+n}\left|\mathbb{T}\left(\Sigma_{0,3}^{\nu},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{\nu}}\right\}_{0}^{1}\right)\right|
$$

4 Applications

4.1 Compact 3-manifolds with boundary

Let N be a smooth compact orientable 3-manifold whose boundary consists of finitely many closed orientable surfaces $\partial N=\Sigma_{g_{1}, 0} \sqcup \Sigma_{g_{2}, 0} \sqcup \cdots \sqcup \Sigma_{g_{m}, 0}$. Let $d(N)$ be the double of N. Consider the natural short exact sequence of the chain complexes

$$
\begin{equation*}
0 \rightarrow C_{*}(\partial N) \rightarrow C_{*}(N) \oplus C_{*}(N) \rightarrow C_{*}(d(N)) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_{*}. For the given bases $\mathbf{h}_{\mu}^{N}, \mathbf{h}_{\nu}^{\partial N}$, and $\mathbf{h}_{\mu}^{d(N)}, \nu \in\{0,1,2\}, \mu \in\{0,1,2,3\}$, we will denote the corresponding basis of \mathcal{H}_{*} by $\mathbf{h}_{n}, n \in\{0, \ldots, 11\}$. As the bases in the sequence (4.1) are compatible, $[3$, Thm. 3.2] yields

$$
\begin{equation*}
\mathbb{T}\left(N,\left\{\mathbf{h}_{\mu}^{N}\right\}_{0}^{3}\right)^{2}=\mathbb{T}\left(\partial N,\left\{\mathbf{h}_{\nu}^{\partial N}\right\}_{0}^{2}\right) \mathbb{T}\left(d(N),\left\{\mathbf{h}_{\mu}^{d(N)}\right\}_{0}^{3}\right) \mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{11}\right) \tag{4.2}
\end{equation*}
$$

By [7, Thm. 3.5] and (4.2), we have

$$
\begin{equation*}
\left|\mathbb{T}\left(N,\left\{\mathbf{h}_{\mu}^{N}\right\}_{0}^{3}\right)\right|=\sqrt{\left|\mathbb{T}\left(\partial N,\left\{\mathbf{h}_{\nu}^{\partial N}\right\}_{0}^{2}\right)\right|\left|\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{11}\right)\right|} \tag{4.3}
\end{equation*}
$$

Note that ∂N is equal to $\Sigma_{g_{1}, 0} \sqcup \Sigma_{g_{2}, 0} \sqcup \cdots \sqcup \Sigma_{g_{m}, 0}$. By [7, Lem. 1.4], we get

$$
\begin{equation*}
\left|\mathbb{T}\left(\partial N,\left\{\mathbf{h}_{\nu}^{\partial N}\right\}_{0}^{2}\right)\right|=\prod_{i=1}^{m}\left|\mathbb{T}\left(\Sigma_{g_{i}, 0},\left\{\mathbf{h}_{\nu}^{\Sigma_{g_{i}}, 0}\right\}_{0}^{2}\right)\right| \tag{4.4}
\end{equation*}
$$

For each $i \in\{1, \ldots, m\}$, consider the given basis $\mathbf{h}_{\nu}^{\Sigma_{g_{i}, 0}}$ for $\nu \in\{0,1,2\}$ and pants decompositions $\left\{\Sigma_{0,3}^{j, i}\right\}_{j=1}^{2 g_{i}-2}$ of $\Sigma_{g_{i}, 0}$. By using Theorem 1.2, we obtain the basis $\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j, i}}$, $\eta \in\{0,1\}, j \in\left\{1, \ldots, 2 g_{i}-2\right\}$ such that

$$
\begin{equation*}
\left|\mathbb{T}\left(\partial N,\left\{\mathbf{h}_{\nu}^{\partial N}\right\}_{0}^{2}\right)\right|=\prod_{i=1}^{m} \prod_{j=1}^{2 g_{i}-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{j, i},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j, i}}\right\}_{0}^{1}\right)\right| . \tag{4.5}
\end{equation*}
$$

Equations (4.4) and (4.5) yield the following formula

$$
\left|\mathbb{T}\left(N,\left\{\mathbf{h}_{\mu}^{N}\right\}_{0}^{3}\right)\right|=\sqrt{\prod_{i=1}^{m} \prod_{j=1}^{2 g_{i}-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{j, i},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j, i}}\right\}_{0}^{1}\right)\right|\left|\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{i}\right\}_{0}^{11}\right)\right|}
$$

Corollary 4.1. Let N be the handlebody of genus $g \geq 2$. Clearly, the boundary ∂N of

Then we have the short exact sequence

$$
\begin{equation*}
0 \rightarrow C_{*}\left(\Sigma_{g, 0}\right) \rightarrow C_{*}(N) \oplus C_{*}(N) \rightarrow C_{*}(d(N)) \rightarrow 0 \tag{4.6}
\end{equation*}
$$

and the corresponding Mayer-Vietoris sequence \mathcal{H}_{*}. For the given bases $\mathbf{h}_{\mu}^{d(N)}$ and $\mathbf{h}_{\mu}^{N} \mu \in\{0,1,2,3\}$, following the arguments above, there exists a basis $\mathbf{h}_{i}^{\Sigma_{g, 0}}$ for $i \in$ $\{0,1,2\}$ such that in the corresponding bases the R-torsion of \mathcal{H}_{*} is 1 and from [7, Thm. 3.5] it follows

$$
\left|\mathbb{T}\left(N,\left\{\mathbf{h}_{\mu}^{N}\right\}_{0}^{3}\right)\right|=\sqrt{\left|\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{i}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)\right|}
$$

Let us consider the pants decomposition $\left\{\Sigma_{0,3}^{j}\right\}_{j=1}^{2 g-2}$ of $\Sigma_{g, 0}$. By Theorem 1.2, there exists the basis $\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j}}$ for each $j \in\{1, \ldots, 2 g-2\}$ and $\eta \in\{0,1\}$ such that the following formula holds

$$
\left|\mathbb{T}\left(N,\left\{\mathbf{h}_{\mu}^{N}\right\}_{0}^{3}\right)\right|=\sqrt{\prod_{j=1}^{2 g-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{j},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j}}\right\}_{0}^{1}\right)\right|}
$$

4.2 Product of $2 d$-manifolds and compact 3 -manifolds with boundary $\Sigma_{g, 0}$

Let M be a smooth closed orientable $2 d$-manifold $(d \geq 1)$ and N an smooth compact orientable 3-manifold whose boundary consists of closed orientable surface $\Sigma_{g, 0}(g \geq$ 2). Let X be the product manifold $M \times N$ and $d(X)$ denote the double of X. Clearly,
the boundary of X is $M \times \Sigma_{g, 0}$. Consider the natural short exact sequence of the chain complexes

$$
\begin{equation*}
0 \rightarrow C_{*}\left(M \times \Sigma_{g, 0}\right) \rightarrow C_{*}(X) \oplus C_{*}(X) \rightarrow C_{*}(d(X)) \rightarrow 0 \tag{4.7}
\end{equation*}
$$

and the Mayer-Vietoris sequence \mathcal{H}_{*} corresponding to (4.7). Let $\mathbf{h}_{i}^{X}, \mathbf{h}_{i}^{d(X)}, \mathbf{h}_{k}^{M}$, and $\mathbf{h}_{\ell}^{\Sigma_{g, 0}}$ be given bases for $i \in\{0, \cdots, 2 d+3\}, k \in\{0, \ldots, 2 d\}, \ell \in\{0,1,2\}$. Let $\mathbf{h}_{\nu}^{M \times \Sigma_{g, 0}}$ denote the basis $\underset{i}{ } \mathbf{h}_{i}^{M} \otimes \mathbf{h}_{\nu-i}^{\Sigma_{g, 0}}$ of $H_{\nu}\left(M \times \Sigma_{g, 0}\right), \nu \in\{0, \ldots, 2 d+2\}$. For $n \in\{0, \ldots, 6 d+11\}$, let \mathbf{h}_{n} be the corresponding basis of \mathcal{H}_{*}. Let $\left\{\Sigma_{0,3}^{j}\right\}_{j=1}^{2 g-2}$ be the pants decomposition of $\Sigma_{g, 0}$. Note that the bases in the sequence (4.7) are compatible. Thus, by [7, Lem. 1.4], we obtain

$$
\begin{align*}
\mathbb{T}\left(X,\left\{\mathbf{h}_{i}^{X}\right\}_{0}^{2 d+3}\right)^{2}= & \mathbb{T}\left(M \times \Sigma_{g, 0},\left\{\mathbf{h}_{\nu}^{M \times \Sigma_{g, 0}}\right\}_{0}^{2 d+2}\right) \mathbb{T}\left(d(X),\left\{\mathbf{h}_{i}^{d(X)}\right\}_{0}^{2 d+3}\right) \\
& \times \mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{6 d+11}\right) \tag{4.8}
\end{align*}
$$

From [7, Thm. 3.5] and (4.8) it follows that

$$
\begin{equation*}
\left|\mathbb{T}\left(X,\left\{\mathbf{h}_{i}^{X}\right\}_{0}^{2 d+3}\right)\right|=\left|\mathbb{T}\left(M \times \Sigma_{g, 0},\left\{\mathbf{h}_{\nu}^{M \times \Sigma_{g, 0}}\right\}_{0}^{2 d+2}\right)\right|^{1 / 2}\left|\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{6 d+11}\right)\right|^{1 / 2} \tag{4.9}
\end{equation*}
$$

By [4, Thm. 3.1], the R-torsion of $M \times \Sigma_{g, 0}$ satisfies the equality

$$
\begin{align*}
\left|\mathbb{T}\left(M \times \Sigma_{g, 0},\left\{\mathbf{h}_{\nu}^{M \times \Sigma_{g, 0}}\right\}_{0}^{2 d+2}\right)\right|= & \left|\mathbb{T}\left(M,\left\{\mathbf{h}_{k}^{M}\right\}_{0}^{2 d}\right)\right|^{\chi\left(\Sigma_{g, 0}\right)} \\
& \times\left|\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{\ell}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)\right|^{\chi(M)} \tag{4.10}
\end{align*}
$$

Here, χ is the Euler characteristic. Then equations (4.9) and (4.10) yield

$$
\begin{align*}
\left|\mathbb{T}\left(X,\left\{\mathbf{h}_{i}^{X}\right\}_{0}^{2 d+3}\right)\right|= & \left|\mathbb{T}\left(M,\left\{\mathbf{h}_{k}^{M}\right\}_{0}^{2 d}\right)\right|^{\chi\left(\Sigma_{g, 0}\right) / 2}\left|\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{\ell}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)\right|^{\chi(M) / 2} \\
& \times\left|\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{6 d+11}\right)\right|^{1 / 2} \tag{4.11}
\end{align*}
$$

Since $\left\{\Sigma_{0,3}^{j}\right\}_{j=1}^{2 g-2}$ is the pants decomposition of $\Sigma_{g, 0}$ as in Theorem 1.2, there exists a basis $\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j}}$ of $H_{\eta}\left(\Sigma_{0,3}^{j}\right)$ for $j \in\{1, \ldots, 2 g-2\}, \eta \in\{0,1\}$ so that

$$
\begin{equation*}
\left|\mathbb{T}\left(\Sigma_{g, 0},\left\{\mathbf{h}_{\ell}^{\Sigma_{g, 0}}\right\}_{0}^{2}\right)\right|=\prod_{j=1}^{2 g-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{j},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j}}\right\}_{0}^{1}\right)\right| \tag{4.12}
\end{equation*}
$$

Equations (4.11) and (4.12) yield

$$
\begin{aligned}
\left|\mathbb{T}\left(X,\left\{\mathbf{h}_{i}^{X}\right\}_{0}^{2 d+3}\right)\right|= & \prod_{j=1}^{2 g-2}\left|\mathbb{T}\left(\Sigma_{0,3}^{j},\left\{\mathbf{h}_{\eta}^{\Sigma_{0,3}^{j}}\right\}_{0}^{1}\right)\right|^{\frac{\chi(M)}{2}}\left|\mathbb{T}\left(M,\left\{\mathbf{h}_{k}^{M}\right\}_{0}^{2 d}\right)\right|^{\frac{\chi\left(\Sigma_{g, 0}\right)}{2}} \\
& \times\left|\mathbb{T}\left(\mathcal{H}_{*},\left\{\mathbf{h}_{n}\right\}_{0}^{6 d+1}\right)\right|^{1 / 2}
\end{aligned}
$$

Acknowledgements. Partially supported by TÜBİTAK under the project number 114F516. Theorem 1.2 and Section 4 were proven in the first author's MSc thesis.

References

[1] J. Cheeger, Analytic torsion and Reidemeister torsion, Proceedings of the National Academy of Sciences, 74, 7 (1977), 2651-2654.
[2] R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
[3] J. W. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[4] C. Ozel and Y. Sozen, Reidemeister torsion of product manifolds and its applications to quantum entanglement, Balkan J. Geom. Appl. 17, 2 (2012), 66-76.
[5] K. Reidemeister, Homotopieringe und Linsenräume, Abh. Math. Sem. Univ. Hamburg, 11, 1 (1935), 102-109.
[6] Y. Sozen, Reidemeister torsion of a symplectic complex, Osaka J. Math. 45, 1 (2008), 1-39.
[7] Y. Sozen, Symplectic chain complex and Reidemeister torsion of compact manifolds, Math. Scand. 111, 1 (2012), 65-91.
[8] V. Turaev, Torsions of 3-Manifolds, Invariants of knots and 3-manifolds, Birkhäuser Basel, 2002.
[9] E. Witten, On quantum gauge theories in two dimensions, Comm. Math. Phys. 141, 1 (1991), 153-209.
[10] F. Wolfgang, Über die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935), 245-254.

Authors' addresses:
Esma Dirican Erdal
Deptartment of Mathematics,
Faculty of Science, Izmir Institute of Technology,
35430, Izmir, Turkey.
E-mail: esmadirican131@gmail.com
Yasar Sozen
Deptartment of Mathematics, Faculty of Science, Hacettepe University, 06800, Ankara, Turkey.
E-mail:ysozen@hacettepe.edu.tr

[^0]: Balkan Journal of Geometry and Its Applications, Vol.27, No.2, 2022, pp. 37-49.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2022.

