Generalized Wintgen-type inequality for submanifolds in S-space-forms

M. Kouamou

Abstract

In this paper, we obtain the generalized Wintgen inequality for C-totally real submanifolds in S-space form. The advantage with this result is that we have two inequalities in only one. We introduce bi-slant submanifolds in S-space form. We give a non trivial example. Further, we discuss the Wintgen inequality for bi-slant submanifolds in the same ambient space and derive its applications in various slant cases.

M.S.C. 2010: 53C05, 53C40, 53C25, 53C15.

Key words: S-space form; Wintgen inequality; bi-Slant Submanifolds; C-totally real submanifolds.

1 Introduction

The Wintgen inequality (1979) is the sharp geometric inequality for surfaces in the Euclidian space, E^{4}, involving the Gauss curvature (intrinsic invariant), the normal curvature and squared mean curvature (extrinsic invariant), respectively. De Smet et al [23] conjectured a generalized Wintgen inequality for submanifolds of arbitrary dimension and codimension in Riemannian space form. This conjecture was proved by [16] and Ge and Tang [14], independently. Later, this conjecture was been proved in different space forms, in complex and Sasakian space forms ([18], [19]), Golden Riemannian space form [12], Bochner Kahler space form [1]. Recently, Mohd et al derived a generalized Wintgen-type inequality for submanifolds in generalized space forms, they extended this inequality to the case of bi-slant submanifolds in generalized space forms and derived some applications in various slant cases [3].

On the other hand, Yano, [24], introduced the notion of f-structure on a $(2 n+s)$ dimensional manifold as a tensor field of type $(1,1)$ and rank $2 n$ satisfying $f^{3}+$ $f=0$. Almost complex, in even dimension $(s=0)$ and almost contact, in odd dimension $(s=1)$ structures are well known examples of f-structure. The existence of such structure is equivalent to a reduction of the structural group of the tangent bundle to $U(n) \times O(s)$, [4]. Recently, Najma [21] established new results of squared mean curvature and Ricci curvature for the submanifolds of S-space form that is the

[^0]generalization of complex and contact structure. Kim, [15], obtained a basic inequality for submanifolds of an S-space form tangent to structure vector fields. The notion of bi-slant submanifolds of an almost hermitian manifold or almost contact manifold was introduced as a natural generalisation of CR-submanifold, hemi-slant submanifold, semi-slant submanifold, [6]. In [17], [20], the authors have studied CR-submanifolds of S-manifolds. Motivated by the work above, we establish the generalized Wintgentype inequality for submanifolds in S-space form that is the genaralization of Sasakian space form and Kahler space form, ([18], [19]). This paper is organized as follows. In section 2 , we recall some necessary background on f-structures, S-manifolds and S space forms. In section 3, we established the generalized Wintgen-type inequality for submanifolds of S -space form. In section 4, we give a non trivial example of bi-slant submanifolds of S-space forms, the generalized Wintgen-type inequality for the same ambient space and derive its applications in various slant cases.

2 Preliminaries

Yano showed that almost complex and almost contact structures can be generalized as f-structures on a smooth manifold of dimension $2 n+s$. The idea for the f-structure is to consider a tensor field with condition $f^{3}+f=0$, of type $(1,1)$ and rank $2 n$.

Let $\bar{M}^{2 n+s}$ be a smooth manifold along an f-structure of rank $2 n$. We take s structural vectors fields $\xi_{1}, \xi_{2}, \ldots, \xi_{s}$ on \bar{M} such as

$$
\begin{equation*}
f \xi_{\alpha}=0, \quad \eta_{\alpha} \circ f=0, \quad f^{2}=-I+\sum_{\alpha=1}^{s} \xi_{\alpha} \otimes \eta_{\alpha} \tag{2.1}
\end{equation*}
$$

where η_{α} and ξ_{α} are dual forms to each other, therefore, complemented frames exist on f-structures. For an f-manifold, we define a Riemannian metric as

$$
\begin{equation*}
g(X, Y)=g(f X, f Y)+\sum_{\alpha=1}^{s} \eta_{\alpha}(X) \eta_{\alpha}(Y), \quad X, Y \in \Gamma(T \bar{M}) \tag{2.2}
\end{equation*}
$$

A consequence of (2.1) and (2.2) is

$$
\begin{equation*}
g(f X, X)=0, \quad g(f X, Y)=-g(X, f Y) . \tag{2.3}
\end{equation*}
$$

An f-structure is normal, if there exist complemented frames and $[f, f]+2 \sum_{\alpha=1}^{s} \xi_{\alpha} \otimes$ $d \eta_{\alpha}=0$, where $[f, f]$ is the Nijenhuis torsion of f. Consider the fundamental 2form B defined as $B(X, Y)=g(X, f Y)$. A metric f - structure which is normal and $d \eta_{1}=d \eta_{2}=\cdots=d \eta_{s}=B$ is know as an S-structure. A smooth manifold along with an S-structure is known as an S-manifold. Blair described such types of manifolds in [4]. In the case $s=1$, an S-manifold is a Sasakian manifold. In the case $s=0$, an S-manifold is a Kahler manifold. For $s \geq 2$ examples of S-manifold are given in [1] For the Riemannian connection $\bar{\nabla}$ of g of an S-manifold $\bar{M}^{2 n+s}$, the following were also proved in [4]

$$
\begin{equation*}
\bar{\nabla}_{X} \xi_{\alpha}=-f X, \quad X \in \Gamma(T \bar{M}), \quad \alpha=1, \ldots, s \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\left(\bar{\nabla}_{X} f\right) Y=\sum_{\alpha=1}^{s}\left[g(f X, f Y) \xi_{\alpha}+\eta_{\alpha}(Y) f^{2} X\right], \quad X, Y \in \Gamma(T \bar{M}) \tag{2.5}
\end{equation*}
$$

Let L denote the distribution determined by $-f^{2}$ and M the complementary distribution. M is determined by $f^{2}+I$ and spanned by ξ_{1}, \ldots, ξ_{s}. If $X \in L$, then $\eta_{\alpha}(X)=0$ for any α and if If $X \in M$, then $f X=0$.

A plane section π is called an invariant f-section if it is determined by a vector $X \in L(p), p \in \bar{M}$, such that $\{X, f X\}$ is an orthonormal pair spanning the section. The sectional curvature $K(X, f X)$ called an invariant f-sectional curvature is a constant c, then its curvature tensor has the form

$$
\begin{align*}
\bar{R}(X, Y) Z & =\sum_{\alpha, \beta=1}^{s}\left\{\eta_{\alpha}(X) \eta_{\beta}(Z) f^{2} Y-\eta_{\alpha}(Y) \eta_{\beta}(Z) f^{2} X\right. \\
& \left.-g(f X, f Z) \eta_{\alpha}(Y) \xi_{\beta}+g(f Y, f Z) \eta_{\alpha}(X) \xi_{\beta}\right\} \tag{2.6}\\
& +\frac{c+3 s}{4}\left\{-g(f Y, f Z) f^{2} X+g(f X, f Z) f^{2} Y\right\} \\
& +\frac{c-s}{4}\{g(X, f Z) f Y-g(Y, f Z) f X+2 g(X, f Y) f Z\}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$.
Then the S-manifold will be denoted by $\bar{M}^{2 n+s}(c)$ and it is said to be S-space form. As example of S-space form, we mention the euclidian space and hyperbolic space [4].

Let N be a submanifold with an induced metric g of a real dimension m in an S-space form, $\bar{M}^{2 n+s}(c)$. If $\bar{\nabla}$ and ∇ are the Levi-Civita connections on $\bar{M}^{2 n+s}(c)$ and N, respectively, then the fundamental formulas of Gauss and Weingarten are

$$
\begin{aligned}
\bar{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \\
\bar{\nabla}_{X} \xi & =-A_{\xi} X+\nabla_{X}^{\perp} \xi
\end{aligned}
$$

where $X, Y \in \Gamma(T N), \xi \in \Gamma(T N)^{\perp}$ and ∇^{\perp} represents the normal connection. Recall that, in the above basic formulas, h denotes the second fundamental form and A_{ξ} is the shape operator, they are connected by

$$
g(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right)
$$

Let R be the Riemannian curvature tensor of N^{m}. We will use the convention $R(X, Y, Z, W)=g(R(X, Y) W, Z)$, for all $X, Y, Z, W \in \Gamma(T N)$. Then the Gauss equation is given by

$$
\begin{equation*}
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W)) \tag{2.7}
\end{equation*}
$$

for all $X, Y, Z, W \in \Gamma(T N)$, and the Ricci equation by

$$
\begin{equation*}
\bar{R}(X, Y, \eta, \xi)=R^{\perp}(X, Y, \eta, \xi)+g\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right) \tag{2.8}
\end{equation*}
$$

for all $X, Y \in \Gamma(T N)$ and $\xi, \eta \in \Gamma(T N)^{\perp}$.

A submanifold N of an S-space form $\bar{M}(c)$ is called C-totally real submanifold if $\xi_{\alpha}, \alpha=1,2, \ldots, s$ is normal to N, and a consequence of this is that $f\left(T_{p} N\right) \subset T_{p} N^{\perp}$, for all $p \in N$ [22].

For a vector field $X \in T_{p} N, p \in N$, it can be written as $f X=P X+Q X$, where $P X$ is tangent component of $f X$ and $Q X$ is a normal component of $f X$. If $P=0$, then the submanifold is said to be an anti-invariant submanifold and if $Q=0$, the submanifold is said to be an invariant submanifold. Let $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $\left\{e_{m+1}, e_{m+2}, \ldots, e_{2 n+s}\right\}$ be a tangent orthonormal frame and normal orthonormal frame respectively on N.

The mean curvature vector field is given by

$$
\begin{equation*}
H=\frac{1}{m} \sum_{i=1}^{m} h\left(e_{i}, e_{i}\right) . \tag{2.9}
\end{equation*}
$$

The norm of the squared mean curvature of the submanifolds is defined by

$$
\begin{equation*}
\|H\|^{2}=\frac{1}{m^{2}} \sum_{r=m+1}^{2 n+s}\left(\sum_{i=1}^{m} h_{i i}^{r}\right)^{2} . \tag{2.10}
\end{equation*}
$$

Further,

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{m} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right), \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{m} g^{2}\left(P e_{i}, e_{j}\right) . \tag{2.12}
\end{equation*}
$$

3 Generalized Wintgen inequality for C-totally real submanifolds in S-space form

We denote by K and R^{\perp} the sectional curvature function and the normal curvature tensor on N. Then the normalized scalar ρ is given by

$$
\rho=\frac{2 \tau}{m(m-1)}=\frac{2}{m(m-1)} \sum_{1 \leq i<j \leq m} K\left(e_{i}, e_{j}\right),
$$

where τ is a scalar curvature, and the normalized normal scalar curvature is given by [16]

$$
\rho^{\perp}=\frac{2 \tau^{\perp}}{m(m-1)}=\frac{2}{m(m-1)} \sqrt{\sum_{1 \leq i<j \leq m} \sum_{1 \leq r<s \leq 2 n+s-m}\left(R^{\perp}\left(e_{i}, e_{j}, \xi_{r}, \xi_{s}\right)\right)^{2}} .
$$

Following [16], we put

$$
K_{N}=\frac{1}{4} \sum_{r, s=1}^{2 n+s-m} \operatorname{trace}\left[A_{r}, A_{s}\right]^{2}
$$

and call it the scalar normal curvature of N. The normalized scalar normal curvature is given by

$$
\rho_{N}=\frac{2}{m(m-1)} \sqrt{K_{N}}
$$

Obviously

$$
\begin{align*}
K_{N} & =\frac{1}{4} \sum_{r, s=1}^{2 n+s-m} \operatorname{trace}\left[A_{r}, A_{s}\right]^{2} \tag{3.1}\\
& =\sum_{1 \leq r<s \leq 2 n+s-m} \sum_{1 \leq i<j \leq m} g\left(\left[A_{r}, A_{s}\right] e_{i}, e_{j}\right)^{2} .
\end{align*}
$$

In terms of the component of the second fundamental form, we can express K_{N} by the formula

$$
\begin{equation*}
\sum_{1 \leq r<s \leq 2 n+s-m} \sum_{1 \leq i<j \leq m}\left(\sum_{k=1}^{m} h_{j k}^{r} h_{i k}^{s}-h_{i k}^{r} h_{j k}^{s}\right)^{2} \tag{3.2}
\end{equation*}
$$

Lemma 3.1. Let N be a C-totally real submanifold in S-space form $\bar{M}(c)$. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\rho+\frac{c+3 s}{4} \tag{3.3}
\end{equation*}
$$

The equality case holds identically if and only if, with respect to suitable orthonormal frames $\left\{e_{1}, \ldots, e_{m}\right\}$ and $\left\{e_{m+1}, \ldots, e_{2 n+s}\right\}$ the shape operators of N in \bar{M} take the form

$$
\begin{gathered}
A_{e_{m+1}}=\left(\begin{array}{ccccc}
f_{1} & b & 0 & \ldots & 0 \\
b & f_{1} & 0 & \ldots & 0 \\
0 & 0 & f_{1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & f_{1}
\end{array}\right) \\
A_{e_{m+2}}=\left(\begin{array}{ccccc}
f_{2}+b & 0 & 0 & \ldots & 0 \\
0 & f_{2}-b & 0 & \ldots & 0 \\
0 & 0 & f_{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & f_{2}
\end{array}\right) \\
A_{e_{m+3}}=\left(\begin{array}{ccccc}
f_{3} & 0 & 0 & \ldots & 0 \\
0 & f_{3} & 0 & \ldots & 0 \\
0 & 0 & f_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & f_{3}
\end{array}\right)
\end{gathered}
$$

where f_{1}, f_{2}, f_{3} and b are real functions, and $A_{e_{m+4}}=\cdots=A_{e_{2 n+s}}=0$.
Proof. Let N be a C-totally real submanifold in S-space form $\bar{M}(c)$. We choose $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ and $\left\{e_{m+1}, e_{m+2}, \ldots, e_{2 n+s}\right\}$ as orthonormal frame and orthonormal
normal frame on N. respectively. From (2.6), we put $X=e_{i}, Y=e_{j}, Z=e_{j}$ and $W=e_{i}, i<j$, we have

$$
\bar{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right)=\frac{1}{8}(c+3 s) \cdot m(m-1)
$$

Using Gauss equation, we infer

$$
\frac{1}{8}(c+3 s) m(m-1)=\tau-m^{2}\|H\|^{2}+\|h\|^{2}
$$

On the other hand, we have

$$
\begin{align*}
m^{2}\|H\|^{2} & =\sum_{r=m+1}^{2 n+s}\left(\sum_{i=1}^{m} h_{i i}^{r}\right)^{2} \\
& =\frac{1}{m-1} \sum_{r=m+1}^{2 n+s} \sum_{1=i<j}^{m}\left(h_{i i}^{r}-h_{j j}^{r}\right)^{2}+\frac{2 m}{m-1} \sum_{r=m+1}^{2 n+s} \sum_{1=i<j}^{m} h_{i i}^{r} h_{j j}^{r} . \tag{3.4}
\end{align*}
$$

Furthermore, from [13], we have

$$
\begin{equation*}
\sum_{r=m+1}^{2 n+s} \sum_{1=i<j}^{m}\left(h_{i i}^{r}-h_{j j}^{r}\right)^{2}+2 m \sum_{r=m+1}^{2 n+s}\left(\sum_{1=i<j}^{m} h_{i j}^{r}\right)^{2} \geq\left[\sum_{r=m+1}^{2 n+s} \sum_{1=i<j}^{m}\left(h_{j k}^{r} h_{i k}^{s}-h_{i k}^{r} h_{j k}^{s}\right)\right]^{1 / 2} . \tag{3.5}
\end{equation*}
$$

Combining (3.2), (3.4) (3.5), we have

$$
\begin{equation*}
m^{2}\|H\|^{2}-m^{2} \rho_{N} \geq \frac{2 m}{m-1} \sum_{r=m+1}^{2 n+s} \sum_{1=i<j}^{m} h_{i i}^{r} h_{j j}^{r}-\left(h_{i j}^{r}\right)^{2} \tag{3.6}
\end{equation*}
$$

From the relation (2.7) and (3.6), we get

$$
\begin{equation*}
m^{2}\|H\|^{2}-m^{2} \rho_{N} \geq \frac{2 m}{m-1}\left[\tau-\frac{1}{8}(c+3 s) m(m-1)\right] \tag{3.7}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|H\|^{2}-\rho_{N} \geq \rho-\frac{1}{4}(c+3 s) . \tag{3.8}
\end{equation*}
$$

Finally, analysing the case of equality in (3.5), we deduce that the equality holds in the inequality (3.3), at some point $p \in N$ if and only if there exist an orthonormal basis of $T_{p} N$ and an orthonormal basis of $T_{p} N^{\perp}$ such that the shape operators take the form desired.

As an immediate consequence of Lemma 1, we deduce the following results of [18], [19]

Corollary 3.2. Let N be a totally real submanifold of Kahler space form $\bar{M}^{2 n}(c)$. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\rho+\frac{c}{4} . \tag{3.9}
\end{equation*}
$$

Corollary 3.3. Let N be a totally real submanifold of Sasakian space form $\bar{M}^{2 n+1}(c)$. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\rho+\frac{c+3}{4} \tag{3.10}
\end{equation*}
$$

The main result of this section is the following
Theorem 3.4. Let N be a totally real submanifold of S-space \bar{M}. Then

$$
\left(\rho^{\perp}\right)^{2} \leq\left(\|H\|^{2}-\rho+\frac{c+3 s}{4}\right)^{2}+\frac{4}{m(m-1)}\left(\rho-\frac{c+3 s}{4}\right) \cdot \frac{c-s}{4}+\frac{(c-s)^{2}}{8 m(m-1)} .
$$

Proof. Let N be a totally real submanifold of S-space form \bar{M}. We choose $\left\{e_{1}, \ldots, e_{m}\right\}$ an orthonormal frame on N. From (2.6), we put $X=e_{j}, Y=e_{i}, Z=\xi$ and $W=\eta$, we have

$$
\bar{R}\left(e_{i}, e_{j}, \xi, \eta\right)=\frac{c-s}{4}\left\{g\left(e_{i}, f \xi\right) g\left(f e_{j}, \eta\right)-g\left(e_{j}, f \xi\right) g\left(f e_{i}, \eta\right)\right\}
$$

without loss of generality, we can suppose that $\eta=f e_{k}$ and $\xi=f e_{l}$.
Then

$$
\begin{equation*}
\bar{R}\left(e_{i}, e_{j}, \xi, \eta\right)=\frac{c-s}{4}\left\{\gamma_{i k} \gamma_{j l}-\gamma_{i l} \gamma_{j k}\right\} \tag{3.11}
\end{equation*}
$$

where $\gamma_{i l}$ is the Kronecker symbol.
From (3.11) and (2.8),

$$
\begin{equation*}
g\left(R^{\perp}\left(e_{i}, e_{j}\right) \eta, \xi\right)=\frac{c-s}{4}\left\{\gamma_{i k} \gamma_{j l}-\gamma_{i l} \gamma_{j k}\right\}-g\left(\left[A_{r}, A_{s}\right] e_{i}, e_{j}\right) \tag{3.12}
\end{equation*}
$$

From this, we get

$$
\begin{align*}
\left(\tau^{\perp}\right)^{2}= & \sum_{i, j=1}^{m} g\left(R^{\perp}\left(e_{i}, e_{j}\right) \eta, \xi\right)^{2}=\left(\frac{c-s}{4}\left\{\gamma_{i k} \gamma_{j l}-\gamma_{i l} \gamma_{j k}\right\}\right)^{2} \tag{3.13}\\
& -2 \frac{c-s}{4}\left\{\gamma_{i k} \gamma_{j l}-\gamma_{i l} \gamma_{j k}\right\} g\left(\left[A_{r}, A_{s}\right] e_{i}, e_{j}\right)+\left(g\left(\left[A_{r}, A_{s}\right] e_{i}, e_{j}\right)\right)^{2} \\
= & \frac{m^{2}(m-1)^{2}}{4} \rho_{N}+\frac{m(m-1)}{2}\left(\frac{c-s}{4}\right)^{2}+\left(\frac{c-s}{4}\right)\left(-\|h\|^{2}+m^{2}\|H\|^{2}\right)
\end{align*}
$$

On other hand (2.7) give us

$$
\begin{equation*}
m^{2}\|H\|^{2}-\|h\|^{2}=2 \tau-\frac{(c+3 s) m(m-1)}{4} \tag{3.14}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
m^{2}\|H\|^{2}-\|h\|^{2}=m(m-1)\left(\rho-\frac{c+3 s}{4}\right) \tag{3.15}
\end{equation*}
$$

By substituting (3.15) in (3.13) we obtain

$$
\left(\rho^{\perp}\right)^{2} \leq\left(\rho^{N}\right)^{2}+\frac{4}{m(m-1)}\left(\rho-\frac{c+3 s}{4}\right) \cdot \frac{c-s}{4}+\frac{(c-s)^{2}}{8 m(m-1)}
$$

Taking account of lemma 3.1, it follows that

$$
\left(\rho^{\perp}\right)^{2} \leq\left(\|H\|^{2}-\rho+\frac{c+3 s}{4}\right)^{2}+\frac{4}{m(m-1)}\left(\rho-\frac{c+3 s}{4}\right) \cdot \frac{c-s}{4}+\frac{(c-s)^{2}}{8 m(m-1)}
$$

Remark 3.1. For integral submanifolds with N normal to the structure vector fields, we have the same inequality.

4 Generalized Wintgen inequality for bi-slant submanifolds in S-space form

In this section, we suppose that the structure vector fields $\xi_{\alpha}, \alpha=1, \ldots, s$, are tangent to N.

A submanifold N in an almost contact metric manifold \bar{M} is said to be Slant if for any differentiable function f on N, and any non zero vector field X on N, linearly independent on ξ angle between $f X$ and $T_{p} M$ is a constant $\theta \in\left[0, \frac{\pi}{2}\right]$, called the slant angle of N in \bar{M}. Recall that both invariant and anti-invariant submanifolds are particular examples of slant submanifolds with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$, respectively, moreover, if $0<\theta<\frac{\pi}{2}$, then N is said to be a θ-slant submanifold or proper slant submanifold. A submanifold in an almost hermitian manifold \bar{M} is said to be slant if for any differentiable function f on N and any non zero vector field X on N, linearly independent on ξ angle between $f X$ and $T_{p} M$ is a constant $\theta \in\left[0, \frac{\pi}{2}\right]$.

Combining these two concepts lead us to the introduction of bi-slant submanifolds for S-space forms
Definition 4.1. A submanifold N tangent to structure vector field of an S-space \bar{M} is said to be a bi-slant submanifold, if there exist three orthogonal distribution D_{1}, D_{2} and $D_{3}=\operatorname{span}\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{s}\right\}$ such that

1) $T N=D_{1} \oplus D_{2} \oplus D_{3}$,
2) D_{i}, is the slant distribution with slant angle θ_{i}, for any $i=1,2$.
3) $f D_{1} \perp D_{2}$ and $f D_{2} \perp D_{1}$.

4.1 Examples of bi-slant submanifolds of S-space form

As example of bi-slant submanifold in an S-space form, for $s=0$, we have the class of slant submanifold but also the class of semi-slant submanifold, hemi-slant submanifold and $C R$-submanifold [2].
Now we give a nontrivial example of proper bi-slant submanifold.
For any $\theta_{1}, \theta_{2} \in\left[0, \frac{\pi}{2}\right]$,

$$
x\left(u, v, w, t, z_{1}, z_{2}\right)=\left(u, 0, w, v \cos \theta_{1}, v \sin \theta_{1}, t \cos \theta_{2}, t \sin \theta_{2}, z_{1}, z_{2}\right)
$$

defines a 6 -dimensional bi-slant submanifold N, with slant angle θ_{1}, θ_{2} in $R^{10}(-3 s)$ with its S -structure given by

$$
\begin{aligned}
\xi_{\alpha} & =2 \frac{\partial}{\partial z_{\alpha}}, \alpha=1,2 \\
\eta_{\alpha} & =\frac{1}{2}\left(d z_{\alpha}-\sum_{i=1}^{4} y_{i} d x_{i}\right), \alpha=1,2 \\
f X & =\sum_{i=1}^{4} Y^{i} \frac{\partial}{\partial x_{i}}-\sum_{i=1}^{4} X^{i} \frac{\partial}{\partial y_{i}}+\left(\sum_{i=1}^{4} Y^{i} Y_{i}\right)\left(\sum_{\alpha=1}^{2} \frac{\partial}{\partial z_{\alpha}}\right) \\
g & =\sum_{\alpha=1}^{2} \eta_{\alpha} \otimes \eta_{\alpha}+\sum_{i=1}^{4}\left(d x_{i} \otimes d x_{i}+d y_{i} \otimes d y_{i}\right)
\end{aligned}
$$

where

$$
X=\sum_{i=1}^{4}\left(X^{i} \frac{\partial}{\partial x_{i}}+Y^{i} \frac{\partial}{\partial y_{i}}\right)+\sum_{\alpha=1}^{2} Z^{\alpha} \frac{\partial}{\partial z_{\alpha}}
$$

Furthemore, it is easy to see that

$$
\begin{aligned}
e_{1} & =\frac{\partial}{\partial x_{1}}, e_{2}=\cos \theta_{1} \frac{\partial}{\partial y_{1}}+\sin \theta_{1} \frac{\partial}{\partial y_{2}}, e_{3}=\frac{\partial}{\partial x_{3}} \\
e_{4} & =\cos \theta_{2} \frac{\partial}{\partial y_{3}}+\sin \theta_{2} \frac{\partial}{\partial y_{4}}, e_{5}=\frac{\partial}{\partial z_{1}}, \quad e_{6}=\frac{\partial}{\partial z_{2}}
\end{aligned}
$$

From a local orthonormal frame of $T_{p} N$, if we define $D_{1}=\left\{e_{1}, e_{2}\right\}$ and $D_{2}=\left\{e_{3}, e_{4}\right\}$ then $g\left(f e_{1}, e_{2}\right)=\cos \theta_{1} g\left(f e_{3}, e_{4}\right)=\cos \theta_{2}$ proving that the distribution D_{1} is $\theta_{1^{-}}$ slant and the distribution D_{2} is θ_{2} - slant.

4.2 Wintgen inequality

Theorem 4.1. Let N be a bi-slant submanifold in S-space form \bar{M}, with slant angle θ_{i} and $\operatorname{dim} D_{i}=d_{i}, i=1,2$. Then

$$
\begin{equation*}
\|H\|^{2}-\rho_{N} \geq \rho-\frac{c+3 s}{4}+\frac{s(c+3 s-4)}{2 m}-\frac{3(c-s)}{4 m(m-1)}\left(d_{1} \cos ^{2} \theta_{1}+d_{2} \cos ^{2} \theta_{2}\right) \tag{4.1}
\end{equation*}
$$

Proof. Let N be a bi-slant submanifold in S-space form. We choose $\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$, where $m=d_{1}+d_{2}+s$, and $\left\{e_{m+1}, e_{m+2}, \ldots, e_{2 n}\right\}$ as orthonormal frame and orthonormal normal frame on N respectively. From (2.6), we take $X=e_{i}, Y=e_{j}, Z=e_{j}$ and $W=e_{i}, i<j$.

$$
\begin{aligned}
\bar{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right) & \left.=\sum_{\alpha, \beta=1}^{s}\left\{g\left(f e_{i}, f e_{i}\right) \eta_{\alpha}\left(e_{j}\right) \eta_{\beta}\left(e_{j}\right)\right)-g\left(f e_{i}, f e_{j}\right) \eta_{\alpha}\left(e_{j}\right) \eta_{\beta}\left(e_{i}\right)\right) \\
& \left.\left.\left.+g\left(f e_{j}, f e_{j}\right) \eta_{\alpha}\left(e_{i}\right) \eta_{\beta}\left(e_{i}\right)\right)-g\left(f e_{j}, f e_{i}\right) \eta_{\alpha}\left(e_{i}\right) \eta_{\beta}\left(e_{j}\right)\right)\right\} \\
& +\frac{c+3 s}{4}\left\{g\left(f e_{i}, f e_{i}\right) g\left(f e_{j}, f e_{j}\right)-g\left(f e_{i}, f e_{j}\right) g\left(f e_{j}, f e_{i}\right)\right\} \\
& +\frac{c-s}{4}\left\{g\left(e_{i}, f e_{i}\right) g\left(e_{j}, f e_{j}\right)-g\left(e_{i}, f e_{j}\right) g\left(e_{j}, f e_{i}\right)-2 g\left(e_{i}, f e_{j}\right) g\left(e_{j}, f e_{i}\right)\right\}
\end{aligned}
$$

By using (2.2) and (2.3) in the above equation, we get

$$
\begin{aligned}
\bar{R}\left(e_{i}, e_{j}, e_{j}, e_{i}\right) & =g\left(e_{i}, e_{i}\right) \eta_{\alpha}^{2}\left(e_{j}\right)-\eta_{\alpha}^{2}\left(e_{j}\right) \eta_{\gamma}^{2}\left(e_{i}\right)+\eta_{\alpha}\left(e_{j}\right) \eta_{\beta}\left(e_{i}\right) \eta_{\gamma}\left(e_{i}\right) \eta_{\gamma}\left(e_{j}\right) \\
& +g\left(e_{j}, e_{j}\right) \eta_{\alpha}^{2}\left(e_{i}\right)-\eta_{\alpha}^{2}\left(e_{i}\right) \eta_{\gamma}^{2}\left(e_{j}\right)+\eta_{\alpha}\left(e_{i}\right) \eta_{\beta}\left(e_{j}\right) \eta_{\gamma}\left(e_{i}\right) \eta_{\gamma}\left(e_{j}\right) \\
& +\frac{c+3 s}{4}\left(g\left(e_{i}, e_{i}\right) g\left(e_{j}, e_{j}\right)+\eta_{\gamma}^{2}\left(e_{j}\right) \eta_{\gamma}^{2}\left(e_{i}\right)\right. \\
& \left.-g\left(e_{i}, e_{i}\right) \eta_{\gamma}^{2}\left(e_{j}\right)-g\left(e_{i j}, e_{j}\right) \eta_{\gamma}^{2}\left(e_{i}\right)-\left(\eta_{\gamma}\left(e_{j}\right) \eta_{\gamma}\left(e_{i}\right)\right)^{2}\right)+\frac{c-s}{4}\left(3 g^{2}\left(P e_{i}, e_{j}\right)\right),
\end{aligned}
$$

whence

$$
\begin{align*}
2 \bar{\tau} & =(2 m s-2 s)+\frac{c+3 s}{4}(m(m-1)-2 m s+2 s)+\frac{3(c-s)}{4}\|P\|^{2} \tag{4.2}\\
& =\frac{1}{4}(c+3 s) m(m-1)+\frac{c+3 s-4}{4}(2 s-2 m s)+\frac{3(c-s)}{4}\|P\|^{2} .
\end{align*}
$$

Since N is bi-slant submanifold on S-space form \bar{M}, where $\operatorname{dim} N=m=n_{1}+n_{2}+s$, we may consider an adapted bi-slant orthonormal frames as follows:

$$
\begin{gathered}
e_{1}, e_{2}=\frac{1}{\cos \theta_{1}} P e_{1}, \ldots, e_{n_{1}-1}, e_{n_{1}}=\frac{1}{\cos \theta_{1}} P e_{n_{1}-1} \\
e_{n_{1}+1}, e_{n_{1}+2}=\frac{1}{\cos \theta_{2}} P e_{n_{1}+1}, \ldots, e_{n_{1}+n_{2}-1}, e_{n_{1}+n_{2}}=\frac{1}{\cos \theta_{2}} P e_{n_{1}+n_{2}-1}
\end{gathered}
$$

and $e_{n_{1}+n_{2}+\alpha}=\xi_{\alpha}$. Then we have

$$
g\left(e_{1}, f e_{2}\right)=-g\left(f e_{1}, e_{2}\right)=-g\left(f e_{1}, \frac{1}{\cos \theta_{1}} P e_{1}\right)
$$

or,

$$
g\left(e_{1}, f e_{2}\right)=-\frac{1}{\cos \theta_{1}} g\left(P e_{1}, P e_{1}\right)
$$

Now, from [6], we get $g\left(e_{1}, f e_{2}\right)=-\cos \theta_{1}$. Similarly,

$$
g^{2}\left(e_{i}, f e_{i+1}\right)=\left\{\begin{array}{cc}
\cos ^{2} \theta_{1} & 1 \leqslant i<n_{1} \\
\cos ^{2} \theta_{2} & n_{1}+1 \leqslant i<n_{1}+n_{2}+2
\end{array}\right.
$$

Hence,

$$
\begin{equation*}
\|P\|^{2}=\sum_{i, j=1}^{m} g^{2}\left(e_{i}, f e_{j}\right)=\left(n_{1} \cos ^{2} \theta_{1}+n_{2} \cos ^{2} \theta_{2}\right) \tag{4.3}
\end{equation*}
$$

Then (4.3) in (4.2) give us
$2 \bar{\tau}=\frac{1}{4}(c+3 s) m(m-1)+\frac{c+3 s-4}{4}(2 s-2 m s)+\frac{3(c-s)}{4}\left(n_{1} \cos ^{2} \theta_{1}+n_{2} \cos ^{2} \theta_{2}\right)$.
Using (2.7), (3.4), (3.5), and (3.6), we get (4.1).
The following results is an immediate consequence of Theorem 4.1

Corollary 4.2. Let N be a semi-slant submanifold of Sasakian space form $(s=1)$ \bar{M}. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\left(\rho-\frac{c+3}{4}\right)-\frac{(c-1)}{2 m}+\frac{3(c-1)}{4 m(m-1)}\left(d_{1}+d_{2} \cos ^{2} \theta_{2}\right) \tag{4.5}
\end{equation*}
$$

Corollary 4.3. Let N be a hemi-slant submanifold of Sasakian space form $(s=1)$ \bar{M}. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\left(\rho-\frac{c+3}{4}\right)-\frac{(c-1)}{2 m}+\frac{3(c-1)}{4 m(m-1)}\left(d_{1} \cos ^{2} \theta_{1}\right) \tag{4.6}
\end{equation*}
$$

Corollary 4.4. Let N be an anti-invariant submanifold of Sasakian space form ($s=$ 1) \bar{M}. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\left(\rho-\frac{c+3}{4}\right)-\frac{(c-1)}{2 m} \tag{4.7}
\end{equation*}
$$

Corollary 4.5. Let N be an invariant submanifold of Sasakian space form $(s=1)$ \bar{M}. Then

$$
\begin{equation*}
\rho_{N} \leq\|H\|^{2}-\left(\rho-\frac{c+3}{4}\right)-\frac{(c-1)}{2 m}+\frac{3(c-1)}{4 m} \tag{4.8}
\end{equation*}
$$

We may have the similar results for Kahler space form $(s=0)$.
Acknowledgements. The author is very grateful to the anonymous referees, whose comments have contributed to the improvement of this manuscript. Thanks are addressed to the CEA-SMA at IMSP for the provided financial support.

References

[1] M. Aquib, Some inequalities for submanifolds in Bochner-Kahler manifold, Balkan Journal of Geometry and Its Applications, 23, 1 (2018), 1-13.
[2] M. Aquib, M. Hasan Shahid, Generalized Wintgen-type inequalities for submanifolds in Kenmotsu space forms, Tamkang Journal of Mathematics, 50, 2 (2018), 155-164.
[3] M. Aquib, M. N. Boyom, M. Hasan Shahid, G. E. Vilcu, The first fundamental equation and generalized Wintgen-type inequalities for submanifolds in generalized space forms, Mathematics, 7, 1151 (2019), 1-20.
[4] D. E. Blair, Geometry of manifolds with structural group $U(n) \times O(s)$, J. Diff. Geom., 4(1970), 155-167.
[5] J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, A classification of certain submanifolds of S-manifolds, Annales Polonici Mathematici, LIV, 2 (1991), 117123.
[6] J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow. Math. J. 42 (2000), 125-138.
[7] J. L. Cabrerizo, L. M. Fernandez and M. Fernandez, On certain anti-invariant submanifolds of an S-manifold, Portugallae Mathematica, 50, 1 (1993), 103-113.
[8] J. L. Cabrerizo, The curvature of submanifolds of an S-space form, Acta. Math. Hung. 62 (3-4) (1993), 373-383.
[9] J. L. Cabrerizo, B. Y.Chen's inequality for S-space form: applications to slant immersions, Indian. J. Pure. Appl. Math, 34(9) (2003), 1287-1298.
[10] A. Carriazo, New developments in slant submanifold theory, "Applicable Mathematics in Golden Age" (Ed: J.C. Misca), Narosa Publishing House (2002), 339-356.
[11] A. Carriazo, Bi-slant immersion, Proceedings ICRAMS (2000), 88-97.
[12] M. A. Choudhary et al, Generalized Wintgen inequality for some submanifolds in Golden Riemannian space forms, Balkan Journal of Geometry and Its Applications, 25, 2 (2020), 1-11.
[13] F. Dillen, J. Fastenakels, J. V. Der Veken, A pinching theorem for the normal scalar curvature of invariant submanifolds, Journal of Geometry and Physics 57 (2007), 833-840.
[14] J. Ge and Z. Tang, A proof of the DDVV conjecture and its equality, Pacific J. Math. 237 (2008), 87-95.
[15] J. S. Kim, M. K. Dwivedi and M. M. Tripathi, Ricci curvature of submanifolds of an S-space form, Bull. Korean Math. Soc. 46, 5 (2009), 979-998.
[16] Z. Lu, Normal scalar curvature conjecture and its applications, Journal of Functional Analysis, 261 (2011), 1284-1308.
[17] I. Mihai, $C R$-submanifolds of an f-manifold with complementary frames (Rom), Stud. Cerc. Math, 35 (1983), 127-136.
[18] I. Mihai, On the generalized Wintgen inequalities for Legendrian submanifolds in Sasakian space forms, Tohoku Math. J. 69 (2017), 43-53.
[19] I. Mihai, On the generalized Wintgen inequalities for Legendrian submanifolds in complex space forms, Nonlinear Analysis 95 (2014), 714-720.
[20] L. Ornea, Genre Cauchy-Riemann submanifolds in S-manifolds (Rom), Stud. Cerc. Math., 36 (1984), 435-443.
[21] N. A. Rehman, Curvature inequalities for submanifolds of S-space form, Euro. J. Pure Appl. Math., 12, 4 (2019), 1811-1818.
[22] K. Sanjay Tiwari, S. S. Shukla, S. P. Pandey, C-totally real pseudo parallel submanifolds of S-space forms, Noti di Matematica, 32, 2 (2012), 73-81.
[23] D. Smet, A pointwise inequality in submanifold theory, Arch. Math. (Brno), 35, 2 (1999), 115-128.
[24] K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $f^{3}+$ $f=0$, Tensor, 14 (1963), 99-109.

Author's address:
Mérimé Kouamou
University of Abomey-Calavi,
Institut de Mathématiques et de Sciences Physiques,
Porto-novo, Rep. of Benin.
E-mail: merime.kouamou@imsp-uac.org

[^0]: Balkan Journal of Geometry and Its Applications, Vol.27, No.2, 2022, pp. 77-88.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2022.

