Results on quasi-*Einstein metric

Savita Rani and Ram Shankar Gupta

Abstract. We study the quasi-*Einstein metric on Sasakian and (κ, μ) manifolds. We show that on Sasakian manifolds the *-Ricci operator commutes with tensor field ϕ and quasi-*Einstein Sasakian metric is *-flat. Further, we study $(\kappa < 1, \mu)$ -manifolds with quasi-*Einstein metric and obtain that such manifold is *-flat or locally isometric to $E^{n+1} \times S^n(4)$ or *Einstein.

M.S.C. 2010: 53C25, 53D15. Key words: quasi-*Einstein metric; contact metric; Sasakian manifold; (κ, μ) -manifold.

1 Introduction

A Riemannian manifold (M, g) is called *Einstein with $S^* = \nu g$, where S^* denotes *-Ricci tensor and ν is a constant. A *-Ricci soliton is a generalization of *Einstein metric which is given by [13]

(1.1)
$$\frac{1}{2}\mathcal{L}_U g + S^* = \nu g,$$

where ν is a constant and U is the potential field. If for a smooth function F, $U = \nabla F$, then (1.1) is called gradient *-Ricci soliton.

The *-Ricci tensor on an almost contact metric manifold M is defined as follows [12]:

(1.2)
$$S^*(Z,V) = \frac{1}{2} \operatorname{trace}(X \mapsto R(Z,\phi V)\phi X), \ \forall Z,V,X \in TM,$$

where ϕ is a (1, 1)-tensor field and R is a Riemann curvature tensor.

The Einstein condition $S = \nu g$ and its generalizations have been studied extensively in contact geometry (see [8, 11, 16]). A generalization of Einstein metric emerged from the m-Bakry-Emery Ricci tensor S_m^F defined as:

(1.3)
$$S_m^F = S + \nabla^2 F - \frac{1}{m} dF \otimes dF,$$

Balkan Journal of Geometry and Its Applications, Vol.27, No.2, 2022, pp. 103-113.

[©] Balkan Society of Geometers, Geometry Balkan Press 2022.

has been studied in [4, 5], where $0 < m \le \infty$, S is the Ricci tensor and $\nabla^2 F$ denotes the Hessian form of F.

A Riemannian manifold (M, g, F, m) is called m-quasi-Einstein [7] if it satisfies

(1.4)
$$S + HessF - \frac{1}{m}dF \otimes dF = \nu g,$$

for some $m \in \mathbb{Z}^+$. Similarly, we call (M, g, F, m), m-quasi-*Einstein if it satisfies

(1.5)
$$S^* + HessF - \frac{1}{m}dF \otimes dF = \nu g.$$

If $m = \infty$, then (1.5) gives the gradient *-Ricci soliton. A quasi-*Einstein metric is *Einstein if F = constant. We call a quasi-*Einstein metric steady, expanding, or shrinking, respectively, when $\nu = 0$, < 0 or > 0.

Sharma [15] proved that a complete K-contact metric with gradient Ricci soliton is a compact Einstein Sasakian manifold and gradient soliton is expanding. As every Sasakian manifold is a K-contact manifold, this result is also true for Sasakian manifolds. Ghosh et al. extended this result for (κ, μ) -spaces [11]. Quasi-Einstein metrics have been studied in extent for a general manifold, and gap results and rigid properties were obtained in (cf. [4, 17]). Further, Ghosh [9] studied quasi-Einstein contact metric on Sasakian manifolds and on (κ, μ) -spaces. Recently, Chen [6] studied the quasi-Einstein metric on almost cosymplectic manifolds.

However, only very little literature is available on the study of *Einstein and its generalization. This inspired us to study quasi-*Einstein structure associated with contact metric manifolds.

2 Preliminaries and some basic results

An odd-dimensional Riemannian manifold M^{2n+1} is called an almost contact metric manifold if it admits a (1, 1) tensor field ϕ , a vector field ξ , a 1-form η and a Riemannian metric g satisfying [1]

(2.1)
$$\phi^2 Z = -Z + \eta(Z)\xi, \quad \eta(\xi) = 1$$

(2.2)
$$\eta \circ \phi = 0, \ \phi \xi = 0$$

(2.3)
$$g(\phi Z, \phi V) = g(Z, V) - \eta(Z)\eta(V), \ \eta(Z) = g(Z, \xi),$$

where $Z, V \in TM$. A contact manifold is a Riemannian manifold M^{2n+1} with a global 1-form η called a contact 1-form such that $\eta \wedge (d\eta)^n \neq 0$ everywhere on M and $d\eta(Z, V) = g(Z, \phi V)$.

A contact metric manifold is called Sasakian [1] if

$$(\nabla_Z \phi)V = g(Z, V)\xi - \eta(V)Z,$$

where $Z, V \in TM$.

The Riemann curvature tensor R on a Sasakian manifold is given by [1]

(2.4)
$$R(Z,V)\xi = \eta(V)Z - \eta(Z)V.$$

On a K-contact manifold [1], we have

(2.5)
$$\nabla_Z \xi = -\phi Z$$

(2.7)
$$R(Z,\xi)\xi = Z - \eta(Z)\xi$$

Now, we define self-adjoint operators $h = \frac{1}{2}\mathcal{L}_{\xi}\phi$ and $l = -R(\xi, .)\xi$, which satisfy [1]:

(2.8)
$$\begin{cases} l\xi = 0 = h\xi, \quad \phi h = -h\phi, \quad g(hX,Y) = g(hY,X), \\ trh = trh\phi = 0. \end{cases}$$

Also, for any contact metric manifold [1], we have

(2.9)
$$\nabla_Z \xi = -\phi Z - \phi h Z,$$

(2.10)
$$\nabla_{\xi}h = -\phi h^2 - \phi l + \phi.$$

A contact metric manifold M^{2n+1} is said to be (κ, μ) -space if Riemann curvature tensor R satisfies [2]

(2.11)
$$R(Z,V)\xi = \kappa\{\eta(V)Z - \eta(Z)V\} + \mu\{\eta(V)hZ - \eta(Z)hV\},\$$

for some $(\kappa, \mu) \in \mathbb{R}^2$. If $\kappa = 1$ and h = 0, then (κ, μ) -spaces reduce to the Sasakian manifolds. The non-Sasakian manifolds have proven to be more interesting as there exists the unit tangent sphere bundle of a flat Riemannian manifold with the usual contact metric structure as an example of non-Sasakian spaces of this type. Moreover, this type of space is invariant under *D*-homothetic transformations. These are the driving factor for the study of this type of manifold. Boeckx proved that non-Sasakian contact metric manifold satisfying (2.11) is completely determined locally by its dimension for the constant values of κ, μ [3].

3 Quasi-*Einstein metric on a Sasakian manifold

In this section, we study the quasi-*Einstein metric on a Sasakian manifold. On a Sasakian manifold M^{2n+1} [10]

(3.1)
$$Q^*Z = QZ - (2n-1)Z - \eta(Z)\xi,$$

(3.2)
$$r^* = r - 4n^2$$

where Q^* , Q, r^* and r are *-Ricci operator, Ricci operator, *-scalar curvature and scalar curvature respectively

Lemma 3.1. [14] The curvature tensor R of a Riemannian manifold M^{2n+1} with quasi-*Einstein metric satisfies

(3.3)
$$R(Z,V)\nabla F = (\nabla_V Q^*)Z - (\nabla_Z Q^*)V - \frac{\nu}{m} \{(ZF)V - (VF)Z\} + \frac{1}{m} \{(ZF)Q^*V - (VF)Q^*Z\},$$

(3.4)
$$S(V,\nabla F) = \frac{1}{2}Vr^* + \frac{2n\nu}{m}(VF) + \frac{1}{m}\{(Q^*V)F - r^*(VF)\}$$

for any $Z, V \in TM$, where ∇F is gradient of F.

Proof. From (1.5), we have

(3.5)
$$Q^*V + \nabla_V \nabla F - \frac{1}{m} (VF) \nabla F = \nu V.$$

We know that

(3.6)
$$R(Z,V)X = \nabla_Z \nabla_V X - \nabla_V \nabla_Z X - \nabla_{[Z,V]} X.$$

Using (3.5) in (3.6), we obtain (3.3). Further, contracting (3.3) over Z, we get (3.4). \Box

Lemma 3.2. [9] If $F \in C^{\infty}$ on a contact metric manifold M such that $dF = (\xi F)\eta$, where d denotes the exterior differentiation. Then F is constant on M.

Next,

Lemma 3.3. On a Sasakian manifold M^{2n+1}

Proof. Putting $Z = \xi$ in (3.1) and using (2.6), we obtain

$$(3.8) Q^*\xi = 0.$$

Differentiating (3.8) with respect to Z, we get

(3.9)
$$(\nabla_Z Q^*)\xi = Q^* \phi Z$$

If $V, Z \in \{\xi^{\perp}\}$, then with respect to ϕ basis $\{Z_i, Z_{n+i} = \phi Z_i, \xi\}$, we have

$$g(Q^*\phi Z, \phi V) = \frac{1}{2} \sum_{i=1}^{2n} g(R(\phi Z, \phi^2 V)\phi Z_i, Z_i) + \frac{1}{2} g(R(\phi Z, \phi^2 V)\phi \xi, \xi)$$
$$= \frac{1}{2} \sum_{i=1}^{2n} g(R(V, \phi Z)\phi Z_i, Z_i),$$

which gives

(3.10)
$$g(Q^*\phi Z, \phi V) = g(Q^*V, Z).$$

From (3.1) and using the fact that Q is symmetric, we get

(3.11)
$$g(Q^*V, Z) = g(Q^*Z, V).$$

From (3.10) and (3.11), we get

$$-\phi Q^* \phi Z = Q^* Z,$$

wherein multiplying with ' ϕ ' on both sides and using (2.1), we find

$$Q^*\phi Z = \phi Q^* Z,$$

whereby proof is complete.

106

Theorem 3.4. Let M^{2n+1} be a Sasakian manifold, then $\mathcal{L}_{\xi}S^* = 0$ and $\nabla_{\xi}Q^* = 0$.

Proof. It is well-known that $\mathcal{L}_{\xi}g = 0$ on a Sasakian manifold. Also, we have

 $\forall Z, V, X \in TM.$

From $(3.12) \sim (3.15)$, we obtain

$$\mathcal{L}_{\xi}(R_{Z,\phi V}\phi X) = R_{\mathcal{L}_{\xi}Z,\phi V}\phi X + R_{Z,\mathcal{L}_{\xi}\phi V}\phi X + R_{Z,\phi V}\mathcal{L}_{\xi}\phi X,$$

which gives $(\mathcal{L}_{\xi}R)_{Z,\phi V}\phi X = 0$ and contracting it over X, we get $\mathcal{L}_{\xi}S^* = 0$. This implies

(3.16)
$$\mathcal{L}_{\xi}(g(Q^*Z, V)) - S^*(\mathcal{L}_{\xi}Z, V) - S^*(Z, \mathcal{L}_{\xi}V) = 0.$$

Simplifying (3.16), we find

(3.17)
$$[\xi, Q^*Z] - Q^*([\xi, Z]) = 0.$$

Using (2.5) in (3.17), we get

(3.18)
$$\nabla_{\xi} Q^* = Q^* \phi - \phi Q^*.$$

Using Lemma 3.3 in (3.18), we obtain the result.

Theorem 3.5. Let M^{2n+1} be a Sasakian manifold satisfying (1.5), then F is constant and quasi-* Einstein soliton is steady.

Proof. Taking inner product of (3.3) with ξ and using (3.8) and (3.9), we get

(3.19)
$$g(R(Z,V)\nabla F,\xi) = -2g(Q^*\phi Z,V) + \frac{\nu}{m}\{(VF)\eta(Z) - (ZF)\eta(V)\}.$$

Putting $V = \xi$ in (3.19) and using (2.4), we get

(3.20)
$$(\frac{\nu}{m} - 1)((\xi F)\eta(Z) - (ZF)) = 0.$$

Now, we claim that $\nu \neq m$. Infact, if $\nu = m$, then putting $Z = \xi$ in (3.3), we get

(3.21)
$$R(\xi, V)\nabla F = (\nabla_V Q^*)\xi - (\nabla_\xi Q^*)V - \{(\xi F)V - (VF)\xi\} + \frac{1}{m}\{(\xi F)Q^*V - (VF)Q^*\xi\}.$$

From (2.4), we obtain

(3.22)
$$R(\xi, V)\nabla F = (VF)\xi - (\xi F)V.$$

Using (3.22) in (3.21), we get

(3.23)
$$(\nabla_V Q^*)\xi - (\nabla_\xi Q^*)V + \frac{1}{m}\{(\xi F)Q^*V - (VF)Q^*\xi\} = 0.$$

Using Theorem 3.4, (3.8) and (3.9) in (3.23), we obtain

$$(3.24) Q^*\phi V + \frac{\xi F}{m}Q^*V = 0.$$

Taking inner product of (3.24) with Z, we find

(3.25)
$$g(Q^*\phi V, Z) + \frac{\xi F}{m}g(Q^*V, Z) = 0.$$

Interchanging V and Z in (3.25), we get

(3.26)
$$g(Q^*\phi Z, V) + \frac{\xi F}{m}g(Q^*Z, V) = 0.$$

Subtracting (3.26) from (3.25), we obtain

(3.27)
$$(Q^*\phi + \phi Q^*)V = 0,$$

 $\forall V \in TM$. Using Lemma 3.3 in (3.27), we get $\phi Q^* V = 0$. Which further using (2.1) gives $Q^* V = 0$. Hence $r^* = 0$. Using this in (3.4), we find

$$(3.28) S(V, \nabla F) = 2n(VF).$$

On the other hand from (3.1), we get

(3.29)
$$QV = (2n-1)V + \eta(V)\xi.$$

Using (3.29) in (3.28), we obtain $VF = (\xi F)\eta(V)$. Which gives F constant by use of Lemma 3.2. Therefore, from (1.5), we obtain $\nu = 0$, that gives m = 0, a contradiction of the fact that m > 0.

Hence $\nu \neq m$ and from (3.20), we have $ZF = (\xi F)\eta(Z)$. By using Lemma 3.2 we find that

$$(3.30) F = \text{constant}.$$

From (3.8), we see that

(3.31)
$$S^*(\xi,\xi) = 0.$$

Using (3.30) and (3.31) in (1.5), we get $\nu = 0$. Hence quasi-*Einstein soliton is steady.

Corollary 3.6. Let M^{2n+1} be a Sasakian manifold satisfying (1.5), then M is *-Ricci flat, η -Einstein and scalar curvature is constant.

Proof. Using $\nu = 0$ and (3.30) in (1.5), we see that

(3.32)
$$Q^* = 0.$$

Using (3.32) in (3.1), we find

(3.33)
$$QZ = (2n-1)Z + \eta(Z)\xi.$$

Hence M is η -Einstein. Further, from (3.33) we obtain $r = 4n^2$. Hence scalar curvature is constant.

Now, we give an example

Example 3.1. Consider the manifold $M^3 = \{(x, y, z) \in \mathbb{R}^3 : x, y \neq 0\}$ endowed with the structure $\{\phi, \xi, \eta, g\}$

(3.34)
$$\begin{cases} \phi(e_1) = e_2, \ \phi(e_2) = -e_1, \ \phi(e_3) = 0, \ \eta = \frac{4}{4+3x^2+3y^2}(ydx - xdy) + dz, \\ e_3 = \xi = \frac{\partial}{\partial z}, \ g = \frac{1}{(1+\frac{3x^2}{4}+\frac{3y^2}{4})^2}(dx \otimes dx + dy \otimes dy) + \eta \otimes \eta, \\ e_1 = (1+\frac{3x^2+3y^2}{4})\frac{\partial}{\partial x} - y\frac{\partial}{\partial z}, e_2 = (1+\frac{3x^2+3y^2}{4})\frac{\partial}{\partial y} + x\frac{\partial}{\partial z}. \end{cases}$$

We subsequently have

(3.35)
$$[e_l, e_3] = 0 \text{ for } l = 1, 2; \ [e_1, e_2] = -\frac{3y}{2}e_1 + \frac{3x}{2}e_2 + 2e_3.$$

(3.36)
$$\begin{cases} \nabla_{e_1}e_1 = \frac{3y}{2}e_2, \nabla_{e_2}e_1 = -\frac{3x}{2}e_2 - e_3, \nabla_{e_3}e_1 = -e_2, \nabla_{e_1}e_2 = -\frac{3y}{2}e_1 + e_3, \\ \nabla_{e_2}e_2 = \frac{3x}{2}e_1, \nabla_{e_3}e_2 = e_1, \nabla_{e_1}e_3 = -e_2, \nabla_{e_2}e_3 = e_1, \nabla_{e_3}e_3 = 0. \end{cases}$$

$$(3.37) \quad \begin{cases} R(e_l, e_p)e_s = 0, l \neq p \neq s, \ l, p, s = 1, 2, 3, \ R(e_l, e_3)e_3 = e_l, l = 1, 2, \\ R(e_l, e_3)e_l = -e_3, \ l = 1, 2, \ R(e_l, e_p)e_p = 0, \ l \neq p, \ l, p = 1, 2, \\ S^*(e_l, e_p) = 0, \ l, p = 1, 2, 3. \end{cases}$$

Further, by using (3.37) in (1.5), we infer the following system of differential equations:

$$\begin{array}{l} (3.38) \\ \left\{ \begin{array}{l} \alpha^{2}F_{xx} - 2y\alpha F_{zx} + y^{2}F_{zz} - \frac{3y\alpha}{2}F_{y} - \frac{3yx}{2}F_{z} - \frac{\alpha^{2}}{m}F_{x}^{2} + \frac{2y\alpha}{m}F_{x}F_{z} \\ + \frac{3x\alpha}{2}F_{x} - \frac{y^{2}}{m}F_{z}^{2} = \nu; \quad F_{zz} - \frac{1}{m}F_{z}^{2} = \nu, \\ \alpha^{2}F_{yy} + 2x\alpha F_{zy} + x^{2}F_{zz} - \frac{3x\alpha}{2}F_{x} + \frac{3xy}{2}F_{z} + \frac{3y\alpha}{2}F_{y} - \frac{\alpha^{2}}{m}F_{y}^{2} \\ - \frac{2x\alpha}{m}F_{y}F_{z} - \frac{x^{2}}{m}F_{z}^{2} = \nu, \\ \frac{3x\alpha}{2}F_{y} + \alpha^{2}F_{xy} - y\alpha F_{zy} + \alpha F_{z} + x\alpha F_{xz} - yxF_{zz} + \frac{3y\alpha}{2}F_{x} - \frac{3y^{2}}{2}F_{z} - F_{z} \\ - \frac{\alpha^{2}}{m}F_{x}F_{y} + \frac{y\alpha}{m}F_{z}F_{y} - \frac{x\alpha}{m}F_{z}F_{x} + \frac{xy}{m}F_{z}^{2} = 0, \\ \alpha F_{xz} - yF_{zz} + \alpha F_{y} + xF_{z} - \frac{\alpha}{m}F_{x}F_{z} + \frac{y}{m}F_{z}^{2} = 0, \\ \alpha F_{yz} + xF_{zz} - \alpha F_{x} + yF_{z} - \frac{\alpha}{m}F_{y}F_{z} - \frac{x}{m}F_{z}^{2} = 0, \end{array} \right.$$

where $\alpha = 1 + \frac{3x^2 + 3y^2}{4}$ and indices denote the derivative with respect to x, y and z. **Case A:** Assume that the potential function F depends only on x, so (3.38)

Case A: Assume that the potential function F depends only on x, so (3.38) reduces to

(3.39)
$$\nu = 0, \quad F_x = 0.$$

Therefore, quasi-*Einstein soliton is steady and F is constant.

Case B: Now, assume that the potential function F depends only on y, so (3.38) reduces to

(3.40)
$$\nu = 0, \quad F_u = 0.$$

That is, quasi-*Einstein soliton is steady and F is constant.

Case C: Further, assume that the potential function F depends only on z, so (3.38) reduces to

(3.41)
$$\nu = 0, \quad F_z = 0$$

Which implies quasi-*Einstein soliton is steady and F is constant.

4 Quasi-*Einstein ($\kappa < 1, \mu$) spaces

In this section, we study quasi-*Einstein ($\kappa < 1, \mu$)-spaces.

For a (κ, μ) -space [2]

(4.1)
$$h^2 = -(1-\kappa)\phi^2,$$

where $\kappa \leq 1$.

Theorem 4.1. [3] Let $(M^{2n+1}, \xi, \eta, \phi, g)$ be a non-Sasakian (κ, μ) -space $(\kappa < 1)$. Then its Riemann curvature tensor R is given by

$$g(R(Z,V)Y,W) = (1 - \frac{\mu}{2})R_1 + R_2 + \left(\frac{1 - \frac{\mu}{2}}{1 - \kappa}\right)R_3 - \frac{\mu}{2}R_4 + \left(\frac{\kappa - \frac{\mu}{2}}{1 - \kappa}\right)R_5 + \mu g(\phi Z, V)g(\phi Y, W) + \eta(Z)\eta(W)R_6 - \eta(Z)\eta(Y)R_7 + \eta(V)\eta(Y)R_8 - \eta(V)\eta(W)R_9,$$
(4.2)

where

$$\begin{array}{rcl} R_{1} &=& g(V,Y)g(Z,W) - g(Z,Y)g(V,W), \\ R_{2} &=& g(V,Y)g(hZ,W) - g(Z,Y)g(hV,W) \\ && -g(V,W)g(hZ,Y) + g(Z,W)g(hV,Y), \\ R_{3} &=& g(hV,Y)g(hZ,W) - g(hZ,Y)g(hV,W), \\ R_{4} &=& g(\phi V,Y)g(\phi Z,W) - g(\phi Z,Y)g(\phi V,W), \\ R_{5} &=& g(\phi hV,Y)g(\phi hZ,W) - g(\phi hV,W)g(\phi hZ,Y), \\ R_{6} &=& (-1 + \kappa + \frac{\mu}{2})g(V,Y) + (-1 + \mu)g(hV,Y), \\ R_{7} &=& (-1 + \kappa + \frac{\mu}{2})g(V,W) + (-1 + \mu)g(hV,W), \\ R_{8} &=& (-1 + \kappa + \frac{\mu}{2})g(Z,W) + (-1 + \mu)g(hZ,W), \\ R_{9} &=& (-1 + \kappa + \frac{\mu}{2})g(Z,Y) + (-1 + \mu)g(hZ,Y), \end{array}$$

110

 $\forall Z, V, Y, W \in TM.$

Using (1.2) and (4.2) we find that

(4.3)
$$Q^*Z = (\kappa + n\mu)\phi^2 Z,$$

and *-scalar curvature is given by

(4.4)
$$r^* = -2n(n\mu + \kappa),$$

which is constant.

Theorem 4.2. Let M^{2n+1} be a ($\kappa < 1, \mu$)-space satisfying (1.5). Then, M is a *-flat or locally isometric to $E^{n+1} \times S^n(4)$ or *Einstein.

Proof. From (4.3), we have

$$(4.5) Q^*\xi = 0.$$

Differentiating (4.5) along $Z \in TM$ and using (2.9), we have

(4.6)
$$(\nabla_Z Q^*)\xi = Q^* \phi Z + Q^* \phi h Z.$$

Taking inner product of (3.3) with ξ and using (4.5), we obtain

(4.7)
$$g(R(Z,V)\nabla F,\xi) = g((\nabla_V Q^*)Z - (\nabla_Z Q^*)V,\xi) - \frac{\nu}{m} \{(ZF)\eta(V) - (VF)\eta(Z)\}.$$

Using (2.11) and (4.6) in (4.7) and then replacing Z by ϕZ and V by ϕV , we get

(4.8)
$$(Q^*\phi + \phi Q^*)Z - hQ^*\phi Z - \phi Q^*hZ = 0,$$

 $\forall Z \in TM$. Further, using (2.1) and (4.3) in (4.8), we find that

(4.9)
$$\kappa + n\mu = 0.$$

Putting $V = \xi$ in (4.7), using (2.11), $\langle (\nabla_Z Q^*)\xi, \xi \rangle = 0$, $\langle (\nabla_\xi Q^*)Z, \xi \rangle = 0$, we get

(4.10)
$$h\nabla F = \sigma(\nabla F - (\xi F)\xi),$$

where $\sigma = \frac{\nu - \kappa m}{m \mu}$ is constant. Differentiating (4.10) along $Z \in TM$ and using (2.9), (3.5) and (4.10), we obtain

(4.11)
$$(\nabla_Z h)\nabla F - hQ^*Z - \frac{\sigma(\xi F)}{m}(ZF)\xi + \nu hZ$$
$$= \sigma[\nu Z - Q^*Z - (Z(\xi F))\xi + (\xi F)(\phi Z + \phi hZ)].$$

Using (4.5) in (3.5), we get

(4.12)
$$\xi(\xi F) - \frac{1}{m} (\xi F)^2 = \nu.$$

On the other hand, using (2.11), we get $l = \mu h - \kappa \phi^2$. Using this and (4.1) in (2.10), we find

(4.13)
$$\nabla_{\xi} h = -\mu \phi h$$

Putting ξ in place of Z in (4.11) and using (4.12) and (4.13), we find

(4.14)
$$\mu h \nabla F = 0.$$

From (4.14), we have either $\mu = 0$ or $\mu \neq 0$.

Case A: Let $\mu = 0$. Then using this in (4.9), we obtain $\kappa = 0$. Thus $R(Z, V)\xi = 0$ and hence in dimension 3, M is *-flat and in higher dimension M is locally isometric to $E^{n+1} \times S^n(4).[1]$

Case B: In this case, we have $h\nabla F = 0$. Using $h^2 = (\kappa - 1)\phi^2$, we get

(4.15)
$$0 = h^2 \nabla F = (\kappa - 1)\phi^2 \nabla F.$$

Since $\kappa < 1$, we have $\nabla F = (\xi F)\xi$. Hence from Lemma 3.2, we get F is constant. Consequently from (3.5), $Q^*Z = \nu Z$. Hence M is *-Einstein.

Acknowledgements. The first author is thankful to GGSIP University for research fellowship F.No. GGSIPU/DRC/2021/685. This work of corresponding author is partially supported by FRGS grant for the year 2021-2022, F. No. GGSIPU/DRC/ FRGS/2021/594/5.

References

- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, 2nd Ed., Prog. Math. 203, Birkhäuser, Boston 2010.
- [2] D. E. Blair, T.Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91, 1-3 (1995), 189-214.
- [3] E. Boeckx, A full classification of contact metric (κ, μ)-spaces, Illinois J. Math. 44, 1 (2000), 212-219.
- [4] J. Case, On the non-existence of quasi-Einstein metrics, Pacific J. Math. 248, 2 (2010), 227-284.
- [5] J. Case, Y. Shu and G. Wei, *Rigidity of quasi-Einstein metrics*, Differential Geom. Appl. 29, 1 (2010), 93-100.
- [6] X. Chen, Quasi-Einstein structures and almost cosymplectic manifolds, RAC-SAM 114, 2 (2020).(14pages)
- [7] X. Cui and X. Chen, Quasi-Einstein hypersurfaces of complex space forms, Adv. Math. Phys. 2020 (2020), 9pp.
- [8] A. Ghosh, Ricci solitons and contact metric manifolds, Glasg. Math. J. 55, 1 (2013), 123-130.
- [9] A. Ghosh, Quasi-Einstein contact metric manifolds, Glasg. Math. J. 57, 3 (2015), 569-577.
- [10] A. Ghosh and D. S. Patra, *-Ricci soliton within the frame-work of Sasakian and (κ,μ)-contact manifold, Int. J. Geom. Methods Mod. Phys. 15, 7 (2018). ID 1850120

- [11] A. Ghosh, R. Sharma and J. T. Cho, Contact metric manifolds with η-parallel torsion tensor, Ann. Global Anal. Geom. 34, 3 (2008), 287-299.
- [12] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci *-tensor, Tokyo J. Math. 25 (2002), 473-483.
- [13] G. Kaimakamis and K. Panagiotidou, *-Ricci solitons of real hypersurfaces in non-flat complex space forms, J. Geom. Phys. 86 (2014), 408-413.
- [14] S. Rani and R. S. Gupta, Quasi-* Einstein metric on Kenmotsu manifolds, J. Int. Acad. Phys. Sci. 25, 4 (2021), 509-516.
- [15] R. Sharma, Certain results on K-contact and (κ, μ) -contact manifolds, J. Geom. 89, 1-2 (2008), 138-147.
- [16] S. Tanno, The topology of contact Riemannian manifolds, Illinois J. Math. 12, 4 (1968), 700-717.
- [17] L. F. Wang, Rigid properties of quasi-Einstein metrics, Proc. Amer. Math. Soc. 139, 10 (2011), 3679-3689.

Authors' address:

Savita Rani, Ram Shankar Gupta University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector-16C, Dwarka, New Delhi-110078, India. E-mail: mansavi.14@gmail.com, ramshankar.gupta@gmail.com(Corresponding author)