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Abstract. In this paper we study the relationship between G2-structures
and 8-dimensional symplectic structures. We introduce the notion of com-
patibility of these structures. It is shown that a 7-manifold with G2 struc-
ture can be embedded into an 8-dimensional symplectic manifold and with
additional conditions, this symplectic structure can be chosen compatible
with G2-structure.
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1 Introduction

In the classification of Riemannian holonomy groups due to Berger, there are two
exceptional cases: G2 and Spin(7). In this paper we concern with manifolds of ex-
ceptional holonomy group G2. The compact, simple and simply connected Lie group
G2 can be defined as the group of linear transformations of R7 that preserves the Eu-
clidean metric and a vector cross product. A G2-structure (or an almost G2-structure)
on a 7-dimensional manifold Q is a nondegenerate three form Ω on it . A G2-structure
induces a unique Riemannian metric g on Q. If furthermore Hol(g) ⊆ G2, then Q is
called a G2-manifold.
The geometry ofG2-manifolds has been studied extensively in several papers ([8],[4],[5],[11]).
Akbulut and Salur in [1] studied the relationship between Calabi-Yau geometry and
G2 geometry. By definition a Calabi-Yau manifold is a Kähler manifold X with
c1(X) = 0(of course there are some inequivalent definitions ). Thus a Calabi-Yau
manifold is a special symplectic manifold. On the other hand the relation between
symplectic geometry and contact geometry is obvious. So it is natural to expect a
connection between G2 geometry from one hand and symplectic geometry and con-
tact geometry from another hand. In [2] the relationship between G2 geometry and
contact geometry has been studied. The relationship between G2 geometry and sym-
plectic geometry emerged in [9] for the first time. In [9], by using methods of spin
geometry, Fernandez and Gray showed that T ∗Q × R admits a closed G2-structure,
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when Q is an oriented 3-dimensional manifold and in [7], Cho and Salur computed
this G2-structure as Ω = ReΘ+ ω ∧ dt , where Θ is a certain complex valued 3-form
and ω is the standard symplectic form on T ∗Q.
In this paper we investigate the connection between symplectic structures and G2-
structures. The paper is organized as follows:
In section 2 we present some preliminaries. In section 3, the compatibility of sym-
plectic structures with G2-structures and its relation with compatibility of contact
structures and G2-structures, will be study. In particular the following theorems will
be proved.
Theorem. Let (Q,α) be a 7-dimensional contact manifold and Ω be a G2-structure
on Q compatible with α. Then Ω is compatible with symplectic form ω = d(eθα) on
M = Q× R, where θ denotes the coordinate on R.

Theorem. Let (Q,Ω) be a hypersurface of symplectic manifold (M,ω) and ω is
compatible with Ω. If furthermore Q is of contact type then Ω is compatible with
contact structure of Q.

In section 4 the existence of symplectic structures on Q×R and Q×S1 is discussed,
when Q is a 7-manifold with G2-structure. The main results of this section are as
follows:

Theorem. Let Q be a 7-dimensional manifold with a G2-structure Ω. Then
M = Q × R admits an almost symplectic structure compatible with Ω. The same
statement is true for M = Q× S1.

Theorem. Let Q be a connected 7-dimensional manifold with a G2-structure.
Then M = Q × R is a symplectic manifold. The same statement is true for M =
Q× S1, when Q is furthermore noncompact.

Theorem. In previous Theorem , if R is a vector field on Q such that ιRφ is
exact, then Q× R and Q× S1 admits a symplectic structure compatible with φ.

2 Preliminaries

2.1 G2-structures

In this section V is a finite dimensional real vector space and ⟨., .⟩ is an inner product
on V .

Definition 2.1. A skew symmetric bilinear map

V × V → V : (u, v) 7→ u× v(2.1)

is called a cross product if it satisfies

⟨u× v, u⟩ = ⟨u× v, v⟩ = 0,

|u× v|2 = |u|2|v|2 − ⟨u, v⟩2

for all u, v ∈ V .

It is well known that if V admits a non vanishing cross product, then dimension
of V is 3 or 7.
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Lemma 2.1. If × be a cross product on V , then the map Ω : V ×V ×V → R, defined
by

Ω(u, v, w) = ⟨u× v, w⟩,(2.2)

is an alternating 3-form the so called the associative calibration of V .

Definition 2.2. Let V be a finite dimensional real vector space. A 3-form Ω ∈ Λ3V ∗

is called nondegenerate if, ιvΩ = 0 implies that v = 0. An inner product on V is
called compatible with Ω if the map (2.1) defined by (2.2) is a cross product.

Theorem 2.2. Let V be a 7-dimensional real vector space and Ω ∈ Λ3V ∗. Then:
(i) Ω is nondegenerate if and only if it admits a compatible inner product.
(ii) The inner product in (i), if it exists, is uniquely determined by Ω.
(iii) If Ω1,Ω2 ∈ Λ3V ∗ are nondegenerate, then there is an automorphism g : V → V
such that g∗Ω2 = Ω1.
(iv) If Ω is compatible with the inner product ⟨., .⟩, then there is an orientation on V
such that the associated volume form dvol ∈ Λ7V ∗ satisfies

ιuΩ ∧ ιvΩ ∧ Ω = 6⟨u, v⟩dvol(2.3)

for all u, v ∈ V .

Example 2.3. Identify R7 with ImO of imaginary part of octonions. then for u, v ∈
R7

u× v = imuv

defines a cross product with respect to the standard inner product ⟨., .⟩ on R7. The
associated calibration Ω0 reads

Ω0 = e123 + e145 + e167 + e167 + e246 − e275 − e347 − e356(2.4)

where eijk = dxi ∧ dxj ∧ dxk.

Let (V, ⟨., .⟩) be an inner product space endowed with a cross product × and Ω be
it’s associated calibration. The sub group of Gl(V ) that preserve Ω is denoted by

G(V,Ω) = {g ∈ Gl(V ) : g∗Ω = Ω}.

The group G(R7,Ω0) will be denoted simply by G2. According Theorem 2.4(iii), for
an arbitrary nondegenerate 3-form Ω on a 7-dimensional vector space V , The group
G(V,Ω) is isomorphic to G2.

Definition 2.4. A nondegenerate 3-form Ω on a smooth 7-dimensional manifold Q
is called a G2-structure(or an almost G2-structure).

Remark 2.5. By Theorem 2.4(i, iv) a G2 structure Ω on Q induces a unique Rie-
mannian metric and a unique orientation on Q. Thus each tangent space TpQ of Q
admits a cross product defined by (2.2).

For more information about G2-structures we refer to [13] and [10].
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2.2 Almost symplectic structures and Gromov’s Theorem

Let M be a 2n-dimensional smooth manifold. A nondegenerat two form ω on M is
called an almost symplectic structure. If furthermore ω is closed, then ω is called
a symplectic structure on M . It is well known that an almost symplectic manifold
(M,ω) admits almost complex structures J tamed by ω,i.e, ω(v, Jv) > 0 for all
nonzero v in TM . The space of such almost complex structures is contractible. The
following theorem, due, to Gromov, states that an almost symplectic structure is
homotopic to a smplectic structure. For a proof of this theorem we refer to Theorem
7.34 of [12].

Theorem 2.3. (Gromov’s Theorem) Let M be an open 2n dimensional manifold. Let
τ be an almost symplectic structure on M and a ∈ H2(M,R). There exists a family
of almost symplectic forms τt on M such that τ0 = τ and τ1 is a symplectic form that
represents the class a.

2.3 Almost contact structures

Let M be an (2n+ 1) dimensional smooth manifold. An almost contact structure on
M is a triple (J,R, α) consists of a field J of endomorphisms of the tangent bundle,
a vector field R and a 1-form α satisfying
1) α(R) = 1,
2) J2(X) = −X + α(X)R,
for all X in TM .

Let (J,R, α) be an almost contact structure on M . A Riemannian metric g on M
is called a compatible metric if

g(Ju, Jv) = g(u, v)− α(u)α(v),

for all u, v in TM . An almost contact metric structure on M is a quadruple
(J,R, α, g), where (J,R, α) is an almost contact symplectic structure and g is a com-
patible metric.
It is well known that every manifold with an almost contact structure admits a com-
patible metric. For more details we refer to [3].

3 Compatibility of G2-structures and symplectic
structures

In [2], two kind of compatibility of contact structures and G2 structures on a manifold,
when both of them exist, has been defined. Here we need one of them, the so called
A-compatibility, which we simply call it compatible.

Definition 3.1. Let Ω be a G2-structure on 7-dimensional manifold Q. A contact
structure ξ on Q is said to be compatible with Ω if there exist a vector field R on Q,
a contact form α for ξ and a nonzero function f : Q → R such that dα = ιRΩ and
fR is the Reeb vector field of a contact form for ξ.

In this section we consider a hypersurface of a symplectic 8-dimensional manifold,
which admits a G2-structure. We want to know how these two structures are related.
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Definition 3.2. Let (M,ω) be an eight dimensional (almost) symplectic manifold
and Q be a hypersurface of M with G2-structure Ω. The (almost) symplectic form ω
is called compatible with Ω if there is a vector field R : Q → TQ satisfying

j∗(ω) = ιRΩ,

where j : Q ↪→ M is the inclusion map.

The following example explains the motivation of this definition.

Example 3.3. Let (x1, ..., x8) denotes the coordinates on R8 and consider the sym-
plectic form ω on R8 as follows:

ω = dx1 ∧ dx8 + dx2 ∧ dx3 + dx4 ∧ dx5 + dx6 ∧ dx7.

Consider R7 as a hypersurface in R8 with coordinates (x1, ..., x7). Let Ω0 be the
standard G2-structure on R7. If R = ∂

∂x1
, we have

ιRΩ0 = dx2 ∧ dx3 + dx4 ∧ dx5 + dx6 ∧ dx7 = j∗(ω),

where j : R7 → R8 is defined by j(x1, ..., x7) = (x1, ..., x7, 0).

Theorem 3.1. Let (Q,α) be a 7-dimensional contact manifold and Ω be a G2-
structure on Q compatible with α. Then Ω is compatible with symplectic form ω =
d(eθα) on M = Q× R, where θ denotes the coordinate on R.

Proof. By assumption, there is a vector field R on Q such that ιRΩ = dα. but
dα = j∗(ω). □

Example 3.4. LetQ be a 3-dimensional oriented Riemannian manifold. Consider the
coordinates (x1, x2, x3, y1, y2, y3) on the cotangent bundle T ∗Q. Assume ω = −dλcan

be the standard symplectic form on T ∗Q, where λcan =
∑

yidxi is the canonical
1-form on T ∗Q. If t denotes the coordinate on R, define the 3-form Ω on T ∗Q by

Ω = Re(Θ) + dt ∧ ω,

where Θ = (dx1 + idy1) ∧ (dx2 + idy2 ∧ (dx3 + idy3)) is a complex valued (3, 0) form
on T ∗Q. In [7] it is shown that Ω is a G2-structure on T ∗Q× R. On the other hand
it is easy to see that α = dt+ λcan defines a contact structure on T ∗Q× R with the
Reeb field ∂

∂t . This contact structure is compatible with Ω. Thus Ω is compatible
with symplectic structure ω = d(eθα) on M = T ∗Q× R2.

Definition 3.5. A compact and orientable hypersurface Q of a symplectic manifold
(M,ω) is called of contact type if there exists a 1-form α on Q satisfying
1) dα = j∗(ω),
2) α(ξ) ̸= 0 for 0 ̸= ξ ∈ LQ,
where j : Q ↪→ M is the inclusion map and LQ is the canonical line bundle of Q.

Theorem 3.2. Let (Q,Ω) be a hypersurface of symplectic manifold (M,ω) and ω
is compatible with Ω. If furthermore Q is of contact type then Ω is compatible with
contact structure of Q.
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Proof. Since Q is of contact type then there exists a 1-form α on Q such that dα =
j∗(ω) and since ω is compatible with Ω, there is a vector field R on Q such that

ιRΩ = j∗(ω) = dα.

Moreover ιRdα = 0 and since the restriction of dα to Kerα is symplectic, then
α(R) ̸= 0 and so fR is the Reeb field of α, where f = 1

α(R) . □

Theorem 3.3. Let (M,ω) be an 8-dimensional symplectic manifold and Q ⊂ M
be a closed (i.e. compact and without boundary) hypersurface of M with a closed
G2-structure Ω. If H1(Q) = 0, then ω is not compatible with Ω.

Proof. Since j∗(ω) is closed and H1(Q) = 0, then j∗(ω) = dα for some 1-form α on
Q. If ω is compatible with Ω, then there is a vector field R on Q such that ιRΩ = dα.
Thus g(R,R)volΩ = (ιRΩ)∧ (ιRΩ)∧Ω is exact and hence

∫
Q
g(R,R)volΩ = 0, which

is a contradiction. □

4 G2-structures and existence of symplectic struc-
tures

In this section we show that if Q admits a G2-structure, then Q×R and Q×S1 admit
a symplectic structure, and hence Q can be embedded in a symplectic manifold.

Lemma 4.1. Let (2n+1)-dimensional manifold Q admits an almost contact structure.
Then Q× R and Q× S1 admit an almost complex structure.

Proof. Let (J,R, α) be an almost contact structure on Q and g be a Riemannian
compatible metric. Let D be the sub bundle of TQ generated by R and H be the
orthogonal complement of D with respect to g. Thus TQ = H ⊕D an hence T (Q×
R) = H ⊕ D ⊕ TR. So, for X ∈ T (Q × R), X splits as X = XH + bR + a ∂

∂θ ,
where XH ∈ H and θ denotes the coordinate on R. Define the automorphism J ′ :
T (Q× R) → T (Q× R) by

J ′(XH + bR+ a
∂

∂θ
) = J(XH) + aR− b

∂

∂θ
.

It is easy to see that J ′ is an almost complex structure on Q× R. □

Theorem 4.2. Let Q be a 7-dimensional manifold with a G2-structure Ω. Then
M = Q × R admits an almost symplectic structure compatible with Ω. The same
statement is true for M = Q× S1.

Proof. Let gΩ and ×Ω denotes, respectively, the Reimannian metric and cross product
associative to Ω on Q. Choose a nonzero vector field R on Q with gΩ(R,R) = 1 and
define the 1-form α and endomorphism JR : TQ → TQ by

αR(u) = gΩ(R, u),

JR(u) = R×Ω u.
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The quadruple (JR, R, αR, gΩ) defines an almost contact metric structure on Q. Let J
be the almost complex structure induced by JR on Q×R. Let θ denotes the coordinate
on R and define the Riemannian metric g and the two form ω on M = Q× R by

g = gΩ + dθ2,

ω(u, v) = g(Ju, v).

ω is an almost symplectic structure on M and for u, v in TQ we have

ω(u, v) = g(Ju, v) = g(R× u, v) = Ω(R, u, v).

Thus ω and Ω are compatible. □

Corollary 4.3. Every connected 7-dimensional manifold with G2-structure can be
embedded in an 8-dimensional symplectic manifold.

Proof. Let Q be a 7-dimensional manifold with G2-structure. By Theorem 4.2, Q×R
and Q × S1 admit an almost symplectic structure. Now Gromov’s Theorem follows
the assertion. □

As in Corollary 4.3 mentioned if Q admits a G2-structure, then Q×R and Q×S1

(if Q is not compact) admit a symplectic structure. It seems to be an open question
wether or not every G2-structure is compatible with a symplectic structure. We could
not find counterexample but also did not see how to prove it.

Definition 4.1. (see[6]) Let φ be a closed G2-structure on Q. The vector field R on
Q is called a G2-vector field if the flow of R preserves the G2-structure. Also R is
called Rochesterian if ιRφ is an exact form.

Corollary 4.4. Let (Q,φ) is a hypersurface of (M,ω) and ω is compatible with φ.
If φ is closed and ιRφ = j∗(ω), then R is a G2-vector field.

Corollary 4.5. In Theorem 4.2, if R is a vector field on Q such that ιRφ is exact,
then Q× R and Q× S1 admits a symplectic structure compatible with φ.

In [6] it is shown that there is no Rochesterian vector field on a closed 7-dimensional
manifold with a closed G2-structure. So in the Corollary 4.4, if ω is exact, then Q is
assumed to be noncompact or compact without boundary.

Corollary 4.6. In Theorem 4.2, if φ is closed and R is a G2-vector field, then there
exists a symplectic form ω on Q×R such that [ω] = [π∗(ιRφ)], where π : Q×R → Q
is the projection map. The same result is true for Q× S1.
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