A note on the compatibility of Gs-structures with
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Abstract. In this paper we study the relationship between Gs-structures
and 8-dimensional symplectic structures. We introduce the notion of com-
patibility of these structures. It is shown that a 7-manifold with G2 struc-
ture can be embedded into an 8-dimensional symplectic manifold and with
additional conditions, this symplectic structure can be chosen compatible
with Ga-structure.

M.S.C. 2010: 53D05, 53D10, 53D15, 57R17.
Key words: G2-structure; symplectic structure.

1 Introduction

In the classification of Riemannian holonomy groups due to Berger, there are two
exceptional cases: Go and Spin(7). In this paper we concern with manifolds of ex-
ceptional holonomy group G5. The compact, simple and simply connected Lie group
G can be defined as the group of linear transformations of R” that preserves the Eu-
clidean metric and a vector cross product. A Ge-structure (or an almost Go-structure)
on a 7-dimensional manifold @ is a nondegenerate three form Q on it . A Ga-structure
induces a unique Riemannian metric g on Q. If furthermore Hol(g) C G2, then @ is
called a Go-manifold.

The geometry of Go-manifolds has been studied extensively in several papers ([8],[4],[5],[11]).
Akbulut and Salur in [1] studied the relationship between Calabi-Yau geometry and
G5 geometry. By definition a Calabi-Yau manifold is a Kahler manifold X with
c1(X) = 0(of course there are some inequivalent definitions ). Thus a Calabi-Yau
manifold is a special symplectic manifold. On the other hand the relation between
symplectic geometry and contact geometry is obvious. So it is natural to expect a
connection between Go geometry from one hand and symplectic geometry and con-
tact geometry from another hand. In [2] the relationship between G2 geometry and
contact geometry has been studied. The relationship between G5 geometry and sym-
plectic geometry emerged in [9] for the first time. In [9], by using methods of spin
geometry, Fernandez and Gray showed that 7@ x R admits a closed Gs-structure,
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when @ is an oriented 3-dimensional manifold and in [7], Cho and Salur computed
this Ga-structure as ) = Re© + w A dt , where O is a certain complex valued 3-form
and w is the standard symplectic form on T%Q.

In this paper we investigate the connection between symplectic structures and Gs-
structures. The paper is organized as follows:

In section 2 we present some preliminaries. In section 3, the compatibility of sym-
plectic structures with Gs-structures and its relation with compatibility of contact
structures and Gs-structures, will be study. In particular the following theorems will
be proved.

Theorem. Let (Q,a) be a T-dimensional contact manifold and Q be a Ga-structure
on Q compatible with o.. Then § is compatible with symplectic form w = d(e’a) on
M = @ x R, where 6 denotes the coordinate on R.

Theorem. Let (@, ) be a hypersurface of symplectic manifold (M,w) and w is
compatible with . If furthermore Q) is of contact type then € is compatible with
contact structure of Q.

In section 4 the existence of symplectic structures on @ xR and @Q x S? is discussed,
when @ is a 7-manifold with Ga-structure. The main results of this section are as
follows:

Theorem. Let Q be a 7-dimensional manifold with a Ga-structure 2. Then
M = @ x R admits an almost symplectic structure compatible with 2. The same
statement is true for M = Q x S*t.

Theorem. Let Q be a connected T-dimensional manifold with a Gs-structure.
Then M = @ x R is a symplectic manifold. The same statement is true for M =
Q x S, when Q is furthermore noncompact.

Theorem. In previous Theorem , if R is a vector field on @ such that Lryp is
exact, then @ x R and Q x S* admits a symplectic structure compatible with .

2 Preliminaries

2.1 (Gy-structures

In this section V is a finite dimensional real vector space and (., .) is an inner product
on V.

Definition 2.1. A skew symmetric bilinear map
(2.1) VXV —=V:(uv)—uxwv
is called a cross product if it satisfies
(uxv,u) = (uxv,v)=0,
fux of? = [uf2lol? — (u,v)?
for all u,v € V.

It is well known that if V' admits a non vanishing cross product, then dimension
of Vis3or7.
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Lemma 2.1. If X be a cross product on V', then the map Q : V xV xV — R, defined
by

(2.2) Qu, v, w) = (u X v,w),
is an alternating 3-form the so called the associative calibration of V.

Definition 2.2. Let V be a finite dimensional real vector space. A 3-form Q € A3V*
is called nondegenerate if, ¢,2 = 0 implies that v = 0. An inner product on V is
called compatible with  if the map (2.1) defined by (2.2) is a cross product.

Theorem 2.2. Let V be a T-dimensional real vector space and 2 € A3V*. Then:
(i) Q is nondegenerate if and only if it admits a compatible inner product.

(i) The inner product in (i), if it exists, is uniquely determined by .

(iii) If Q1,9 € A3V* are nondegenerate, then there is an automorphism g : V — V
such that g*Qy = Q.

(iv) If Q is compatible with the inner product (.,.), then there is an orientation on V
such that the associated volume form dvol € ATV* satisfies

(2.3) LA L, QA Q = 6(u, v)dvol

for all u,v € V.

Eicample 2.3. Identify R” with ImO of imaginary part of octonions. then for u,v €
. U X V= 1MUY

defines a cross product with respect to the standard inner product (.,.) on R”. The
associated calibration g reads

(2.4) Qp = €123 4 145 4 o167 4 (167 | (246 _ 275 _ ;347 _ 356
where % = dz; A dx; N dxy,.

Let (V,{(.,.)) be an inner product space endowed with a cross product x and Q be
it’s associated calibration. The sub group of GI(V') that preserve € is denoted by

GV,Q)={geGU(V):g"Q=Q}.

The group G(R7, Q) will be denoted simply by G5. According Theorem 2.4(iii), for
an arbitrary nondegenerate 3-form 2 on a 7-dimensional vector space V', The group
G(V,Q) is isomorphic to G.

Definition 2.4. A nondegenerate 3-form {2 on a smooth 7-dimensional manifold @
is called a Ga-structure(or an almost Ga-structure).

Remark 2.5. By Theorem 2.4(i,iv) a Gg structure Q on @ induces a unique Rie-
mannian metric and a unique orientation on ). Thus each tangent space T,@ of @
admits a cross product defined by (2.2).

For more information about Ga-structures we refer to [13] and [10].
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2.2  Almost symplectic structures and Gromov’s Theorem

Let M be a 2n-dimensional smooth manifold. A nondegenerat two form w on M is
called an almost symplectic structure. If furthermore w is closed, then w is called
a symplectic structure on M. It is well known that an almost symplectic manifold
(M,w) admits almost complex structures J tamed by w,i.e, w(v,Jv) > 0 for all
nonzero v in T M. The space of such almost complex structures is contractible. The
following theorem, due, to Gromov, states that an almost symplectic structure is
homotopic to a smplectic structure. For a proof of this theorem we refer to Theorem
7.34 of [12].

Theorem 2.3. (Gromov’s Theorem) Let M be an open 2n dimensional manifold. Let
7 be an almost symplectic structure on M and a € H*(M,R). There exists a family
of almost symplectic forms 74 on M such that 19 = 7 and 11 is a symplectic form that
represents the class a.

2.3 Almost contact structures

Let M be an (2n + 1) dimensional smooth manifold. An almost contact structure on
M is a triple (J, R, «) consists of a field J of endomorphisms of the tangent bundle,
a vector field R and a 1-form « satisfying
1) a(R) =1,
2) J3(X) = -X + a(X)R,
for all X in TM.

Let (J, R, «) be an almost contact structure on M. A Riemannian metric g on M
is called a compatible metric if

9(Ju, Jv) = g(u,v) — a(u)a(v),

for all u,v in TM. An almost contact metric structure on M is a quadruple
(J,R,, g), where (J, R, «) is an almost contact symplectic structure and g is a com-
patible metric.

It is well known that every manifold with an almost contact structure admits a com-
patible metric. For more details we refer to [3].

3  Compatibility of Gs-structures and symplectic
structures

In [2], two kind of compatibility of contact structures and G4 structures on a manifold,
when both of them exist, has been defined. Here we need one of them, the so called
A-compatibility, which we simply call it compatible.

Definition 3.1. Let Q be a Ga-structure on 7-dimensional manifold Q). A contact
structure £ on @ is said to be compatible with  if there exist a vector field R on @),
a contact form « for £ and a nonzero function f : @ — R such that da = (g2 and
fR is the Reeb vector field of a contact form for €.

In this section we consider a hypersurface of a symplectic 8-dimensional manifold,
which admits a Go-structure. We want to know how these two structures are related.
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Definition 3.2. Let (M,w) be an eight dimensional (almost) symplectic manifold
and @ be a hypersurface of M with Go-structure Q. The (almost) symplectic form w
is called compatible with € if there is a vector field R : Q@ — T'Q satisfying

]*(w) = tpil,
where j : Q < M is the inclusion map.
The following example explains the motivation of this definition.

Example 3.3. Let (1, ...,z3) denotes the coordinates on R® and consider the sym-
plectic form w on R® as follows:

w =dx1 Ndxg + dro A dxs + dxg N dxs + dxg N dxry.

Consider R” as a hypersurface in R® with coordinates (w1, ...,27). Let Qo be the
standard Ga-structure on R”. If R = 6%1, we have

trQo = dao A dxs + dxy N dxs + dee N\ dey = j*(w),
where j : R” — R® is defined by j(x1,...,27) = (21, ..., 7, 0).

Theorem 3.1. Let (Q,«) be a T-dimensional contact manifold and Q be a Ga-
structure on Q@ compatible with . Then € is compatible with symplectic form w =
d(e?a) on M = Q x R, where 0 denotes the coordinate on R.

Proof. By assumption, there is a vector field R on @ such that (g2 = da. but
da = j*(w). O

Example 3.4. Let @ be a 3-dimensional oriented Riemannian manifold. Consider the
coordinates (z1,x2, T3, Y1, Y2, ys) on the cotangent bundle 7*Q. Assume w = —dAcan
be the standard symplectic form on T*Q, where Ao = > yidx; is the canonical
1-form on T*Q. If ¢t denotes the coordinate on R, define the 3-form Q on T*@Q by

Q= Re(©) +dt Aw,

where © = (dz1 + idyy) A (dxe + idy2 A (dxs + idys)) is a complex valued (3,0) form
on T*Q. In [7] it is shown that Q is a Ga-structure on 7@ x R. On the other hand
it is easy to see that o = dt + Acqn defines a contact structure on 7*Q) x R with the
Reeb field %. This contact structure is compatible with . Thus Q is compatible
with symplectic structure w = d(e’a) on M = T*Q x R2.

Definition 3.5. A compact and orientable hypersurface Q of a symplectic manifold
(M,w) is called of contact type if there exists a 1-form a on @Q satisfying
1) do = j*(w),

2) a(¢) £ 0 for 0 £ ¢ € Lo,
where j : Q — M is the inclusion map and Lg is the canonical line bundle of Q.

Theorem 3.2. Let (Q,Q) be a hypersurface of symplectic manifold (M,w) and w
is compatible with Q. If furthermore Q is of contact type then Q is compatible with
contact structure of Q.
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Proof. Since @ is of contact type then there exists a 1-form « on @ such that da =
J*(w) and since w is compatible with 2, there is a vector field R on ) such that

g€ = 7" (w) = da.

Moreover tpda = 0 and since the restriction of da to Kera is symplectic, then
a(R) # 0 and so fR is the Reeb field of a, where f = ﬁ. O

Theorem 3.3. Let (M,w) be an 8-dimensional symplectic manifold and Q C M
be a closed (i.e. compact and without boundary) hypersurface of M with a closed
Ga-structure Q. If HY(Q) = 0, then w is not compatible with Q.

Proof. Since j*(w) is closed and H'(Q) = 0, then j*(w) = da for some 1-form « on
Q. If w is compatible with €2, then there is a vector field R on @ such that (g2 = da.
Thus g(R, R)volg = (tg) A (trY) A Q is exact and hence fQ g(R, R)volg = 0, which
is a contradiction. ]

4  (Gy-structures and existence of symplectic struc-
tures

In this section we show that if @ admits a Ga-structure, then Q x R and @ x S* admit
a symplectic structure, and hence @ can be embedded in a symplectic manifold.

Lemma 4.1. Let (2n+1)-dimensional manifold Q admits an almost contact structure.
Then @ x R and Q x St admit an almost complex structure.

Proof. Let (J,R,a) be an almost contact structure on ¢ and g be a Riemannian
compatible metric. Let D be the sub bundle of T'Q) generated by R and H be the
orthogonal complement of D with respect to g. Thus TQ = H & D an hence T(Q x
R) = H® D ® TR. So, for X € T(Q x R), X splits as X = Xy + bR + a2,
where Xy € H and 6 denotes the coordinate on R. Define the automorphism J' :
T(Q xR) - T(Q x R) by

0] 0
! — X R—b—
J(XH+bE+a69) J( H)+CL bae

It is easy to see that J’ is an almost complex structure on @ x R. O

Theorem 4.2. Let Q be a 7-dimensional manifold with a Ga-structure Q2. Then
M = @Q x R admits an almost symplectic structure compatible with 2. The same
statement is true for M = @Q x S*.

Proof. Let go and X denotes, respectively, the Reimannian metric and cross product
associative to Q on (. Choose a nonzero vector field R on @ with go(R, R) =1 and
define the 1-form a and endomorphism Jg : TQ — TQ by

agr(u) = ga(R, u),

JR(U) =R XQ Uu.
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The quadruple (Jg, R, ar, go) defines an almost contact metric structure on Q. Let J
be the almost complex structure induced by Jgr on Q@ xR. Let 6 denotes the coordinate
on R and define the Riemannian metric g and the two form w on M = @ x R by

g = go +dbo°,

w(u,v) = g(Ju,v).

w is an almost symplectic structure on M and for u,v in T'Q we have
w(u,v) = g(Ju,v) = g(R x u,v) = Q(R, u,v).
Thus w and 2 are compatible. (Il

Corollary 4.3. FEvery connected T-dimensional manifold with Gs-structure can be
embedded in an 8-dimensional symplectic manifold.

Proof. Let @) be a 7-dimensional manifold with Ga-structure. By Theorem 4.2, Q x R
and @ x S admit an almost symplectic structure. Now Gromov’s Theorem follows
the assertion. O

As in Corollary 4.3 mentioned if Q admits a Ga-structure, then Q x R and Q x S!
(if @ is not compact) admit a symplectic structure. It seems to be an open question
wether or not every Ga-structure is compatible with a symplectic structure. We could
not find counterexample but also did not see how to prove it.

Definition 4.1. (see[6]) Let ¢ be a closed Ga-structure on Q. The vector field R on
Q is called a Ga-vector field if the flow of R preserves the Gs-structure. Also R is
called Rochesterian if tpyp is an exact form.

Corollary 4.4. Let (Q, ) is a hypersurface of (M,w) and w is compatible with .
If ¢ is closed and trp = j*(w), then R is a Ga-vector field.

Corollary 4.5. In Theorem 4.2, if R is a vector field on Q such that trp is exact,
then @ x R and Q x S* admits a symplectic structure compatible with .

In [6] it is shown that there is no Rochesterian vector field on a closed 7-dimensional
manifold with a closed Gs-structure. So in the Corollary 4.4, if w is exact, then @ is
assumed to be noncompact or compact without boundary.

Corollary 4.6. In Theorem 4.2, if ¢ is closed and R is a Gs-vector field, then there
exists a symplectic form w on Q X R such that [w] = [1*(tgp)], where m: Q X R = Q
is the projection map. The same result is true for Q x St.
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