

Banach J. Math. Anal. 6 (2012), no. 2, 86–97

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

UPPER BEURLING DENSITY OF SYSTEMS FORMED BY TRANSLATES OF FINITE SETS OF ELEMENTS IN $L^p(\mathbb{R}^d)$

BEI LIU¹ AND RUI LIU^{2*}

Communicated by D. R. Larson

ABSTRACT. In this paper, we prove that if a finite disjoint union of translates $\bigcup_{k=1}^{n} \{f_k(x-\gamma)\}_{\gamma \in \Gamma_k}$ in $L^p(\mathbb{R}^d)$ (1 is a <math>p'-Bessel sequence for some $1 < p' < \infty$, then the disjoint union $\Gamma = \bigcup_{k=1}^{n} \Gamma_k$ has finite upper Beurling density, and that if $\bigcup_{k=1}^{n} \{f_k(x-\gamma)\}_{\gamma \in \Gamma_k}$ is a (C_q) -system with 1/p + 1/q = 1, then Γ has infinite upper Beurling density. Thus, no finite disjoint union of translates in $L^p(\mathbb{R}^d)$ can form a p'-Bessel (C_q) -system for any $1 < p' < \infty$. Furthermore, by using techniques from the geometry of Banach spaces, we obtain that, for $1 , no finite disjoint union of translates in <math>L^p(\mathbb{R}^d)$ can form an unconditional basis.

¹ Department of Mathematics, Tianjin University of Technology, Tianjin 300384, P.R. China.

E-mail address: beiliu1101@gmail.com

 2 Department of Mathematics and LPMC, Nankai University, Tianjin 300071, P.R. China.

E-mail address: ruiliu@nankai.edu.cn

Date: Received: 29 November 2011; Accepted: 25 March 2012.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 42C30; Secondary 46E30, 46B15.

Key words and phrases. (C_q) -system, L^p -space, p'-Bessel sequence, translate, upper Beurling density.