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Abstract. Professor Themistocles M. Rassias’ special predilection and con-
tribution to the study of Möbius transformations is well known. Möbius trans-
formations of the open unit disc of the complex plane and, more generally, of
the open unit ball of any real inner product space, give rise to Möbius addition
in the ball. The latter, in turn, gives rise to Möbius gyrovector spaces that
enable the Poincaré ball model of hyperbolic geometry to be approached by
gyrovector spaces, in full analogy with the common vector space approach to
the standard model of Euclidean geometry. The purpose of this paper, dedi-
cated to Professor Themistocles M. Rassias, is to employ the Möbius gyrovector
spaces for the introduction of the hyperbolic square in the Poincaré ball model
of hyperbolic geometry. We will find that the hyperbolic square is richer in
structure than its Euclidean counterpart.

1. Introduction

Professor Themistocles M. Rassias’ work in the areas of Möbius transforma-
tions appear in several papers, including [10, 11, 12, 13] and [25, 28, 27], along
with essential mathematical developments found, for instance, in [3, 4, 5, 17,
18, 19, 20, 21, 22], which contain essential research Mathematics on geometric
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transformations including Möbius transformations. In addition, the author’s uni-
fied way of solving the quadratic, cubic and quartic equations was presented by
Professor Themistocles M. Rassias and coauthors in [15].

This work demonstrates Professor Rassias’ special predilection and contribu-
tion to the study of Möbius transformations. The purpose of this article, dedi-
cated to him, is to employ Möbius transformations in the presentation and the
study of the hyperbolic square in the Poincaré ball model of hyperbolic geometry.
In order to keep the exposition reasonably self-contained, and to set the stage for
our study of the hyperbolic square, we present the modern use of Möbius trans-
formations of the open disc of the complex plane, and of the open ball of any
real inner product space, in the study of the Poincaré ball model of hyperbolic
geometry. Following this presentation, in Sections 2 – 6, we will be in the position
to present and study the hyperbolic square in the Poincaré ball model of hyper-
bolic geometry in Section 7. Thus, a large part of this article provides a research
account of recent results that set the stage for the introduction and the study
of the hyperbolic square, shown in Fig. 3. Basically, as in Euclidean geometry,
the hyperbolic square is a hyperbolic quadrilateral with all four sides of equal
hyperbolic length and all four hyperbolic angles of equal measure.

In Section 2 we show how the well known polar decomposition of Möbius trans-
formation of the complex open unit disc leads to Möbius addition in the disc.
Seemingly structureless, Möbius addition in the disc is neither commutative nor
associative. However, we discover an unexpected grouplike structure that under-
lies Möbius addition, according to which Möbius addition is both gyrocommu-
tative and gyroassociative, giving rise to the gyrogroup structure. These “gyro”
variations create an elaborate “gyrolanguage” in which terms familiar from the
Euclidean setting get their gyro-counterpart.

In Section 3 we extend Möbius addition and its gyrocommutative gyrogroup
structure from a binary operation in the complex open unit disc into a binary
operation in the open ball of any real inner product space, resulting in the Möbius
ball gyrogroup. In Section 4 we extend the Möbius ball gyrogroup into a Möbius
gyrovector space. In Section 5 we show that Möbius gyrovector spaces form the
setting for the Poincaré ball model of hyperbolic geometry just as vector spaces
form the setting for the standard model of Euclidean geometry. In Section 6 we
present the hyperbolic triangle in the Poincaré ball model of hyperbolic geometry,
which we naturally call a gyrotriangle in gyrolanguage, along with its standard
notation and basic results. Only now, following Sections 1 – 6 we are in the
position to introduce and study the gyrosquare, that is, the hyperbolic square.
Guided by Euclidean geometry, a gyrosquare is a gyroquadrilateral with all four
sides of equal gyrolength and all four gyroangles of equal measure. Gyrolanguage,
thus, turns out to be the language we need to articulate analogies that the classical
and the modern in this paper share.

2. Möbius transformations of the disc

Möbius transformations of the open unit disc D = {z ∈ C : |z| < 1} of
the complex plane C are well known. Ahlfors’ book [1], Conformal Invariants:
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Topics in Geometric Function Theory, begins with a presentation of the Möbius
self-transformation of the complex open unit disc D,

z 7→ eiθ a + z

1 + az
= eiθ(a⊕z) (2.1)

where a is the complex conjugate of a, and where a, z∈D and θ∈R [6, p. 211]
[9, p. 185] [16, pp. 177 – 178]. We present the Möbius transformation polar de-
composition (2.1) in a form that suggests the Möbius addition, ⊕, defined by the
equation

a⊕z =
a + z

1 + az
(2.2)

Naturally, Möbius subtraction, 	, is given by a	z = a⊕(−z), so that z	z = 0
and 	z = 0	z = 0⊕(−z) = −z. Remarkably, Möbius addition possesses the
automorphic inverse property

	(a⊕b) = 	a	b (2.3)

and the left cancellation law

	a⊕(a⊕z) = z (2.4)

for all a, b, z∈D, [29, 30].
Möbius addition gives rise to the Möbius disc groupoid (D,⊕), recalling that

a groupoid (G,⊕) is a nonempty set, G, with a binary operation, ⊕, and that an
automorphism of a groupoid (G,⊕) is a bijective self map f of G that respects its
binary operation ⊕, that is, f(a⊕b) = f(a)⊕f(b). The set of all automorphisms
of a groupoid (G,⊕) forms a group, denoted Aut(G,⊕).

Möbius addition ⊕ in the disc is neither commutative nor associative. To
measure the extent to which Möbius addition ⊕ in the disc D deviates from
associativity we define the gyrator

gyr : D× D → Aut(D,⊕) (2.5)

by the equation

gyr[a, b]z = 	(a⊕b)⊕{a⊕(b⊕z)} (2.6)

for all a, b, z∈D.
The automorphisms

gyr[a, b] ∈ Aut(D,⊕) (2.7)

a, b ∈ D, are called gyrations [34]. In order to emphasize that gyrations of D
are also automorphisms of (D,⊕), as we will see below, they are also called
gyroautomorphisms.

Clearly, in the special case when the binary operation ⊕ in (2.6) is associative,
gyr[a, b] reduces to the trivial automorphism, gyr[a, b]z = z for all a, b, z∈D, so
that, indeed, the self map gyr[a, b] of the disc D measures the extent to which
Möbius addition ⊕ in the disc D deviates from associativity.

One can rewrite (2.6) in terms of (2.2), obtaining

gyr[a, b]z =
1 + ab

1 + ab
z (2.8)
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so that the gyrations

gyr[a, b] =
1 + ab

1 + ab
=

a⊕b

b⊕a
(2.9)

a, b∈D, are unimodular complex numbers. As such, gyrations represent rotations
of the disc D about its center, as shown in (2.8).

Gyrations are invertible. The inverse gyr−1[a, b] of a gyration gyr[a, b] is the
gyration gyr[b, a],

gyr−1[a, b] = gyr[b, a] (2.10)

Moreover, gyrations respect Möbius addition in the disc,

gyr[a, b](c⊕d) = gyr[a, b]c⊕gyr[a, b]d (2.11)

for all a, b, c, d∈D, so that gyrations of the disc are, in fact, automorphisms of
the disc, as anticipated in (2.7).

Identity (2.9) can be written as

a⊕b = gyr[a, b](b⊕a) (2.12)

thus giving rise to the gyrocommutative law of Möbius addition. Furthermore,
Identity (2.6) can be manipulated, by mean of the left cancellation law (2.4), into
the identity

a⊕(b⊕z) = (a⊕b)⊕gyr[a, b]z (2.13)

thus giving rise to the left gyroassociative law of Möbius addition.
The gyrocommutative law, (2.12), and the left gyroassociative law, (2.13), of

Möbius addition in the disc reveal the grouplike structure of Möbius groupoid
(D,⊕), that we naturally call a gyrocommutative gyrogroup. Taking the key fea-
tures of Möbius groupoid (D,⊕) as axioms, and guided by analogies with group
theory, we obtain the following definitions of gyrogroups and gyrocommutative
gyrogroups, where we attach the prefix “gyro” to a classical term in the algebra
of Euclidean geometry to mean the analogous term in the algebra of hyperbolic
geometry.

Definition 2.1. (Gyrogroups). A groupoid (G,⊕) is a gyrogroup if its binary
operation satisfies the following axioms. In G there is at least one element, 0,
called a left identity, satisfying
(G1) 0⊕a = a
for all a ∈ G. There is an element 0 ∈ G satisfying axiom (G1) such that for
each a ∈ G there is an element 	a ∈ G, called a left inverse of a, satisfying
(G2) 	a⊕a = 0 .
Moreover, for any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such
that the binary operation obeys the left gyroassociative law
(G3) a⊕(b⊕c) = (a⊕b)⊕gyr[a, b]c .
The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the
groupoid (G,⊕), that is,
(G4) gyr[a, b] ∈ Aut(G,⊕) ,
and the automorphism gyr[a, b] of G is called the gyroautomorphism, or the gy-
ration, of G generated by a, b ∈ G. The operator gyr : G × G → Aut(G,⊕) is
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called the gyrator of G. Finally, the gyroautomorphism gyr[a, b] generated by any
a, b ∈ G possesses the left loop property
(G5) gyr[a, b] = gyr[a⊕b, b] .

The gyrogroup axioms (G1) – (G5) in Definition 2.1 are classified into three
classes:

(1) The first pair of axioms, (G1) and (G2), is a reminiscent of the group
axioms.

(2) The last pair of axioms, (G4) and (G5), presents the gyrator axioms.
(3) The middle axiom, (G3), is a hybrid axiom linking the two pairs of axioms

in (1) and (2).

As in group theory, we use the notation a	b = a⊕(	b) in gyrogroup theory as
well.

In full analogy with groups, gyrogroups are classified into gyrocommutative
and non-gyrocommutative gyrogroups.

Definition 2.2. (Gyrocommutative Gyrogroups). A gyrogroup (G,⊕) is
gyrocommutative if its binary operation obeys the gyrocommutative law
(G6) a⊕ b = gyr[a, b](b⊕ a)
for all a, b ∈ G.

Gyrogroup theorems, some of which are analogous to group theorems, are pre-
sented in [29, 30]. Thus, without losing the flavor of the group structure we have
generalized it into the gyrogroup structure to suit the needs of Möbius addition in
the disc and, more generally, in the ball of any real inner product space, [32, 33].
Gyrogroups abound in group theory, as shown in [7] and [8], where finite and in-
finite gyrogroups, both gyrocommutative and non-gyrocommutative, are studied.
The generalization of groups into gyrogroups that Möbius addition suggests bears
an intriguing resemblance to the generalization of the rational numbers into the
real ones. The beginner is initially surprised to discover an irrational number,
like

√
2, but soon later he is likely to realize that there are more irrational num-

bers than rational ones. Similarly, the gyrogroup structure of Möbius addition
initially comes as a surprise. But, interested explorers may soon realize that there
are more non-group gyrogroups than groups.

3. Möbius addition in the ball

If we identify complex numbers of the complex plane C with vectors of the
Euclidean plane R2 in the usual way,

C 3 u = u1 + iu2 = (u1, u2) = u ∈ R2 (3.1)

then the inner product and the norm in R2 are given by the equations

ūv + uv̄ = 2u·v

|u| = ‖u‖
(3.2)

These, in turn, enable us to translate Möbius addition from the open complex
unit disc D into the open unit disc R2

s=1 = {v ∈R2 : ‖v‖ < s = 1} of R2 as
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follows:

D 3 u⊕v =
u + v

1 + ūv

=
(1 + uv̄)(u + v)

(1 + ūv)(1 + uv̄)

=
(1 + ūv + uv̄ + |v|2)u + (1− |u|2)v

1 + ūv + uv̄ + |u|2|v|2

=
(1 + 2u·v + ‖v‖2)u + (1− ‖u‖2)v

1 + 2u·v + ‖u‖2‖v‖2

= u⊕v ∈ R2
s=1

(3.3)

for all u, v ∈ D and all u,v ∈ R2
s=1. The last equation in (3.3) is a vector

equation, so that its restriction to the ball of the Euclidean two-dimensional
space is a mere artifact. As such, it survives unimpaired in higher dimensions,
suggesting the following definition of Möbius addition in the ball of any real inner
product space.

Definition 3.1. (Möbius Addition in the Ball). Let V be a real inner product
space [14], and let Vs be the s-ball of V,

Vs = {Vs ∈ V : ‖v‖ < s} (3.4)

for any fixed s > 0. Möbius addition ⊕ in the ball is a binary operation in Vs

given by the equation

u⊕v =
(1 + 2

s2u·v + 1
s2‖v‖2)u + (1− 1

s2‖u‖2)v

1 + 2
s2u·v + 1

s4‖u‖2‖v‖2
(3.5)

u,v∈Vs, where · and ‖·‖ are the inner product and norm that the ball Vs inherits
from its space V.

Without loss of generality, one may select s = 1 in Definition 3.1. We, however,
prefer to keep s as a free positive parameter in order to exhibit the result that in
the limit as s → ∞, the ball Vs expands to the whole of its real inner product
space V, and Möbius addition ⊕ reduces to vector addition in V.

Möbius addition in the ball Vs is known in the literature as a hyperbolic transla-
tion [2, 23]. Following the discovery of the gyrocommutative gyrogroup structure
in 1988 [24], Möbius hyperbolic translation in the ball Vs now deserves the ti-
tle “Möbius addition” in the ball Vs, in full analogy with the standard vector
addition in the space V that contains the ball.

Möbius addition in the ball Vs satisfies the gamma identity

γu⊕v = γuγv

√
1 +

2

s2
u·v +

1

s4
‖u‖2‖v‖2 (3.6)

for all u,v ∈ Vs, where γu is the gamma factor

γv =
1√

1− ‖v‖2

s2

(3.7)
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in the s-ball Vs. Let v ∈ V. Then, v ∈ Vs if and only if γv is real. Hence, it
follows from the gamma identity (3.6) that u,v ∈ Vs =⇒ u⊕v ∈ Vs, so that
Möbius addition is, indeed, a binary operation in the ball Vs.

4. Möbius scalar multiplication in the ball

A Möbius gyrogroup (Vs,⊕) admits scalar multiplication, ⊗, between a real
number r∈R and a vector v∈Vs, turning the gyrogroup into a Möbius gyrovector
space (Vs,⊕,⊗). The Möbius scalar multiplication definition follows.

Definition 4.1. (Möbius Scalar Multiplication). Let (Vs,⊕) be a Möbius
gyrogroup. Then its corresponding Möbius gyrovector space (Vs,⊕,⊗) involves
the Möbius scalar multiplication r⊗v = v⊗r in Vs, given by the equation

r⊗v = s

(
1 +

‖v‖
s

)r

−
(

1− ‖v‖
s

)r

(
1 +

‖v‖
s

)r

+

(
1− ‖v‖

s

)r

v

‖v‖

= s tanh(r tanh−1 ‖v‖
s

)
v

‖v‖

(4.1)

where r∈R, v∈Vs, v 6= 0; and r⊗0 = 0.

As examples, for any natural number n, n⊗v = v⊕ . . .⊕v (n terms), and the
“Möbius half” is obtained from (4.1) with r = 1/2, resulting in the identity

1
2
⊗v =

γv

1 + γv

v (4.2)

Indeed, (1/2)⊗v⊕(1/2)⊗v = v, as one can check.
Principles analogous to those of vector space approach to Euclidean geometry

are at play in gyrovector space approach to hyperbolic geometry, as shown in
[30, Chap. 6]. The first two basic examples are the gyroline and the gyroangle,
presented in Sec. 5.

5. Möbius Gyroline and Gyroangle

In full analogy with straight lines in the standard vector space approach to
Euclidean geometry, let us consider the gyroline equation in the ball Vs,

LAB = A⊕(	A⊕B)⊗t (5.1)

A, B ∈ Vs, t∈R. The point A of the gyroline LAB corresponds to t = 0 and, owing
to the left cancellation law (2.4), the point B of the gyroline LAB corresponds to
t = 1. The gyrosegment AB that links the points A and B is obtained from (5.1)
with 0 ≤ t ≤ 1, as shown in Fig. 1 (left).

The gyromidpoint MAB of the points A and B in a Möbius gyrovector space
(Vs,⊕,⊗) corresponds to the parameter t = 1/2 of the gyroline LAB [26],

MAB = A⊕(	A⊕B)⊗1

2
(5.2)
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Figure 1. Möbius gyroline and gyroangle in a Möbius gyrovector
space (Vs,⊕,⊗). The equations of the gyroline LAB and the gyroan-
gle measure α in the gyrovector space approach to the Poincaré ball
model of hyperbolic geometry are fully analogous to their classical
counterparts in the common vector space approach to the standard
model of Euclidean geometry. Interestingly, the measure of the gy-
roangle between two intersecting gyrolines is equal to the measure
of the Euclidean angle between corresponding intersecting tangent
lines, as shown in the right figure.

As one would expect from a midpoint, it is symmetric, MAB = MBA , satisfying
the gyrodistance equality

d(A, MAB) = d(B, MAB) (5.3)

where d(A, B) is the gyrodistance from A to B in the Möbius gyrovector space
(Vs,⊕,⊗), given by the equation

d(A, B) = ‖B	A‖ (5.4)

The gyrodistance of a point A in the ball from the origin, O = 0, of the ball
coincides with its Euclidean counterpart,

d(O, A) = ‖A	O‖ = ‖A‖ (5.5)

In the special case when Vs = R2
s, the gyroline LAB , shown in Fig. 1 (left), turns

out to be a circular arc that intersects the boundary of the s-disc R2
s orthogonally.

This gyroline is known in hyperbolic geometry as the unique geodesic that passes
through the points A and B in the Poincaré disc model of hyperbolic geometry.
This and other relationships between gyrovector spaces and various models of
hyperbolic geometry are studied in [31] and [30, Ch. 7].

The gyroangle (that is, the hyperbolic angle) included by the gyrosegments
AB and AC that emanate from the point A, denoted ∠BAC, has the measure α
given by the equation [30, 29]

cos α =
	A⊕B

‖	A⊕B‖
· 	A⊕C

‖	A⊕C‖
(5.6)

A, B, C ∈ Vs. The point A is the vertex of the gyroangle ∠BAC. A gyroan-
gle with vertex at the origin, O = 0, of the ball coincides with its Euclidean
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counterpart,

cos α =
	O⊕B

‖	O⊕B‖
· 	O⊕C

‖	O⊕C‖
=

B

‖B‖
· C

‖C‖
(5.7)

The measure of a gyroangle is invariant under the motions of hyperbolic ge-
ometry, which are left gyrotranslations and rotations. Interestingly, the measure
of the gyroangle between two intersecting gyrolines is equal to the measure of
the Euclidean angle between corresponding intersecting tangent lines, shown in
Fig. 1 (right).

6. Möbius Gyrotriangle

A Möbius gyrotriangle along with its standard notation and some basic iden-
tities is presented in Fig. 2.

Let ABC be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗) with ver-
tices A, B, C ∈ Vs, sides a,b, c ∈ Vs and side gyrolengths a, b, c ∈ (−s, s),

a = 	B⊕C, a = ‖a‖, as = a
s

b = 	C⊕A, b = ‖b‖, bs = b
s

c = 	A⊕B, c = ‖c‖, cs = c
s

(6.1)

The gyroangle measures α, β and γ of the gyroangles at the vertices A, B and C
are given by the equations

cos α =
	A⊕B

‖	A⊕B‖
· 	A⊕C

‖	A⊕C‖

cos β =
	B⊕A

‖	B⊕C‖
· 	B⊕A

‖	B⊕C‖

cos γ =
	C⊕A

‖	C⊕A‖
· 	C⊕B

‖	C⊕B‖

(6.2)

In Euclidean geometry the triangle angles do not determine its side lengths. In
contrast, in hyperbolic geometry the gyrotriangle gyroangles determine uniquely
its side gyrolengths according to the following theorem [30, Theorem 8.48]:

Theorem 6.1. Let ABC be a gyrotriangle in a Möbius gyrovector space (Vs,⊕,⊗)
with vertices A, B, C, corresponding gyroangles α, β, γ, 0 < α+β+γ < π, and side
gyrolengths a, b, c, as shown in Fig. 2. The side gyrolengths of the gyrotriangle
ABC are determined by its gyroangles according to the AAA to SSS conversion
equations

a2
s =

cos α + cos(β + γ)

cos α + cos(β − γ)

b2
s =

cos β + cos(α + γ)

cos β + cos(α− γ)

c2
s =

cos γ + cos(α + β)

cos γ + cos(α− β)

(6.3)



110 A.A. UNGAR

Figure 2. Möbius gyrotriangle and its standard notation and
basic identities in a Möbius gyrovector space (Vs,⊕,⊗). Along with
obvious analogies with Euclidean geometry there is a remarkable
disanalogy. The gyrotriangle side gyrolengths a, b, c are uniquely
determined by its gyroangles α, β, γ.

Interestingly, in the limit as s →∞ (i) each of the identities in (6.3) reduces to
an identity equivalent to the Euclidean identity α + β + γ = π for the Euclidean
triangle angle sum, and (ii) each of the identities in (6.2) reduces to its Euclidean
counterpart.

7. Möbius Gyrosquare

The special case when β = γ = α/2 in (6.3) and in Fig. 2 is of particular interest
in our study of the gyrosquare. In this special case, the system of equations (6.3)
reduces to the system

a2
s =

2 cos α

1 + cos α

b2
s = c2

s =
cos α

2
+ cos 3α

2

2 cos α
2

= cos α

(7.1)

expressed in the notation of Fig. 2.
Interestingly, in the limit as s → ∞ each of the identities in (7.1) reduces

to cos α = 0, implying α = π/2, as expected in Euclidean geometry, where
α + β + γ = 2α = π.

The gyrosquare ABCD in the Möbius gyrovector space (Vs,⊕,⊗) is a gy-
roquadrilateral with all four sides of equal gyrolength, ‖A	B‖ = ‖B	C‖ =
‖C	D‖ = ‖D	A‖ =: a, and all four gyroangles of equal measure, ∠DAB =
∠ABC = ∠BCD = ∠CDA =: θ > 0. The gyrosquare defect is δ := 2π − 4θ.



THE HYPERBOLIC SSQUARE AND MÖBIUS TRANSFORMATIONS 111

Figure 3. The Möbius gyrosquare in a Möbius gyrovector plane
(R2

s,⊕,⊗). The Möbius gyrosquare ABCD in the left figure is situ-
ated in a special position in the disc, so that the equality of its side
gyrolengths and its gyroangles is visible to the readers, since they
are inhabitants of Euclidean geometry. The Möbius gyrosquare
A′B′C ′D′ in the right figure is obtained from the one in the left by
a left gyrotranslation. Hence, for inhabitants of the Poincaré ball
model of hyperbolic geometry the two Möbius gyrosquares in the
left and right figures are indistinguishable.

The gyrosquare gyrocenter is the point where its gyrodiagonals intersect. A gy-
rosquare is in a special position in the ball if its gyrocenter coincides with the
origin, O = 0, of the ball.

A gyrosquare ABCD in a special position in the Möbius disc (R2
s,⊕,⊗) is

shown in Fig. 3 (left). This gyrosquare has been moved into the gyrosquare
A′B′C ′D′ by a left gyrotranslation by some vector v ∈ R2

s, shown in Fig. 3
(right), so that

A′ = v⊕A

B′ = v⊕B

C ′ = v⊕C

D′ = v⊕D

(7.2)

Since the measure of a Möbius gyroangle between two intersecting gyrolines
equals the measure of the Euclidean angle between corresponding intersecting
tangent line, it is easy to see graphically in Fig. 3 that the gyroangles of a gy-
rosquare are invariant under left gyrotranslations of the gyrosquare, as expected
from the study of the gyroangle in [30, Chap. 8]. In the language of differential
geometry [31] we say that the Möbius gyroangle is conformal to the Euclidean
angle.

Let the gyrolength of each side of the Möbius gyrosquare in Fig. 3 be a, and let
the measure of each of its gyroangles be θ. Then, the Möbius gyrosquare ABCD
contains each of the four gyrotriangles ABC, BCD, CDA and DAB. Each of
these gyrotriangles is isosceles, having the gyroangles θ/2, θ/2 and θ. Hence, by
applying (7.1) and using the notation of Fig. 3, the side gyrolength a and the
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gyroangle θ of the Möbius gyrosquare ABCD in Fig. 3 are related by the equation

as =
√

cos θ (7.3)

Here as = a/s, and a = ‖A	B‖ = ‖B	C‖ = ‖C	D‖ = ‖D	A‖, and θ =
∠DAB = ∠ABC = ∠BCD = ∠CDA, shown in Fig. 3 (left). Similarly, a =
‖A′	B′‖ = ‖B′	C ′‖ = ‖C ′	D′‖ = ‖D′	A′‖, and θ = ∠D′A′B′ = ∠A′B′C ′ =
∠B′C ′D′ = ∠C ′D′A′, shown in Fig. 3 (right).

The gyrolength d of each of the two gyrodiagonals AC and BD of the gy-
rosquare ABCD in Fig. 3 is

ds =

√
2 cos θ

1 + cos θ
(7.4)

where ds = d/s and d = ‖A	C‖ = ‖B	D‖, shown in Fig. 3 (left). Similarly,
d = ‖A′	C ′‖ = ‖B′	D′‖, shown in Fig. 3 (right).

The gyrodiagonal “half gyrolength” (1/2)⊗d of a gyrosquare ABCD is impor-
tant since it gives the gyrodistance of each vertex A, B, C,D from the gyrosquare
gyrocenter. Following “Möbius half” (4.2), with γd = (1− d2

s)
−1/2, we thus have

from (7.4),

1
2
⊗d =

γd

1 + γd

d = s

√
2 cos θ√

1 + cos θ +
√

1− cos θ
(7.5)

To insure simultaneously the reality of the gyrolengths a in (7.3) and d in (7.4),
the non-negative gyrosquare gyroangle θ must obey the condition cos θ ≥ 0. For
nonnegative θ < π this condition is equivalent to the condition

0 ≤ θ ≤ π

2
(7.6)

The two extreme values of θ in (7.6) are excluded. The lower extreme value
θ = 0 is excluded since it corresponds to the limiting case when the gyrosquare
vertices A, B, C,D lie on the boundary of the disc, and the upper extreme value
θ = π/2 is excluded since it corresponds to the limiting case when the gyrosquare
side gyrolength vanishes.

We thus see that the gyrosquare gyroangle θ in a Möbius gyrovector space
(Vs,⊕,⊗) can have any value in the range

0 < θ <
π

2
(7.7)

and its side gyrolength a is uniquely determined by θ according to (7.3),

a = s
√

cos θ (7.8)

In contrast, the square angle θ in Euclidean geometry has the unique value
θ = π/2, but the square side length a can assume any positive value. Like the
square diagonals, the gyrosquare gyrodiagonals intersect each other orthogonally
at their gyromidpoints.

Finally, extending the gyrosquare definition to the three-dimensional gyrocube
is straightforward. The study of internal gyrolengths and gyroangles of the gy-
rocube is more complicated than that of the gyrosquare, but can be done in a
similar way.
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Instructively, we present two illustrative examples of the search for gyrosquares
with a given gyroangle.

Example 1: Let us calculate the vertices A, B, C,D of a gyrosquare ABCD
with a gyroangle

θ =
π

4
(7.9)

situated in a special position of the open unit disc.
It follows from (7.9) and (7.3) – (7.4) with s = 1 that the side gyrolength a

and the gyrodiagonal gyrolength d of the gyrosquare ABCD are given by the
equations

a =

√
cos

π

4
=

√
1√
2

d =

√
2

1 +
√

2

(7.10)

so that

γd = 1 +
√

2 (7.11)

where γd = (1− d2)−1/2. Hence, by “Möbius half” in (4.2),

1
2
⊗d =

γd

1 + γd

d =
1√

1 +
√

2
(7.12)

where (1/2)⊗d gives the gyrodistance of each vertex of the gyrosquare ABCD
from its gyrocenter.

Hence, the vertices of a gyrosquare ABCD situated in a special position in the
disc, with a gyrosquare gyroangle π/4, are

A = (
1√

1 +
√

2
, 0)

B = (0,
1√

1 +
√

2
)

C = (− 1√
1 +

√
2
, 0)

D = (0, − 1√
1 +

√
2
)

(7.13)

shown in Fig. 4 (left).
One can now check that each gyroangle, θ, of the gyrosquare ABCD in Fig. 4

(left) is π/4. Indeed, for instance,

cos θ =
	A⊕B

‖	A⊕B‖
· 	A⊕D

‖	A⊕D‖
=

1√
2

= cos
π

4
(7.14)

for A, B, D of (7.13).
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Figure 4. Illustrating Examples 1 and 2: The Möbius gyrosquare
in a Möbius gyrovector plane (R2

s,⊕,⊗) (i) with a gyrosquare gy-
roangle θ = π/4 and defect δ = π (left), and (ii) with a gyrosquare
gyroangle θ = π/3 and defect δ = 2π/3 (right).

Similarly, one can check that each side gyrolength, a, of the gyrosquare ABCD

in Fig. 4 (left) is a =
√

cos(π/4) =
√

1/
√

2. Indeed, for instance,

a2 = ‖	A⊕B‖2 =
1√
2

= cos
π

4
(7.15)

for A, B of (7.13).
Example 2: Let us calculate the vertices A, B, C,D of a gyrosquare ABCD

with a gyroangle

θ =
π

3
(7.16)

situated in a special position of the open unit disc.
It follows from (7.16) and (7.3) – (7.4) with s = 1 that the side gyrolength a

and the gyrodiagonal gyrolength d of the gyrosquare ABCD are given by the
equations

a =

√
cos

π

3
=

√
1

2

d =

√
2

3

(7.17)

so that

γd =
√

3 (7.18)

and hence, by “Möbius half” in (4.2),

1
2
⊗d =

γd

1 + γd

d =

√
2

1 +
√

3
(7.19)

where (1/2)⊗d gives the gyrodistance of each vertex of the gyrosquare ABCD
from its gyrocenter.
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Hence, the vertices of a gyrosquare ABCD situated in a special position in the
disc, with a gyrosquare gyroangle π/3, are

A = (

√
2

1 +
√

3
, 0)

B = (0,

√
2

1 +
√

3
)

C = (−
√

2

1 +
√

3
, 0)

D = (0, −
√

2

1 +
√

3
)

(7.20)

shown in Fig. 4 (right).
One can now check that each gyroangle, θ, of the gyrosquare ABCD in Fig. 4

(right) is π/3. Indeed, for instance,

cos θ =
	A⊕B

‖	A⊕B‖
· 	A⊕D

‖	A⊕D‖
=

1

2
= cos

π

3
(7.21)

for A, B, D of (7.20).
Similarly, one can check that each side gyrolength, a, of the gyrosquare ABCD

in Fig. 4 (right) is a =
√

cos(π/3) =
√

1/2. Indeed, for instance,

a2 = ‖	A⊕B‖2 =
1

2
= cos

π

3
(7.22)

for A, B of (7.20).
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