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Abstract. In this paper, we will consider Hyers–Ulam–Rassias stability of
multipliers and ring derivations between Banach algebras. As a corollary, we
will prove superstability of ring derivations and multipliers. That is, approx-
imate multipliers and approximate ring derivations are exact multipliers and
ring derivations.

1. Introduction and results

It seems that the stability problem of functional equations had been first raised
by S.M. Ulam (cf. [16, Chapter VI]). “For what metric groups G is it true that
an ε-automorphism of G is necessarily near to a strict automorphism? (An ε-
automorphism of G means a transformation f of G into itself such that ρ(f(x ·
y), f(x) · f(y)) < ε for all x, y ∈ G.)”

D.H. Hyers [5, Theorem 1 and Corollary] gave an answer in the affirmative to
the problem as follows.

Theorem 1.1. Suppose that E1 and E2 are two real Banach spaces and f : E1 →
E2 is a mapping. If there exists ε ≥ 0 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε
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for all x, y ∈ E1, then the limit

T (x) = lim
n→∞

f(2nx)

2n

exists for each x ∈ E1, and T : E1 → E2 is the unique additive mapping such that

‖f(x)− T (x)‖ ≤ ε

for every x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous for
each fixed x ∈ E1, then T is linear.

This result is called the Hyers–Ulam stability of the additive Cauchy equa-
tion g(x + y) = g(x) + g(y). Here we note that Hyers calls any solution of this
equation a “linear” function or transformation. Hyers considered only bounded
Cauchy difference f(x + y)− f(x)− f(y). T. Aoki [1] introduced unbounded one
and generalized a result [5, Theorem 1] of Hyers obtaining the stability of addi-
tive mapping. Th.M. Rassias [11], who independently introduced the unbounded
Cauchy difference, was the first to prove the stability of the linear mapping be-
tween Banach spaces. The concept of the Hyers–Ulam–Rassias stability was
originated from Rassias’ paper [11] for the stability of the linear mapping and its
importance in the proof of further results in functional equations. Th.M. Rassias
[11] generalized Hyers’ Theorem as follows:

Theorem 1.2. Suppose E1 and E2 are two real Banach spaces and f : E1 → E2

is a mapping. If there exist ε ≥ 0 and 0 ≤ p < 1 such that

‖f(x + y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)

for every x, y ∈ E1, then there is a unique additive mapping T : E1 → E2 such
that

‖f(x)− T (x)‖ ≤ 2ε

|2− 2p|
‖x‖p

for every x ∈ E1. If, in addition, the mapping R 3 t 7→ f(tx) is continuous for
each fixed x ∈ E1, then T is linear.

This result is what is called, the Hyers–Ulam–Rassias stability of the linear
mapping. The result of Hyers is just the case of Rassias’ Theorem when p = 0.
Thus, the Theorem of Th.M. Rassias is a generalization to the case where 0 is
less than or equal to p strictly less than 1. It should be mentioned that Rassias’
Theorem for the stability of the linear mapping allows the Cauchy difference to
be unbounded for all those values of p as well. During the 27th International
Symposium on Functional Equations, Th.M. Rassias raised the problem whether
a similar result holds for 1 ≤ p. Z. Gajda [4, Theorem 2] proved that Theorem
1.2 is valid for 1 < p. In the same paper [4, Example], he also gave an example
that a similar result to the above does not hold for p = 1. Later, Th.M. Rassias
and P. Šemrl [12, Theorem 2] gave another counter example for p = 1.

Note that if p < 0, then ‖0‖p is obviously meaningless. However, if we assume
that ‖0‖p means ∞, then the proof given in [11] also works for x 6= 0. Moreover,
with minor changes in the proof, we see that the result is also valid for p < 0.
Thus, the Hyers–Ulam–Rassias stability of the additive Cauchy equation holds
for all p ∈ R \ {1}.
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D.G. Bourgin [3] proved superstability of ring homomorphisms. Suppose that
A and B are Banach algebras and suppose that B is with unit. If f : A → B is
a surjective mapping such that

‖f(a + b)− f(a)− f(b)‖ ≤ ε (a, b ∈ A)

‖f(ab)− f(a)f(b)‖ ≤ δ (a, b ∈ A)

for some ε ≥ 0 and δ ≥ 0, then f is a ring homomorphism, that is,

f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b)

for all a, b ∈ A. J.A. Baker [2] proved that if f is a mapping from a semigroup S
into C, the complex number field, satisfying |f(a + b)− f(a)f(b)| ≤ ε (a, b ∈ S)
for some ε ≥ 0, then either |f(a)| ≤ (1 +

√
1 + 4ε)/2 for all a ∈ S or f is

multiplicative, that is, f(a + b) = f(a)f(b) for all a, b ∈ S.
Let B be a Banach algebra. We say that a mapping T : B → B is a multiplier if

aT (b) = T (a)b for each a, b ∈ B. A mapping T : B → B is a left (right) multiplier
if T (ab) = T (a)b (resp. T (ab) = aT (b)) for each a, b ∈ B. If an additive mapping
T : B → B satisfies

T (ab) = aT (b) + T (a)b (a, b ∈ B),

then T is said to be a ring derivation. The first, third and fourth authors [7,
8] considered perturbation of multipliers and ring derivations, and they proved
stability results in the sense of Hyers–Ulam–Rassias. Under a mild assumption,
they also proved superstability of multipliers and ring derivations. That is, if f is
an approximate multiplier (ring derivation), then f is an exact multiplier (resp.
ring derivation).

In this paper, we will consider multipliers, left (right) multipliers and ring
derivations on Banach algebra B. To unify these mappings, we consider the
mapping Φf defined by

Φf (a, b) = αf(ab) + βaf(b) + γf(a)b (a, b ∈ B), (1.1)

where α, β, γ ∈ C. Recall that left (right) annihilator algebra of B, denoted by
Al(B) (resp. Ar(B)), is the set {a ∈ B : aB = 0} (resp. {a ∈ B : Ba = 0}).

Theorem 1.3. Let ε ≥ 0, p ≥ 0, p 6= 1 and α, β, γ ∈ C. Let B be a Banach
algebra with Al(B) = {0} and f : B → B a mapping satisfying

‖f(a + b)− f(a)− f(b)‖ ≤ ε(‖a‖p + ‖b‖p) (a, b ∈ (a, b ∈ B), (1.2)

‖Φf (a, b)‖ ≤ ε‖a‖p ‖b‖p (a, b ∈ B). (1.3)

where Φf (a, b) is defined by (1.1). If γ 6= 0, then Φf (a, b) = 0 for every a, b ∈ B.

Corollary 1.4. Let ε ≥ 0 and p ≥ 0, p 6= 1. Let B be a Banach algebra with
Al(B) = {0}, and f : B → B a mapping satisfying (1.2).

(a) If ‖f(ab)−f(a)b‖ ≤ ε‖a‖p ‖b‖p for each a, b ∈ B, then f is a left multiplier.
(b) If ‖af(b)− f(a)b‖ ≤ ε‖a‖p ‖b‖p for each a, b ∈ B, then f is a multiplier.
(c) If ‖f(ab)− af(b)− f(a)b‖ ≤ ε‖a‖p ‖b‖p for each a, b ∈ B, then f is a ring

derivation.
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2. Proofs of results

Lemma 2.1. Let ε ≥ 0 and p ≥ 0, p 6= 1. Let B be a Banach algebra and
f : B → B a mapping satisfying (1.2) and (1.3). Then there exists a unique
additive mapping T : B → B such that

‖f(a)− T (a)‖ ≤ 2ε

|2− 2p|
‖a‖p (a ∈ B) (2.1)

and that

ΦT (a, b) = 0 (a, b ∈ B). (2.2)

Proof. Suppose that p 6= 1. By (1.2), it follows from Theorem 1.2 (see [1, 4, 5, 11])
that there exists a unique additive mapping T : B → B such that (2.1) holds for
every a ∈ B. So, we need to prove (2.2). Set s = (1− p)/|1− p|. Then s = ±1.
Take a, b ∈ B arbitrarily. Since T is additive, we see that T (a) = n−sT (nsa) for
each n ∈ N, the set of all natural numbers. Now it follows from (2.1) that

‖n−sf(nsa)− T (a)‖ = n−s ‖f(nsa)− T (nsa)‖

≤ n−s 2ε

|2− 2p|
‖nsa‖p = ns(p−1) 2ε

|2− 2p|
‖a‖p

for all n ∈ N. Since s(p− 1) < 0, we have

‖n−sf(nsa)− T (a)‖ → 0 as n →∞. (2.3)

A quite similar argument to the above shows that

‖n−2sf(n2sab)− T (ab)‖ ≤ n2s(p−1) 2ε

|2− 2p|
‖ab‖p

for all n ∈ N, and hence

‖n−2sf(n2sab)− T (ab)‖ → 0 as n →∞. (2.4)

By (1.3), we get, for each n ∈ N,

‖Φf (n
sa, nsb)‖ ≤ ε‖nsa‖p ‖nsb‖p = n2spε‖a‖p ‖b‖p

Since s(p− 1) < 0, we have

n−2s‖Φf (n
sa, nsb)‖ ≤ n2s(p−1)ε‖a‖p‖b‖p → 0 as n →∞. (2.5)

Now we are ready to prove ΦT (a, b) = 0. By the triangle inequality, we have

‖ΦT (a, b)‖ = ‖αT (ab) + βaT (b) + γT (a)b‖
≤ |α| ‖T (ab)− n−2sf(n2sab)‖

+ ‖αn−2sf(n2sab) + βaT (b) + γT (a)b‖. (2.6)

By (2.4), the first term of the right hand side tends to 0 as n → ∞. Another
application of the triangle inequality to the second term of the right hand side
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shows

‖αn−2sf(n2sab) + βaT (b) + γT (a)b‖
≤ ‖αn−2sf(n2sab) + βn−saf(nsb) + γf(nsa)n−sb‖

+ ‖βaT (b)− βn−saf(nsb)‖+ ‖γT (a)b− γf(nsa)n−sb‖
≤ n−2s‖Φf (n

sa, nsb)‖+ |β| ‖a‖ ‖T (b)− n−sf(nsb)‖
+ |γ| ‖T (a)− n−sf(nsa)‖ ‖b‖.

By (2.3) and (2.5), we thus obtain

‖αn−2sf(n2sab) + βaT (b) + γT (a)b‖ → 0 as n →∞.

Thus, by (2.6), we have ‖ΦT (a, b)‖ = 0, and so ΦT (a, b) = 0. �

Proof of Theorem 1.3. By Lemma 2.1, there exists a unique additive mapping T
satisfying (2.1) and (2.2). Suppose Al(B) = {0}. Take a, x ∈ B and n ∈ N
arbitrarily. Set s = (1− p)/|1− p|. By (1.3), we have

‖αf(ansx) + βaf(nsx) + γf(a)nsx‖ ≤ ε‖a‖p ‖nsx‖p,

and so

‖αn−sf(ns(ax)) + βan−sf(nsx) + γf(a)x‖
≤ εn−s‖a‖p ‖nsx‖p = εns(p−1)‖a‖p ‖x‖p.

Since s(p− 1) < 0, it follows from (2.3) that

αT (ax) + βaT (x) + γf(a)x = 0. (2.7)

Here we notice, by (2.2), that

αT (ax) + βaT (x) + γT (a)x = 0. (2.8)

Subtracting (2.8) from (2.7), we obtain γ{f(a) − T (a)}x = 0. Since γ 6= 0, we
have

{f(a)− T (a)}B = 0.

Since Al(B) = {0}, we thus conclude that f(a) = T (a) for each a ∈ B. By (2.2),
we have Φf (a, b) = ΦT (a, b) = 0 for each a, b ∈ B. �

Proof of Corollary 1.4. This is a direct corollary to Theorem 1.3.

(a) Take α = 1, β = 0, γ = −1.
(b) Take α = 0, β = 1, γ = −1.
(c) Take α = 1, β = γ = −1.

By Theorem 1.3, each approximate mapping is an exact one. This completes the
proof. �

Remark 2.2. Let B be a Banach algebra without order. The first, third and fourth
authors [7, Theorem 1.1] proved that if f : B → B satisfies ‖af(b) − f(a)b‖ ≤
ε‖a‖p ‖b‖p (a, b ∈ B), then f is a multiplier.
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