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Abstract. In the present work we continue studying the solvability of the
linear functional equations

∑N
j=1cjF ◦ aj = H and also the strong and weak

stability of the corresponding operator P (see the definition below). By anal-
ogy with the Cauchy and Jensen operators once more model operator P̂ is
considered, and the stability problems as well as some solvability problems for
P̂ are studied. Several unsolved problem of a general character are formulated.

1. Introduction.

In this work we continue studying the general linear functional operator

PF : =
N∑

j=1

cj(x)F
(
aj(x)

)
,

where x ∈ D ⊂ Rn, n ≥ 1, F ∈ C(I, B) is a compact supported Banach -
valued continuous function of a single variable. The interest to this object of
functional analysis is determined not only by its comparative novelty. The main
reason is (at least for the author) the possibility to use the results obtained when
studying various problems in such diverse fields of analysis as Integral geometry,
Partial differential equations, Measure theory, Integral equations, Approximate
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calculation and some others. It is in this connection that the solvability questions
related to the nonhomogeneous equations PF = H including some elements
of the qualitative theory were studied for the first time in the author’s papers
[1, 2, 3, 4]. Along with the solvability questions of the equation PF = H, we
continue studying various form of stability of the operator P begun in the author’s
papers [5, 6].

The paper is organized in the following way. At first we remind to the reader
the new notion of the stability of the operator P introduced by the author in [5]
and define some function spaces suitable when studying this operator. Then, we
formulate the problem we deal with, cite all the results obtained, and, finally,
prove them. The concluding part of the paper is devoted to a short discussion of
the above results, and to formulating some problems.

2. Main notions and definitions.

To present the results in a self contained form we remind the main definitions
from [5]. The kernel and the range of any linear operator L are denoted by kerL
and R(L), respectively. We denote by I the interval {t | 0 ≤ t ≤ 1}. Given a
Banach space B with the norm | · |B we denote by |F | = sup

t∈I

|F (t)|B the norm in

the space C(I, B). The following function spaces introduced for the first time in
[3] turned out to be very useful when working with the problems in question. By
definition, if γ > 0, then

C〈γ〉(I, B) = {F | F (t) = b0 + . . . + b[γ]t
[γ] + tγf(t)}

with bj ∈ B and f(t) ∈ C(I, B) if γ 6∈ N with [γ] being the integral part of the
γ, and f(0) = 0, if γ ∈ N. The space C〈γ〉(I, B) endowed by the norm

|F |〈γ〉 =

[γ]∑
j=1

|bj|+ |f(t)|

is a Banach space.
Let D ⊂ Rn, n ≥ 2, be a domain, and Γ one-dimensional submanifold (curve)

in D. If ζ : I → Γ is a one-to-one C〈γ〉 - map, then we denote by wΓ and PΓF the
restriction

wΓ(s) = (wΓ ◦ ζ)(s), s ∈ I,

of an arbitrary function w ∈ C(D) to Γ, and the operator

PΓ : F →
N∑

j=1

cjΓ (s ) F
(
ajΓ (s )

)
, s ∈ I,

respectively.

Definition 2.1. Given a C〈γ〉 - curve Γ ⊂ D, we say that the operator P is
strongly stable (along Γ), if the à priori estimate

inf
ϕ∈ kerP

|F − ϕ |C〈γ〉 < c | PΓF |C〈γ〉 (2.1)

holds with a constant c > 0 not depending on F 6∈ kerP .
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Definition 2.2. In the same situation the operator P is called weakly stable
(along Γ), if estimate (2.1) holds with kerPΓ instead of kerP .

It is clear that the strong stability implies the weak one.

3. Results: formulations and proofs.

The functional operator P we deal with in the present paper is

PF : = F (ax + by)− αF (x)− βF (y),

where all number parameters satisfy the conditions

a > 1, b > 1, α + β > 1, (3.1)

the function F is in space C(I, B), and the points (x, y) fill out the triangle

D = {(x, y) | (ax + by) ≤ 1, 0 ≤ x, y ≤ 1}.

Note that all the results of the work are trivially valid if α + β < 1. If α + β = 1
and a = α, b = β, we deal with the Jensen operator J. If α = β = a = b = 1,
then P is the Cauchy operator C. The extensive class of functional operators P ,
structurally associated with C and J has been studied in detail in [5] and [6].

The main problem we deal with and related to this operator is its stability.
But the first result concerns with some solvability problems.

Let λ and µ be some positive reals such that

aλ + bµ = 1, (3.2)

and Γ the curve

Γ = {(x, y) ∈ D | x = λt, y = µt; t ∈ I}.

Define γ as the unique τ - root of the equation

αλτ + βµτ = 1. (3.3)

Theorem 3.1. 1◦ The kernel of the operator

PΓ : C〈γ〉(I, B) → C〈γ〉(I, B)

consists of the functions

ϕ(t) = Atγ, A ∈ R.

2◦ The function F = 0 is the unique solution of the homogeneous equation

PF = 0

in the space C〈γ〉(I, B).

Note that the analogous fact of triviality of the kernel of the general operator
P has been established for some Cauchy type and Jensen type operators (see [5]
and [6], respectively).
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Here is two examples of such operators quoted from [5, 6]. The
equations

F (x2 + y + x)− F

(
3x

2

)
− F

(
y2 − 4xy − x4 + 4x2 +

3x

2

)
= 0, 0 ≤ x, y ≤ 1,

and

F
(
x
√

1 + x2ex2y +
√

x2y3 + 1 sin y
)
− 1

3
ex2yF

(
3x
√

1 + x2
)

− 2

3

√
x2y3 + 1F (

3

2
sin y) = 0, 0 ≤ x, y ≤ γ.

with sufficiently small γ have only trivial solution F = 0 in the
space C〈1+r〉(I), 0 ≤ r ≤ 1.
Try to prove the triviality of their kernels. It would be interesting
to describe as extensive as possible class of the operators P with
the property in question.

Theorem 3.2. The operator P is weakly stable (along Γ) in the space C〈γ+δ〉 for
an arbitrary δ > 0. In other words, the à priori estimate

inf
ϕ∈ kerPΓ

|F − ϕ |〈γ+δ〉 < c | PΓF |〈γ+δ〉, F ∈ C〈γ+δ〉(I, B), (3.4)

holds with a constant c > 0 not depending on F .

Corollary 3.3. 1◦ If γ 6∈ N, then, for all δ > 0, the à priori estimate

|F |〈γ+δ〉 < c|PΓF |〈γ+δ〉

holds with a constant c not depending on F . Thus, the P is strongly stable in this
case.
2◦ If γ ∈ N, then there is a constant A ≥ 0 such that the à priori estimate

|F − Atγ|〈γ+δ〉 < c|PΓF |〈γ+δ〉

holds with a constant c, as in 1◦.

Proof of Theorem 3.1. To begin with, we prove the correctness of the definition
of the number γ. Indeed, by (3.1) and (3.2) both numbers λ and µ are less then
one. The function

ζ(x) = αλx + βµx, x ≥ 0,

therefore, decreases in its domain from α+β to 0 and takes the value 1 at a single
point.

1◦ To describe the kernel of the operator PΓ consider the homogeneous equation
PΓF = 0 or, in the detailed form,

F (t)− αF (λt)− βF (µt) = 0. (3.5)

Note that, by the definition of the space C〈γ〉, any solution F ∈ C〈γ〉(I, B) of this
equation admits the representation in the form

F (t) = tγf(t),
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where f is a continuous function, satisfying the functional equation

f(t)− αλγf(λt)− βµγf(µt) = 0, t ∈ I. (3.6)

Indeed, by the definition of the space C〈γ〉,

F (t) =

[γ]∑
j=0

cjt
j + tγf(t), t ∈ I,

where f(t) is a continuous function and, in addition,

f(0) = 0, if γ ∈ N.

Substituting such an F in (3.5) leads to the asymptotic relation

[γ]∑
j=0

cj

(
1− αλj − βµj

)
tj + tγ

[
f(t)− αλγf(λt)− βµγf(µt)

]
= 0, (3.7)

whence all cj are equal to 0, if γ 6∈ N, and

c1 = . . . = cγ−1 = 0,

as well as

1− αλγ − βµγ = 0,

by the definition of γ, if γ ∈ N. In both cases the function f satisfies equa-
tion (3.6). Show that among continuous functions the only constants solve this
equation. The fact, that f(t) =const is a solution to (3.6), follows from (3.3).
To prove the part ”only” we will use the general Maximum principle for linear
functional operators proved in [1]. For the completeness, we cite it here in the
simplest form.

Maximum principle. Given an operator

P : F (t) → F (t)− a1(t)F
(
δ1(t)

)
− . . . aN(t)F

(
δN(t)

)
, t ∈ I,

with continuous functions aj and δj, satisfying conditions

N∑
j=1

aj = 1, (3.8)

δk(t) < t for some k, (3.9)

any solution F of the homogeneous equation PF = 0 takes its
maximal value at the point t = 0.
Indeed, let M : = max

I
F (t) and F (t0) = M . Then, by (3.8),

F
(
δk(t0)

)
= M , and hence, F

(
δn
k (t0)

)
= M for all n ∈ N. By

(3.9), δn
k (t0) → 0, as n →∞, whence F (0) = M .

By the definition of γ, the operator in the left hand side of (3.6) satisfies conditions
(3.8) and (3.9). In virtue of the Maximum principle, M = max

I
f = f(0). But

the above proof is equally true for the minimal value of the f . This leads to the
relation max f = min f = f(0), which means that f(t) ≡ const.
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Thus,
F (t) = Atγ, A is a constant,

as it was promised.

2◦ Let F ∈ C〈γ〉(I, B) and
PF = 0.

Let Γ be one of the above curves, generated by a pair (λ, µ). Then, for any such
Γ,

PΓF = 0,

and therefore,
F (t)− αF (λt)− βF (µt) = 0, t ∈ I.

By the part 1◦ of the theorem, for some constants A and γ 6= 1, we have

F (t) = Atγ.

To prove the assertion 2◦ one need to show that A = 0. As F solves the equation
PF = 0, the relation

(ax + by)γ − αxγ − βyγ = 0 (3.10)

holds for all (x, y) ∈ D. Substituting successively 0 for x and for y results in
relations

aγ = α, bγ = β.

Together with (3.10) this leads to the relation(
ax

ax + by

)γ

+

(
by

ax + by

)γ

= 1, (x, y) ∈ D. (3.11)

However, the equality ηγ + νγ = 1 under conditions η + ν = 1, η > 0, ν > 0 is
possible only for γ = 1. Therefore, taking into account that the sum of values in
the brackets in (3.11) is equal to 1, we arrive at the contradiction to the choice
of F (see (3.10)). This completes the proof of the theorem.

Proof of Theorem 3.2. The proof is completely based on Proposition 1 in [5].
For the completeness, we remind it.

Let L : B1 → B2 be a closed linear operator between Banach spaces
and K = ker L. If the range R(L) is closed, then there is a positive
constant c such that the à priori estimate

inf
ϕ∈K

|F − ϕ|B1 < c|LF |B2

holds for all elements F 6∈ K.

In our case the spaces B1 and B2 coincide with C〈γ+δ〉(I, B) and the role of L
plays the operator

PΓ : F (t) → F (t)− αF (λt)− βF (µt).

Consider first the situation with γ 6∈ N. As the closedness of the operator PΓ

follows from its continuity, it suffices, by the above Proposition, to prove the
solvability of the equation

F (t)− αF (λt)− βF (µt) = H(t) (3.12)
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in C〈γ+δ〉(I, B) for an arbitrary H ∈ C〈γ+δ〉(I, B). Comparing the asymptotic
expansion of the left hand side in (3.12) (see (3.7)) with the analogous expansion

[γ]∑
j=0

bjt
j + tγ+δh(t)

of the function H (with h being a continuous function) we obtain immediately
all the values

cj = bj/(1− αλj − βµj ), j = 1, . . . , [γ]− 1,

as well as

b[γ] = c[γ]

(
1− αλ[γ] − βµ[γ]

)
= 0, (3.13)

and the relation

f(t)− αλγ+δf(λt)− βµγ+δf(µt) = h(t), (3.14)

where both functions f and h are in C(I, B). Rewrite (3.14) in the operator form

f − Af = h,

where

A : f(t) → αλγ+δf(λt) + βµγ+δf(µt)

is the linear operator in C(I, B) with the norm

‖A‖ ≤ αλγ+δ + βµγ+δ < 1.

The latter inequality follows by the choice of the value γ and due to λ, µ <
1. Applying the classical result in functional analysis (the invertibility of the
operator E − A, E the identical operator) results in the unique solvability of
equation (3.13) for an arbitrary function h ∈ C〈γ+δ〉(I, B). This completes the
proof, when γ 6∈ N.

Let now γ ∈ N. Then, by (3.13), b[γ] = 0. This means that now the range
of the operator PΓ coincides with the subspace of functions H ∈ C〈γ+δ〉 with

H(n)(0) = 0. As such a situation is included in the above Proposition, we arrive
at needed solvability of equation (3.12) repeating word for word the above proof.
Theorem 3.2 is completely proved.

Proof of Corollary 3.3. 1◦ By Theorem 3.2, if γ 6∈ N, then the kernel of the
operator PΓ consist of functions ϕ = Atγ, A a constant. But tγ 6∈ C〈γ+λ〉(I, B),
so the only function ϕ = 0 lies in kerPΓ ∪C〈γ+λ〉(I, B), and the Corollary follows
from (3.4).

2◦ If γ ∈ N, then, in contrast to 1◦, the subspace K = kerPΓ ∩ C〈γ+λ〉(I, B)
consists of the functions ϕ = Atγ. Denote

m(ϕ) = |F − ϕ|〈γ+λ〉

with F being from (3.4), and let

µ = inf
ϕ∈K

m(ϕ).
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If µ = m(Φ) for some Φ ∈ K, then the proof is completed. Assume that µ < m(ϕ)
for all elements ϕ ∈ K. Let

µ = c|PΓF |〈γ+λ〉 − ε

for some ε > 0 with c a constant in (3.4). Then, by the definition of µ, there is
an element Φ ∈ K such that

µ < m(Φ) < µ + ε = c|PΓF |〈γ+λ〉.

This completes the proof of the Corollary.

4. Concluding remarks.

1. The choice of the above operator P is not casual. On the one hand, it
has a very simple structure, coinciding with that of the classical Cauchy and
Jensen operators for some values of the parameters. These two are the main
objects of investigation in innumerable papers dealing with the Ulam stability of
functional operators. This makes it possible to the reader (using a very simple
model) to compare the two different approaches to the stability from both quality
(the character of the results obtained) and technical (the tools used in the proofs)
points of view.

On the other hand, it is not seen how to prove the Ulam stability for the
operator P in question in the space C. Therefore, Theorem 3.2 and Corollary 3.3
represent the best possible of today result related to the stability of the operator
in question.

2. In the works [5, 6] the theory of the strong and weak stability has been
work out for the operators

ĈF := F ◦ a−
N∑

j=1

F ◦ aj

with the functions a, aj : D ⊂ Rn → I such that

a =
N∑

j=1

aj or aΓ =
N∑

j=1

ajΓ,

and

Ĵ F := F ◦ a−
N∑

j=1

cj F ◦ aj

with

a =
N∑

j=1

cjaj,

N∑
j=1

cj = 1 or aΓ =
N∑

j=1

cjΓajΓ,

N∑
j=1

cjΓ = 1,

called by the author the Cauchy and Jensen type operators, respectively. These
operators in principle can not be studied by the Hyer’s method, as his machinery
does not compatible with nonlinear arguments aj nor with nonconstant coeffi-
cients cj.
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The operator P̂ , studied here, can also play a role of a model operator for
different classes of operators of the type

P̂f : = F
(
a(x)

)
−

N∑
j=1

αjF
(
aj(x)

)
,

x ∈ D ⊂ Rn, with the aj(x), a(x) and αj satisfying some specific conditions. One
of such classes is already studied, and the corresponding results will be published
elsewhere.

3. The reader acquainted with the Ulam stability knows that the hypothetical

result related to the operator P̂ should have the following form:

for all ε > 0, there is a function ϕ(t) ∈ C(R, B) ∩ kerP̂ such that
if

|P̂F | < ε for F ∈ C(R, B), (4.1)

then the inequality

|F − ϕ| < cε

holds with a constant c > 0 not depending on F or on ε.

The essential difference between such an result and Corollary 3.3 is as follows.

(i) Condition (4.1) dictates the restriction |P̂F (x, y)| < ε at all points (x, y) of
the plane, whereas the analogous restriction in Corollary 3.3 reduces to the same
inequality but only at points (x, y) of some curve Γ. This is equivalent to some
overdeterminedness of the Ulam problem (if it is not solvable in the space more
extensive than C〈γ〉).

(ii) The domain of F in (4.1) is the whole space R, whereas it is compact in
Theorem 3.2.

(iii) Theorem 3.2 guarantees the smoothness of the function ϕ provided that F
is smooth (in applications this fact sometimes plays the crucial role). The above
hypothetical result does not distinguish smooth and continuous cases.

It is possible to shorten such a gap between the two approaches by solving the
following two problems.

Problem 1. To prove or to disprove that the operator P̂ is strongly or weakly
stable in the space C(I, B).

Problem 2. Assume that the P̂ is Ulam stable. To prove or to disprove that

the P̂ is strongly or weakly stable (along some curve Γ).
The same problems are waiting for their solvability in the case of all the above

mentioned Cauchy type and Jensen type operators.

References

1. B. Paneah, On the solvability of functional equations associated with dynamical systems
with two generators, Funct. Anal. Its Appl., 37(1) (2003), 46–60.

2. B. Paneah, Dynamical approach to some problems in integral geometry, Trans. Amer. Math.
Soc., 356 (2003), pp. 2757–2780.



STABILITY AND SOLVABILITY OF LINEAR FUNCTIONAL EQUATIONS 65

3. B. Paneah, Dynamical systems and functional equations related to boundary problems for
hyperbolic differential operators, Doklady Mathematics, 72, (2005), 949–953.

4. B. Paneah, On the general theory of the Cauchy type functional equations with applications
in analysis, Aequationes Math., 74 (2007), 119–157.

5. B. Paneah, Another approach to the stability of linear functional operators, Preprint
2006/13, ISSN 14437 - 739X, Institut fur Matematik, Uni Potsdam, (2006).

6. B. Paneah, On the stability of the linear functional operators structurally associated with
the Jensen operator, Iteration Theory (ECTT’06), (to appear).

1 Department of Mathematics, Technion, 32000 Haifa, Israel.
E-mail address: peter@tx.technion.ac.il


	1. Introduction.
	2. Main notions and definitions.
	3. Results: formulations and proofs.
	4. Concluding remarks.
	References

