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Abstract. We study in a unitary way the Schur-convexity or concavity of the
Stolarsky and Gini means Da,b(x, y) and Sa,b(x, y), for fixed x, y > 0, x 6= y.

1. Introduction

Let x, y > 0, x 6= y. The Stolarsky means Da,b(x, y), introduced in [15, 16], are
defined for a, b ∈ R and x > 0, y > 0 by

Da,b(x, y) =



[
b(xa − ya)

a(xb − yb)

]1/(a−b)

, ab(a− b) 6= 0

exp

(
−1

a
+

xa ln x− ya ln y

xa − ya

)
, a = b 6= 0[

xa − ya

a(ln x− ln y)

]1/a

, a 6= 0, b = 0

√
xy, a = b = 0.

(1.1)

Means (1.1) are sometimes called the “difference means”, or “extended means”
(see, e.g. [3, 6, 7]).
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The identric, logarithmic, and power means of order a (a 6= 0) will be denoted
by Ia, La and Aa, respectively. They are all contained in the above family of
means. We have Ia = Da,a; La = Da,0, and Aa = D2a,a. When a = 1, we
write I, L, and A instead of I1, L1 and A1, obtaining the identric, logarithmic,
and arithmetic means (see e.g. [10, 13]). There is a simple relationship between
means of order a (a 6= 1) and those of order one. Namely, we have

Ia(x, y) = (I(xa, ya))1/a (1.2)

with similar formulas for the remaining means mentioned above. Note that for
the geometric mean of x and y,

√
xy = G(x, y) we have G(x, y) = D0,0(x, y).

The second family of bivariate means studied here was introduced by C. Gini
[2]. They are defined as follows:

Sa,b(x, y) =



(
xa + ya

xb + yb

)1/(a−b)

, a 6= b

exp

(
xa ln x + ya ln y

xa + ya

)
, a = b 6= 0

√
xy, a = b = 0

(1.3)

Gini means are also called the “sum means”. It follows from (1.3) that S0,−1 = H
- the harmonic mean, S0,0 = G, and S1,0 = A. The mean S1,1 denoted by S1,1 = J
will play an important role in what follows. Put

Ja(x, y) = (J(xa, ya))1/a (1.4)

The basic properties of these means, as well as their comparison theorems, and
inequalities are studied in papers [2, 3, 5, 6, 15]. See also the survey monograph
on inequalities [17].

The following integral representations will be important in what follows:

Lemma 1.1. If a 6= b, then

ln Da,b =
1

b− a

∫ b

a

ln Itdt, (1.5)

and

ln Sa,b =
1

b− a

∫ b

a

ln Jtdt. (1.6)

Formula (1.5) is derived in [15], while the proof of (1.6) is an elementary exercise
in calculus. See also [5].

Recall now the definition of Schur-convex functions. Let I be an interval with
nonempty interior, and let f : In → R. Then f is called Schur-convex on In

(n ≥ 2) if f(x) ≤ f(y) for each two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn)
of In, such that x ≺ y holds. The relationship of majorization x ≺ y means that

n∑
i=1

x[i] ≤
k∑

i=1

y[i],
n∑

i=1

x[i] =
n∑

i=1

y[i],

where 1 ≤ k ≤ n− 1, and x[i] denotes the ith largest component of x.
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A function f is called Schur-concave if −f is Schur-convex. The following two
characterizations are often used in the theory of Schur-convex functions.

Lemma 1.2. Let I be an open interval. Then a continuously differentiable func-
tion f : I2 → R is Schur-convex iff it is symmetric and satisfies the relation(

∂f

∂y
− ∂f

∂x

)
(y − x) > 0 for all x, y ∈ I, x 6= y.

See e.g. [4, 9] for more general results, with applications.
The next result appears in [1]:

Lemma 1.3. Let f be a continuous function on I. Then F : I2 → R, defined by

F (a, b) =


1

b− a

∫ b

a

f(t)dt, a 6= b

f(a), a = b

(1.7)

is Schur-convex on I2 iff f is convex on I.

2. Main results

In a recent paper, F. Qi [7] has proved the following result:

Theorem 2.1. For fixed x, y with x, y > 0, x 6= y, the mean values Da,b(x, y)
are Schur-concave on R2

+ = [0, +∞) × [0, +∞), and Schur-convex on R2
− =

(−∞, 0]× (−∞, 0], with respect to (a, b).

Our aim in what follows is to offer a new proof of a more complete result:

Theorem 2.2. For fixed x, y with x, y > 0, x 6= y, the mean values Da,b(x, y)
and Sa,b(x, y) are Schur-concave on R2

+, and Schur-convex on R2
−, with respect to

(a, b).

Proof. In paper [12] it is proved (by using certain inequalities established in [10])
that the function t → It of (1.2) is log-concave for t > 0 and log-convex for t < 0.
The similar property of the function t → Jt of (1.4) has been proved in paper [5].
Now, Lemma 1, combined with Lemma 3 and the above results, imply that ln Da,b

and ln Sa,b are Schur-concave for a, b > 0, and Schur-convex for a, b < 0 (for fixed
x, y > 0, x 6= y). This in turn implies Theorem 2, as ln D(a, b) is Schur-convex
(concave) iff D(a, b) is Schur-convex (concave), etc. �

Remark 2.3. (1) The Schur-convexity problem of Da,b(x, y) for fixed a, b with
respect to x, y > 0 is considered in [8, 14]. In this case the results are not so nice
as in Theorem 1, 2. The similar problems for Sa,b(x, y) are still open.

(2) As a corollary of Theorem 1, in [7] the following inequality is stated: For
x, y > 0, x 6= y one has when r > 0:(

1

2r
· y2r − x2r

ln y − ln x

)1/2r

≤ 1

e1/r
(xxr

/yyr

)1/(xr−yr) (2.1)
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For r < 0, inequality (2.1) reverses. We wish to note here that these reduce
in fact to known inequalities. Indeed, for r > 0, (2.1) becomes L(x2r, y2r) ≤
(I(xr, yr))2, or by letting xr = u, yr = v:

L(u2, v2) ≤ (I(u, v))2 (2.2)

It is easy to see that, by homogeneity considerations, for r < 0, (2.1) reduces
again to (2.2).

Since L(u2, v2) = L(u, v)A(u, v) (see e.g. [11] for such identities), inequality
(2.2) reduces to

√
L · A ≤ I (2.3)

This is a consequence of relation (1.7) of [10], namely:
√

L · A ≤ A2/3 ≤ I.
For other refinements of (2.3) (involving e.g. the arithmetic-geometric mean of
Gauss), see [13, 15].
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1. N. Elezović and P. Pečarić, A note on Schur-convex functions, Rocky Mountain J. Math.
30 (2000), no.3, 853–856.

2. C. Gini, Di una formula compresive delle medie, Metron 13 (1938), 3–22.
3. E.B. Leach and M.C. Sholander, Extended mean values, Amer. Math. Monthly 85 (1978),

no.2, 84–90.
4. A.W. Marshall and I. Olkin, Inequalities: Theory of majorization and its applications,

Academic Press, New York, 1979.
5. E. Neuman and J. Sándor, Inequalities involving Stolarsky and Gini means, Math. Pannon-

ica 14 (2003), no.1, 29–44.
6. Zs. Páles, Inequalities for differences of powers, J. Math. Anal. Appl. 131 (1988), 271–281.
7. F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math. 35

(2005), no.5, 1787–1793.
8. F. Qi, J. Sándor, S.S. Dragomir and A. Sofo, Notes on the Schur-convexity of the extended

mean values, Taiwanese J. Math. 9 (2005), no.3, 411–420.
9. A.W. Roberts and D.E. Varberg, Convex functions, Academic Press, 1973.

10. J. Sándor, On the identric and logarithmic means, Aequationes Math. 40 (1990), 261–270.
11. J. Sándor, On certain identities for means, Studia Univ. Babeş-Bolyai Math. 38 (1993),
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