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Abstract. In this paper, we show that the class of D-symmetric operators
is norm dense in L(H). It is known that the direct sum of two D- symmetric
operators are not D-symmetric in general. Here we will show that the direct
sum of two D-symmetric operators is D-symmetric if their spectrums do not
meet each other. As a consequence, we show that the set {T + K : T is D −
symmetric andK is compact} is norm dense. Some open problems are also
presented.

1. Introduction

Let H be a separable infinite dimensional complex Hilbert space, and let L(H)
denote the algebra of all bounded linear operators on H. Let A, B ∈ L(H). We
define the generalized derivation δA,B : L(H) 7→ L(H) by

δA,B(X) = AX −XB.

If A = B, then δA,A(X) = δA(X) = AX − XA is called the inner derivation
implemented by A ∈ L(H). These concrete operators on L(H) occur in many
settings in mathematical analysis and applications, and their properties have been
studied already during many decades. In [2] J.H. Anderson et.al showed that if

A is D-symmetric, i.e., R(δA) = R(δA∗), where R(δA) denotes the norm closure of
the range of δA, then for T ∈ C1(H), AT = TA implies A∗T = TA∗. In this paper,
we show that the class of D-symmetric operators is norm dense in L(H). It is
known that the direct sum of two D-symmetric operators are not D-symmetric in
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general [8]. Here we will show that the direct sum of two D-symmetric operators
is D-symmetric if their spectrum do not meet each other. As a consequence, we
show that the set {T +K : T is D− symmetric and K is compact} is norm dense.
Some open problems are also presented.

2. D-symmetric operators

We begin this section by the following definitions and notations.

Definition 2.1. An operator A ∈ L(H) is called D-symmetric, if

R(δA) = R(δA∗).

The Trace class operators, denoted by C1(H), is the set of all compact opera-

tors A ∈ L(H), for which the eigenvalues of (TT ∗)
1
2 , counted according to their

multiplicity, are summable. The ideal C1(H) of L(H) admits a trace function
tr(T ), given by tr(T ) =

∑
n(Ten, en) for any complete orthonormal system (en)

in H. As a Banach space, C1(H) can be identified with the dual of the ideal K of
compact operators by means of the linear isometry T 7→ fT , where fT = tr(XT ).
Moreover, L(H) is the dual of C1(H), the ultra weakly continuous linear function-
als on L(H) which are of the form fT for T ∈ C1(H) and the weakly continuous
linear functionals which are of the form fT with T is of finite rank.

Definition 2.2. An operator A ∈ L(H) is called p-symmetric, if AT = TA, T ∈
C1(H) implies A∗T = TA∗.

Theorem 2.3. [2] If A ∈ L(H), then the following two statements are equivalent
i) A is D-symmetric
ii) (a) [A], its corresponding element of the Calkin algebra, is D-symmetric and
(b) T ∈ C1(H), AT = TA implies A∗T = TA∗.

In [1], Anderson has shown that the direct sum of two D-symmetric operators
is not D-symmetric in general. It is interesting to ask the following question:

Question. Under what conditions the direct sum of two D-symmetric opera-
tors is a D-symmetric operator?

In the following theorem we will provide a suitable condition.

Theorem 2.4. Let A and B be two D-symmetric operators such that σ(A) ∩
σ(B) = φ, where σ(A) and σ(B) are the spectrums of A and B, respectively.
Then A⊕B is also D-symmetric.

Proof. Since A and B are two D-symmetric operators, by using Theorem 2.3 we
obtain that A and B are p-symmetric operators. Let

S =

(
A 0
0 B

)
.

Since A and B are both p-symmetric,

AT = TA implies AT ∗ = T ∗A

and
BT = TB implies BT ∗ = T ∗B,
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∀T ∈ C1(H). Let

C =

(
T1 T2

T3 T4

)
be a trace class operator. If SC = CS, then(

AT1 − TA1 AT2 − T2B
BT3 − T3A BT4 − T4B

)
=

(
0 0
0 0

)
.

Since σ(A) ∩ σ(B) = φ, by using [9] the two equations AT2 − T2B = 0 and
BT3 − T3A = 0 imply that T2 = T3 = 0. Hence T ∗

1 A = AT ∗
1 and T ∗

4 B = BT ∗
4 .

Note that when

C =

(
T1 0
0 T4

)
,

then

C∗ =

(
T ∗

1 0
0 T ∗

4

)
.

So, we have obtained that C∗S = SC∗. Hence A⊕ B is p-symmetric. Note that
(a) of Theorem 2.3 is also satisfied for A⊕B. �

In the following example we will give two D-symmetric operators A and B with
σ(A) ∩ σ(B) = φ.

Example 2.5. Let H = E⊕F , where E is a finite dimensional Hilbert space and
F is a complex separable Hilbert space. Define T ∈ L(H) by T = A⊕ B, where
||A|| < 1, ker A 6= {0} and B is the unilateral shift on F , i.e., Ben = en+1, n ≥ 1.
It is known that A and B are D-symmetric [5, 8], and σ(A)∩ σ(B) = φ [4, p.53].
Thus A⊕B is D-symmetric.

Now we will recall the following question posed by Joel Anderson et.al [2].
Is the set {T + K : T , D-symmetric, K compact } norm-closed in L(H)?
In the following theorem we will prove that this set is norm dense in L(H).

For this, we need the following definition.

Definition 2.6. We shall say that a certain property (P ) of operators acting on
a Hilbert space H is a bad property, if

(i) Whenever A satisfies (P ), then for α ∈ C, with α 6= 0 and β ∈ C, the
operator αA + β also satisfies (P );

(ii) If B is similar to A, and A satisfies (P ), then B also satisfies (P );
(iii) If A satisfies (P ), and if B ∈ L(H), such that σ(A)∩σ(B) = φ, then A⊕B

satisfies (P ).

It is known [4, Theorem 3.5.1] that a set satisfying a bad property is norm-dense
in L(H).

Theorem 2.7. The set

S = {T + K : T isD − symmetric andK is compact},

is norm-dense .
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Proof. It suffices to show that S is a bad property.
1) Assume that A = T +K ∈ S. We have to prove that αA+βI = (αT +βI)+

αK ∈ S. Since R(δαT+βI) = R(δT ) for α ∈ C, α 6= 0 and β ∈ C, the operator
αT + βI is D-symmetric. Thus αA + βI ∈ S. This proves the first condition .

2) Suppose that A = T + K ∈ S and B is similar to A, i.e, there exists an
invertible operator U such that B = U−1AU . We claim that B ∈ S. Indeed, note
that U−1AU = U−1TU + U−1KU . Moreover note that if W ∈ R(δU−1TU), then
there is a sequence (yn)n∈N such that

(U−1TU)yn − ynU
−1TU → W

Observe that U−1R(δT )U = R(δU−1TU). Since T is D-symmetric, we have R(δT ) =

R(δT ∗), thus

R(δU−1T ∗U) = U−1R(δT ∗)U = U−1R(δT )U = R(δU−1TU)

Thus U−1TU is D-symmetric, and the second condition holds.
3) Let A and B be any two D-symmetric operators such that σ(A)∩σ(B) = ∅.

Let A be Calkin algebra. By using Theorem 2.3, the corresponding elements of
the Calkin algebra A, [A] and [B] are also D-symmetric. Thus by using Theorem
2.4, we conclude that [A]⊕ [B], is also D-symmetric. Hence the third condition
holds, and S is norm-dense. �

3. Derivation ranges

In one of his paper J.H. Anderson [1] has proved the remarkable result that

there exists A ∈ L(H) such that the identity operator IH ∈ R(δA). The classical
Brown-Pearcy characterization of the commutators AX − XA on L(H) as the
operators which are not of the form λI +K, for λ 6= 0 and K a compact operator,
is a natural motivation for Anderson’s result.

Here is a problem that might of interest. Recall from [6] that if T : X → Y ,
where X and Y are Banach spaces, then

T (X) = {lim
n

Txn : sup
n
‖xn‖ < ∞}.

It is not the usual closure since its points have to be the limits of images of
bounded sequences of vectors. So

Question. For which operators T on Hilbert space H do we have

I ∈ R(δT )?

Let N be the set {
A ∈ L(H) : I /∈ R(δA)

}
.

Recall that H.Yang in [10], shows that the set N is norm-dense in L(H). Let

Mw = {A ∈ L(H) : I 6∈ R(δA)
w
, ∀K ∈ K(H)}.

Since Mw ⊂ N [3, Remark 3.4], S.N. Elalami [3, Theorem 3.4] generalized
Yang’s results by proving that the set Mw is norm dense in L(H). Here we will
show that the set
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Jw =
{

A ∈ L(H) : I + K /∈ R(δA)
w
, ∀K ∈ K(H)

}
is also norm-dense in L(H).

Theorem 3.1. The set

Jw =
{

A ∈ L(H) : I + K /∈ R(δA)
w
, ∀K ∈ K(H)

}
is norm-dense in L(H).

Proof. By using [4, Theorem 3.5.1], it suffices to prove that the property A ∈ Jw

is a bad property. It is easy to see that R(δA) = R(δαA+β), for α ∈ C, β ∈ C,
α 6= 0, and X ∈ L(H). Hence if A ∈ Jw, then

αA + β ∈ Jw.

Now if S ∈ L(H) and S is invertible, then for all X ∈ L(H),

S(AX −XA)S−1 = (SAS−1)(SXS−1)− (SXS−1)(SAS−1).

Thus
SR(δA)

w
S−1 = R(δSAS−1)

w
.

Hence if I + K ∈ R(δA)
w
, then

I + SKS−1 ∈ R(δSAS−1)
w
.

It follows by the above argument that if R(δA)
w

contains I +K, then it also true
for all operators similar to A. Hence A ∈ Jw is invariant by similarity.

Let E = H ⊕ H and B = A ⊕ C, suppose that there exists a generalized
sequence {Xα} ⊂ B(E) such that

(A⊕ C)Xα −Xα(A⊕ C)
w−→ IE ⊕K.

Let P0 be the orthogonal projection on H, K1 denotes the compression of K to
H, i.e, K1 = P0KP0 | H and Xα1 denotes the compression of Xα to H. Then

AXα1 −Xα1A
w−→ IH ⊕K1.

So if A⊕ C /∈ Jw, then A /∈ Jw. �
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