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ABSTRACT. We investigate the following generalized Cauchy functional equa-
tion

flaz + By) = af () + 5f(y)
where a, 8 € R\ {0}, and use a fixed point method to prove its generalized
Hyers—Ulam—Rassias stability in Banach modules over a C*-algebra.

1. INTRODUCTION

The stability problem of functional equations originated from a question of
S.M. Ulam [22] concerning the stability of group homomorphisms : Let (G, %)
be a group and let (Gg,0,d) be a metric group with the metric d(-,-). Given
€ > 0, does there exist (€) > 0 such that if a mapping h : G1 — Gy satisfies the
inequality

d(h(x *y),h(z)oh(y)) <6
for all x,y € Gy, then there is a homomorphism H : Gy — Gy with
d(h(z), H(x)) <€

for all x € G417

In other words, we are looking for situations where homomorphisms are stable,
i.e., if a mapping is almost a homomorphism, then there exists a homomorphism
near it. D.H. Hyers [6] gave a first affirmative answer to the question of Ulam
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for Banach spaces. Let X and Y be Banach spaces: Assume that f : X — Y
satisfies

1f(z+y) = fl@) = fyl <e
for some € > 0 and all x,y € X. Then there exists a unique additive mapping
T:X —Y such that

[f(z) = T(z)|| <e

forall x € X.
T. Aoki [2] and Th.M. Rassias [20] provided a generalization of the Hyers’ theorem
for additive and linear mappings, respectively, by allowing the Cauchy difference
to be unbounded.

Theorem 1.1. (Th.M. Rassias). Let f : E — E' be a mapping from a normed
vector space E into a Banach space E' subject to the inequality

1f (@ +y) = f(@) = @I < elll=l” + llyl*) (1.1)
for all x,y € E, where € and p are constants with € > 0 and p < 1. Then the
limat on

L(z) = lim f(an)
exists for allx € E and L : E — E' is the unique additive mapping which satisfies
2¢
_ P
1f(z) = L{2)]| = 57—, =] (1.2)

for all x € E. If p < 0 then inequality (1.1) holds for x,y # 0 and (1.2]) for
x # 0. Also, if for each v € E the mapping t — f(tx) is continuous in t € R,

then L is linear.

The above inequality has provided a lot of influence in the development of
what is now known as a generalized Hyers—Ulam—Rassias stability of functional
equations. P. Gavruta [5] provided a further generalization of the Th.M. Ras-
sias’ theorem. During the last three decades a number of papers and research
monographs have been published on various generalizations and applications of
the generalized Hyers—-Ulam-Rassias stability to a number of functional equations
and mappings (see [14]-[19]). We also refer the readers to the books [4], [7], [9]
and [21].

Let E be a set. A function d : E x E — [0,00] is called a generalized metric
on F if d satisfies

(i) d(z,y) = 0 if and only if x = y;

(1) d(z,y) = d(y, z) for all x,y € E;

(13i) d(z,z) < d(x,y) + d(y, z) for all z,y,z € E.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2. [12] Let (E,d) be a complete generalized metric space and let
J : E — FE be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x € E, either

d(J"z, J"z) = 0o

for all non-negative integers n or there exists a non-negative integer ng such that
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1) d(J"z, J""x) < 0o for all n > ny;

2) t he sequence {J"x} converges to a fixed point y* of J;

3) y* is the umque fized point of J inthe set Y ={y € E:d(J"™z,y) < o0 };
4) d(y,y*) < 75d(y, Jy) for ally €Y.

Throughout this paper, let A be a unital C*-algebra with unitary group U(A),
unit e and norm | - |. Assume that X and Y are left Banach A-modules. An
additive mapping 7' : X — Y is called A-linear if T'(ax) = aT'(x) for all a € A
and all z € X.

In this paper, we investigate an A-linear mapping associated with the general-
ized Cauchy functional equation

flaz + By) = af(x) + f(y) (1.3)

where «, f € R\ {0}, and using the fixed point method (see [I}, 3, 10, 13]), we prove
the generalized Hyers—Ulam—Rassias stability of A-linear mappings in Banach A-
modules associated with the functional equation ([1.3]). The first systematic study
of fixed point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias;
cf. [§].

Throughout this paper, a and [ are fixed non-zero real numbers. For con-
venience, we use the following abbreviation for a given a € A and a mapping
[ X =Y,

Dof(2,y) == flaz + Bay) — af(x) — Baf(y)
for all z,y € X.

2. MAIN RESULTS
Lemma 2.1. Let f: X — Y be a mapping with f(0) =0 such that

Do f(x,y) =0 (2.1)

for all x,y € X and all a € U(A). Then f is A-linear.
Proof. Letting y = 0 in (2.1)), we get f(az) = af(x) for all x € X. Similarly, we
have f(By) = Gf(y) for all y € X. Hence (2.1) implies that

flax + Bay) = f(ax) + af (By) (2.2)
for all z,y € X and all a € U(A).

Replacing x and y by £ and y , respectively, in 1} we get
flo+ ay) = f(x) +af(y) (2.3)

for all x;y € X and all a € U(A). Letting a = e € U(A) in (2.3), we infer that f
is additive and so f(rz) = rf(z) for x € X and all rational numbers r. By letting

r=01in ,Weget
flay) = af(y) (2.4)

for all a € U(A) and all y € X. It is clear that (2.4) holds for a = 0.
Now let a € A (a # 0) and m an integer greater than 4|a|. Then |£]| < 1 <

1— % = % By Theorem 1 of [I1], there exist three elements u, ug, us € U(A)
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suc_‘;ll that 2a = uy + ug + uz. So a = 2(2a) = Z(us + uz + uz). Hence by (2.4)
we have

flaz) = % Fur + usw + ugw) = %[ Fluz) + flusz) + f(us)]
= B+ )/ (@) = 52 0f (@) = af @)
for all x € X. So f: X — Y is A-linear, as desired. O

Now we prove the generalized Hyers—Ulam—Rassias stability of A-linear map-
pings in Banach A-modules.

Theorem 2.2. Let f: X — Y be a mapping with f(0) = 0 for which there exists
a function ¢ : X? — [0,00) such that

Tim 2’@(2%, 2%) — 0, (2.5)
[ Daf(z, )|l < (2, y) (2.6)

for all x,y € X and all a € U(A). If there exists a constant L < 1 such that the
function

T x x x
T (x) = 80(%7 ﬁ) + 90(%70) + (0, %)
has the property
2p(x) < Lyp(2x)
for all x € X, then there exists a unique A-linear mapping T : X — Y such that
1
I17(@) = Tl £ = o() 27)

forallz € X.
Proof. Letting y = 0 in (2.6)), we get

1/ (ex) — af(x)]| < p(z,0) (2.8)
for all x € X. Similarly, letting z =0 and a = e € U(A) in (2.6]), we get

1F(By) = B W)l < (0, y) (2.9)

for all y € X. So it follows from ([2.6)), (2.8) and (2.9) that
1f ez + By) — flax) = F(BY)ll < e(x,y) + ¢(z,0) + ©(0,y)
for all x,y € X. Hence

17+ 3) = 1@ = F < o5 5) +9(.0) + (0. ) (2.10)

for all z,y € X. Letting y = x in , we get
x x x x
1£(20) =21 (@)l < o (1. 5) +9(3,0) + +(0, 5)
for all z,y € X. Hence
|#@) =27 (5)| < vl) (2.11)
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for all z € X. Let E :={g: X — Y | g(0) = 0}. We introduce a generalized
metric on E as follows:

d(g,h) :=inf{ C € [0,00] : [|g(z) — h(z)| < CY(z) for all x € X }.

It is easy to show that (E,d) is a generalized complete metric space [3].
Now we consider the mapping A : E — E defined by

(Ag)(z) = Zg(g), forallge EFand z € X.

Let g,h € E and let C € [0, 00] be an arbitrary constant with d(g,h) < C. From
the definition of d, we have

l9(z) = h(z)]| < C(x)

for all z € X. By the assumption and last inequality, we have
x x x
[(Ag) (@) = (AR @) =2]a(3) - h(5) | < 200(5) < CL()

for all x € X. So
d(Ag, Ah) < Ld(g, h)
for any g, h € E. It follows from (2.11)) that d(Af, f) < 1. Therefore according
to Theorem [1.2] the sequence {A"f} converges to a fixed point 7" of A, i.e.,
T:X =Y, T(z)= lim(A"f)(z)= lim 277(2%)
and T'(2x) = 2T (x) for all z € X. Also T is the unique fixed point of A in the
set B*={g€ E:d(f,g) <oo} and

1 1
d(T < ——d(A < —
(T, f) = ;=7 dALF) < 17—
i.e., inequality (2.7) holds true for all x € X. It follows from the definition of T,

and that

for all z,y € X and all @ € U(A). By Lemma 2.1} the mapping 7' : X — Y is
A-linear. Finally it remains to prove the uniqueness of T. Let P : X — Y be
another A-linear mapping satisfying . Since d(f, P) < ﬁ and P is additive,
P e E* and (AP)(x) = 2P(z/2) = P(x) for all x € X, i.e., P is a fixed point of
A. Since T is the unique fixed point of A in E*, P="T. O

DT (2, y)[| = lim 2"

Daf (55 50)

< lim 2"@(% i) =0

Corollary 2.3. Let r > 1 and 0 be non-negative real numbers and let f: X — Y
be a mapping satisfying f(0) = 0 and the inequality

[1Daf (2, y)|| < O] + [lyll")
for all x,y € X and all a € U(A). Then there exists a unique A-linear mapping
T:X —Y such that
2(Jel" + 16]")0
@ —2)|adl

If(z) = T (@)l <

[l]l”
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forallz € X.
Proof. The proof follows from Theorem [2.2] by taking

e(x,y) == 0(lz|" + llyll")
for all z,y € X. Then we can choose L = 2" and we get the desired result. [

Theorem 2.4. Let f: X — Y be a mapping with f(0) = 0 for which there exists
a function ® : X? — [0,00) such that

n—0oo

1
lim Q—nCID(Q”x, 2"y) =0,

[1Daf(z,y)ll < ®(z,y)
for all x,y € X and all a € U(A). If there exists a constant L < 1 such that the
function

r— VU(x):= <I>(x

w3 20+

g
has the property

U(2z) < 2LV (z)
for all x € X, then there exists a unique A-linear mapping T : X — Y such that

1
— < 2.12
17(@) = Tl < =57 %) (212)
forallz € X.
Proof. Using the same method as in the proof of Theorem [2.2] we have
1 1
|57@2) - r@)|| < 5@ (2.13)

for all x € X. We introduce the same definitions for £ and d (replacing ¥ by 1)
as in the proof of Theorem such that (E,d) becomes a generalized complete
metric space. Let A : E — E be the mapping defined by

1
(Ag)(z) = 5g(2x), for all g € E and z € X.

One can show that d(Ag,Ah) < Ld(g, h) for any g, h € E. It follows from (2.13)
that d(Af, f) < % Due to Theorem , the sequence {A"f} converges to a fixed
point T of A i.e.,

T:X—-Y, T(zr)=lim(A"f)(z)= lim if(2”ac)

n—oo n—oo 21

and T'(2x) = 2T (x) for all z € X. Also

1
d(T, f) < =7 d(Af, ) <

i.e., inequality (2.12) holds true for all x € X.
The rest of the proof is similar to the proof of Theorem [2.2] and we omit the
details. O

1
2—2L°
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Corollary 2.5. Let 0 < r < 1 and 0,6 be non-negative real numbers and let
f: X =Y be a mapping satisfying f(0) = 0 and the inequality

[1Daf(z,y)|| <0+ 0= + [[y]")
for all x,y € X and all a € U(A). Then there exists a unique A-linear mapping

T:X —Y such that

30 20"+ 1618,

forallx € X.
Proof. The proof follows from Theorem [2.4] by taking
D(z,y) =8+ 6|z + Iyl
for all z,y € X. Then we can choose L = 27! and we get the desired result. [J
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