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Abstract. In this paper we solve the functional equation

f
(
αx + (1− α)y

)
+ f

(
βx + (1− β)y

)
= f

(
γx + (1− γ)y

)
+ f

(
δx + (1− δ)y

)
which holds for all x, y ∈ I, where I ⊂ R is a non-void open interval, f : I → R
is an unknown function and α, β, γ, δ ∈ (0, 1) are arbitrarily fixed.

1. Introduction and preliminaries

Consider the functional equation

f
(
αx + (1− α)y

)
+ f

(
βx + (1− β)y

)
= f

(
γx + (1− γ)y

)
+ f

(
δx + (1− δ)y

)
(1.1)

which holds for all x, y ∈ I, where I ⊂ R is a non-void open interval, f : I → R
is an unknown function and the parameters α, β, γ, δ ∈ [0, 1] are arbitrarily fixed.
The particular case γ = 1, δ = 0 has been investigated in Daróczy-Maksa-Páles
[3], Daróczy-Lajkó-Lovas-Maksa-Páles [11], and also in Maksa [12] in connection
with the equivalence of certain functional equations involving means. The purpose
of this paper is to extend these results for arbitrary possible values of the weights
α, β, γ, δ. The paper is organized as follows. First of all we study the spe-
cial cases when at least two parameters are the same. The condition that α =
γ and β = δ (or α = δ and β = γ) do not hold at the same time is natural to avoid
the trivialities. To investigate the general case with pairwise different parameters
we use a relation to divide the space of the parameters into regions. By the help
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of these regions we can discuss the possible cases easier. As we shall see, the
solutions of (1.1) have the general form

f(x) = A2(x, x) + A1(x) + A0 (x ∈ I),
where Ak : Rk → R are symmetric k-additive functions (k = 0, 1, 2) with the
property

A2(αx, βx) = A2(γx, δx) (x ∈ R).

The existence of the solutions with non-zero biadditive part depends on the al-
gebraic properties of the parameters. Here we introduce some basic notions we
need in the following. Throughout the paper I denotes a non-void open interval.

Definition 1.1. For a fixed p ∈ (0, 1) the function f : I → R is called p-Wright
affine on I if

f
(
px+ (1− p)y

)
+ f

(
(1− p)x+ py

)
= f(x) + f(y)

holds for every x, y ∈ I. If p = 1
2

then f is called Jensen affine.

It is well-known that every Jensen affine function on the interval I has the form

f(x) = A(x) + b (x ∈ I),
where A : R → R is an additive function and b ∈ R is a constant, see Lajkó [8].
As a basic result for p-Wright affine functions in general we need the following
theorem due to Lajkó [7] (for the terminology see Székelyhidi [10]).

Theorem 1.2. The function f is p-Wright affine on the interval I if and only
if there exist symmetric k-additive functions Ak : Rk → R (k = 0, 1, 2) with the
property

A2(px, (1− p)x) = 0 (x ∈ R)

such that
f(x) = A2(x, x) + A1(x) + A0 (x ∈ I).

We also need the localizability theorem due to Gilányi-Páles [4].

Theorem 1.3. The function f is p-Wright affine on the interval I if and only if
for any ξ ∈ I there is an ε > 0 such that (ξ − ε, ξ + ε) ⊂ I and the restriction
f |(ξ−ε,ξ+ε) is p-Wright affine function on the interval (ξ − ε, ξ + ε).

We will use the following simple remarks very frequently .

Remark 1.4. Let (x, y) ∈ I2 and α, β ∈ (0, 1) are different real numbers. Consider
the linear transformation having the matrix

P :=

(
α 1− α
β 1− β

)
.

Then detP = α − β 6= 0. Since every regular linear transformation is an open
mapping and

P

(
x
x

)
=

(
x
x

)
(x ∈ I),

every point of
diag I2 := {(ξ, ξ) | ξ ∈ I}
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is an interior point of the set P (I2) (the image of I2 under P ). Thus for any
point ξ ∈ I there is an ε > 0 such that

(ξ − ε, ξ + ε)2 ⊂ P (I2).

Remark 1.5. Every locally constant function on an open interval is constant. This
means that f is constant on the interval I if and only if for any point ξ ∈ I there
is an ε > 0 such that (ξ − ε, ξ + ε) ⊂ I and the restriction f |(ξ−ε,ξ+ε) is constant
on (ξ − ε, ξ + ε). Indeed, if f is constant on (ξ − ε, ξ + ε) then there exists the
derivate of f at the point ξ and f ′(ξ) = 0 for all ξ ∈ I. Therefore f is constant
on I. The converse is trivial.

2. Special cases

The scheme below shows the special and trivial cases in terms of the parameters.
Following the arrows we can find the classes of the solutions:

α = β → γ 6= δ → α 6= γ+δ
2

→ constant functions
↓

α = γ+δ
2

→ Jensen affine functions

α = β → γ = δ → α 6= γ → constant functions
↓

α = γ → all functions

A similar method can be used to illustrate the case γ = δ, i.e. when the weights
on the same side coincide. Another possible special cases are considered in the
next scheme:

α = γ → β 6= δ → constant functions
↓

β = δ → all functions

A similar method can be used to illustrate the cases α = δ or β = γ or β = δ. As
we can see it is a natural condition to avoid the trivialities that α = γ and β =
δ (or α = δ and β = γ) do not hold at the same time. For simplicity we shall
restrict our consideration to the following special cases:

(i) α = β and γ = δ; then our equation

f
(
αx+ (1− α)y

)
= f

(
γx+ (1− γ)y

)
(x, y ∈ I),

(ii) α = β and γ 6= δ; then our equation

2f
(
αx+ (1− α)y

)
= f

(
γx+ (1− γ)y

)
+ f

(
δx+ (1− δ)y

)
(x, y ∈ I).

It is easy to see that in the further special cases listing in the schemes above
we get a similar form of our equation as in (i) and (ii).
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Theorem 2.1. Let α, γ ∈ (0, 1) be fixed such that α 6= γ. The function f : I → R
satisfies the equation

f
(
αx+ (1− α)y

)
= f

(
γx+ (1− γ)y

)
(x, y ∈ I)

if and only if f is constant on I.

Proof. Consider the transformation

u = αx+ (1− α)y, v = γx+ (1− γ)y if (x, y) ∈ I2

which takes any point (x, y) ∈ I2 to the point (u, v) ∈ P1(I
2) (the image of I2

under P1), where

P1 :=

(
α 1− α
γ 1− γ

)
.

It is easy to see that f(u) = f(v) holds for all (u, v) ∈ P1(I
2). Since every point

of diag I2 is an interior point of the set P1(I
2), for any u ∈ I there exists an ε > 0

such that
{u} × (u− ε, u+ ε) ⊂ P1(I

2).

This means that f(u) = f(v) holds for all v ∈ (u− ε, u+ ε) from which it follows
that f is constant on (u − ε, u + ε). According to Remark 1.5 the statement
follows easily. The converse is trivial. �

Theorem 2.2. Let α, γ, δ ∈ (0, 1) be pairwise different real numbers. Suppose
that f : I → R satisfies the equation

2f
(
αx+ (1− α)y

)
= f

(
γx+ (1− γ)y

)
+ f

(
δx+ (1− δ)y

)
(x, y ∈ I).

(i) If α = γ+δ
2

then f is Jensen affine.

(ii) If α 6= γ+δ
2

then f is constant.

Proof. The proof is similar to that of Theorem 2.1. Using the transformation

u = γx+ (1− γ)y, v = δx+ (1− δ)y if (x, y) ∈ I2

we get that

2f

(
α− δ

γ − δ
u+

γ − α

γ − δ
v

)
= f(u) + f(v) if (u, v) ∈ P2(I

2), (2.1)

where

P2 :=

(
γ 1− γ
δ 1− δ

)
.

With the notation p := α−δ
γ−δ

equation (2.1) goes over into

2f(pu+ (1− p)v) = f(u) + f(v) if (u, v) ∈ P2(I
2).

If p = 1
2

then we have that α = γ+δ
2

. Then the equation above is

f

(
1

2
u+

1

2
v

)
=
f(u) + f(v)

2
if (u, v) ∈ P2(I

2).

Using Remark 1.4 and the localizability theorem we get that f is Jensen affine
on I if α = γ+δ

2
.
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If p 6= 1
2

then we repeat the argumentation as above. Since for all ξ ∈ I there
is an ε > 0 such that

(ξ − ε, ξ + ε)2 ⊂ P2(I
2),

for all (u, v) ∈ Iξ2 := (ξ − ε, ξ + ε)2 the role of u and v is commutable. Therefore
we have

f(pu+ (1− p)v) = f(pv + (1− p)u) if (u, v) ∈ Iξ2.

Consider the transformation

t = pu+ (1− p)v, s = pv + (1− p)u

we get that f(t) = f(s) for any (t, s) ∈ P3(Iξ
2) ∩ Iξ2, where

P3 :=

(
p 1− p

1− p p

)
.

Since every point of diag Iξ
2 is an interior point of the set P3(Iξ

2) ∩ Iξ2, for any
t ∈ Iξ there is an ε > 0 such that

{t} × (t− ε, t+ ε) ⊂ P3(Iξ
2) ∩ Iξ2.

This means that f(t) = f(s) holds for all s ∈ (t−ε, t+ε) from which it follows that
f is constant on (t− ε, t+ ε). Therefore f is locally constant and, consequently,
constant on Iξ. Since ξ ∈ I was arbitrary we can use Remark 1.5 again to prove
that f is constant on I. �

Remark 2.3. Note that the converse statements of Theorem 2.2 are also valid.

3. The general case

Now we may restrict the consideration of the functional equation (1.1) to the
case of pairwise different parameters α, β, γ, δ.

Having fixed (a, b) ∈ (0, 1)2 consider the relation on the set (0, 1)2 by

(ã, b̃) C (a, b) if ã < a, b̃ < b.

The sets

G := {(ã, b̃) ∈ (0, 1)2 | (ã, b̃) C (a, b) or (a, b) C (ã, b̃)}
and the interior of its complement F ◦ with respect to (0, 1)2 will be important
for us. The point (a, b) is called the appointed pair. We distinguish two cases:

(I) The case α+ β 6= γ + δ,
(II) The case α+ β = γ + δ.

(I) Without loss of generality we may assume that α < β. Using the relation
with the appointed pair (α, β) introduced above, we have to investigate the cases
(γ, δ) ∈ G and (γ, δ) ∈ F ◦, where the parameters are pairwise different.

(i) It is easy to see that (γ, δ ) ∈ F ◦ if and only if one of the following cases
holds:
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min{γ, δ} < α < β < max{γ, δ} or α < min{γ, δ} < max{γ, δ} < β

i.e. the parameters α, β are between γ, δ or the parameters γ, δ are between α, β.
It is enough to investigate the case α < γ < δ < β. Using the transformation

u = αx+ (1− α)y, v = βx+ (1− β)y (x, y) ∈ I2

we get the equation

f(u) + f(v) = f

(
γ − β

α− β
u+

α− γ

α− β
v

)
+ f

(
δ − β

α− β
u+

α− δ

α− β
v

)
(3.1)

where (u, v) ∈ P4(I
2) (the image of I2 under P4) and

P4 :=

(
α 1− α
β 1− β

)
.

The coefficients of u and v are between 0 and 1 as one can easily check.
According to the conditions (I) and (i) equation (1.1) has the form

f
(
pu+ (1− p)v

)
+ f

(
qu+ (1− q)v

)
= f(u) + f(v) (u, v) ∈ P4(I

2)

where p, q ∈ (0, 1) and p+ q 6= 1.

Using Remark 1.4 for any ξ ∈ I there is an ε > 0 such that

f
(
pu+ (1− p)v

)
+ f

(
qu+ (1− q)v

)
= f(u) + f(v)

holds on the interval Jξ := (ξ − ε, ξ + ε) ⊂ I. Let ξ ∈ I be fixed. Results in
Maksa [12], see also Theorem 1 in Daróczy [2], imply that f is constant on Jξ for
any ξ ∈ I. Using Remark 1.5 we get that f is a constant function on the entire
interval I. We have just proved the following result.

Theorem 3.1. Let α, β, γ, δ ∈ (0, 1) be pairwise different parameters such that
α+ β 6= γ + δ. Suppose that f : I → R satisfies the equation

f
(
αx+ (1− α)y

)
+ f

(
βx+ (1− β)y

)
= f

(
γx+ (1− γ)y

)
+ f

(
δx+ (1− δ)y

)
for all x, y ∈ I. If the parameters α, β are between γ, δ or the parameters γ, δ are
between α, β then f is constant.

(ii) Now we investigate the case (γ, δ) ∈ G.

Note that in the case of pairwise different parameters α, β, γ, δ the property
(γ, δ) ∈ G means that at most one of the parameters γ and δ is between the
parameters α and β. Without loss of generality we may assume that

α < β < γ < δ or α < γ < β < δ.
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At first we prove the following lemma.

Lemma 3.2. Let α, β, γ, δ ∈ (0, 1) be pairwise different real numbers, (γ, δ) ∈ G
such that α < β < γ < δ or α < γ < β < δ, and p := γ−δ

α−δ
, q := β−δ

α−δ
. Suppose

that f : I → R satisfies functional equation (1.1). Then p, q ∈ (0, 1) and for all
ξ ∈ I there exists ε > 0 such that

f(u)− f(v) = f
(
pu+ (1− p)v

)
− f

(
qu+ (1− q)v

)
, (3.2)

holds for all u, v ∈ Jξ := (ξ − ε, ξ + ε) ⊂ I.

Proof. Let the least and the highest parameters be on the same side of equation
(1.1). Then

f
(
αx+ (1− α)y

)
− f

(
δx+ (1− δ)y

)
= f

(
γx+ (1− γ)y

)
− f

(
βx+ (1− β)y

)
holds for all x, y ∈ I. Using the transformation u = αx + (1 − α)y and v =
δx+ (1− δ)y we have

f(u)− f(v) = f

(
γ − δ

α− δ
u+

α− γ

α− δ
v

)
− f

(
β − δ

α− δ
u+

α− β

α− δ
v

)
for all (u, v) ∈ P5(I

2) (the image of I2 under P5), where

P5 :=

(
α 1− α
δ 1− δ

)
.

Let ξ ∈ I be arbitrarily fixed. According to Remark 1.4 there exists ε > 0 such
that (ξ − ε, ξ + ε)2 ⊂ P5(I

2) and the equation can be written in the form

f(u)− f(v) = f
(
pu+ (1− p)v

)
− f

(
qu+ (1− q)v

)
for all u, v ∈ Jξ, where p, q ∈ (0, 1) because of (γ, δ) ∈ G such that α < β < γ < δ
or α < γ < β < δ. �

Lemma 3.3. Let ξ ∈ I be arbitrarily fixed and assume that f satisfies the func-
tional equation (3.2) for all u, v ∈ Jξ. Then there exists f̃ : R → R such that f̃

satisfies (3.2) for all u, v ∈ R and f̃ |Jξ
= f .

Proof. The lemma is a simple consequence of Theorem 5 in Páles [5] in the fol-
lowing setting

F = X = R, K = I, ϕ0 = 0, ϕi : R → R i = 1, 2, 3

ϕ1(x) = ϕ2(x) = x, ϕ3(x) = −x,
a1 = 0, b1 = 1, a2 = p, b2 = 1− p a3 = q, b3 = 1− q.

�

Lemma 3.4. Let ϕi, ψi : R → R be homomorphisms of R onto itself such that

Rg (ψj ◦ ψ−1
i − ϕj ◦ ϕ−1

i ) = R for i 6= j (i, j = 1, 2, 3). (3.3)

If the functions fi : R → R (i = 0, 1, 2, 3) satisfy the functional equation

f0(x) +
3∑

i=1

fi

(
ϕi(x) + ψi(y)

)
= 0 (x, y ∈ R)
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then there exist Ai
k : Rk → R (k = 0, 1, 2; i = 0, 1, 2, 3) k-additive symmetric

functions such that

fi(x) = Ai
2(x, x) + Ai

1(x) + Ai
0 (i = 0, 1, 2, 3) (x ∈ R).

Proof. The lemma is an easy consequence of Theorem 3.9 in Székelyhidi [9]. �

Theorem 3.5. Let α, β, γ, δ ∈ (0, 1) be pairwise different real numbers and
(γ, δ) ∈ G such that α < β < γ < δ or α < γ < β < δ. The function f : I → R
satisfies equation (1.1) if and only if f is constant.

Proof. We prove only the nontrivial part. Let f : I → R be a solution of equation
(1.1) and ξ ∈ I be arbitrarily fixed. According to Lemma 3.2 and Lemma 3.3

there exists f̃ : R → R such that

f̃(u)− f̃(v) = f̃
(
pu+ (1− p)v

)
− f̃

(
qu+ (1− q)v

)
,

for all u, v ∈ R, where p := γ−δ
α−δ

∈ (0, 1) and q := β−δ
α−δ

∈ (0, 1); moreover, f̃ |Jξ
= f

where Jξ := (ξ − ε, ξ + ε) ⊂ I for some ε > 0. Using the substitutions

u = x+ y and v = y (x, y ∈ R)

it follows that

f̃(y) + f̃(y + px)− f̃(y + qx)− f̃(x+ y) = 0 (x, y ∈ R). (3.4)

If we show, that f̃ : R → R is constant then we have that f is locally constant
because ξ was arbitrarily fixed. Applying Remark 1.5 we are ready with the
proof. To prove this, apply Lemma 3.4 for equation (3.4) in the following setting

f0 = f̃ , f1 = f̃ , f2 = −f̃ , f3 = −f̃

ϕ1(x) = px, ϕ2(x) = qx, ϕ3(x) = x,

ψ1(x) = x, ψ2(x) = x, ψ3(x) = x (x ∈ R).

It is easy to check that conditions (3.3) hold because p, q ∈ (0, 1) and α, β, γ, δ are
pairwise different. Thus we get that there exist symmetric k-additive functions
Ak : Rk → R (k = 0, 1, 2) such that

f̃(x) = A2(x, x) + A1(x) + A0 (x ∈ R).

Substituting this form of f̃ into (3.4) we get that

A2(px, px)− A2(qx, qx)− A2(x, x) + 2A2(px, y) + A1(px)−
−2A2(qx, y)− A1(qx)− 2A2(x, y)− A1(x) = 0 (x, y ∈ R).

(3.5)

Since x is an arbitrary real number we can replace x by −x. Because of the
rational homogeneity it follows that

A2(px, px)− A2(qx, qx)− A2(x, x)− 2A2(px, y)− A1(px)+

+2A2(qx, y) + A1(qx) + 2A2(x, y) + A1(x) = 0 (x, y ∈ R).
(3.6)

According to (3.5) and (3.6) we get that

2A2(px, y) + A1(px)− 2A2(qx, y)− A1(qx)− 2A2(x, y)− A1(x) = 0
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for all x, y ∈ R, or equvivalently

2A2

(
(p− q − 1)x, y

)
+ A1

(
(p− q − 1)x

)
= 0 (x, y ∈ R).

If y = 0 then we obtain that

A1

(
(p− q − 1)x

)
= 0 (x ∈ R) and thus A2

(
(p− q − 1)x, y

)
= 0

for all x, y ∈ R. The condition α+β 6= γ+ δ with pairwise different real numbers
implies that p − q 6= 1. Thus we get that A1(x) = 0 and A2(x, x) = 0 (x ∈ R),

that is f̃ is constant. �

(II) The case α+β = γ+ δ. The following lemma shows that the investigation
of the parameters is simplier than in the case of (I).

Lemma 3.6. If α, β, γ, δ are pairwise different real numbers, α+ β = γ + δ and
(α, β) is the appointed pair then (γ, δ) ∈ F ◦.

Proof. It is sufficient to show that the statement holds for the case of α < β and
γ < δ. In this case the lemma says that if α+ β = γ + δ then

α < γ < δ < β or γ < α < β < δ.

In contrast with our assertion suppose that

α < β < γ < δ or γ < δ < α < β or

α < γ < β < δ or γ < α < δ < β.

If α < β < γ < δ then

α+ β < β + β < γ + γ < γ + δ

which is a contradiction. In the case of γ < δ < α < β the method of the
argumentation is the same. If α < γ < β < δ then adding the inequalities α < γ
and β < δ we get a contradiction. In the case of γ < α < δ < β the method of
the argumentation is the same. �

Without loss of generality we may assume that α < γ < δ < β because of
Lemma 3.6. After proving the following lemma our equation can be reduced to
the functional equation of p-Wright affine functions.

Lemma 3.7. If the function f : I → R satisfies the functional equation (1.1) and
α < γ < δ < β such that α+ β = γ + δ then f is p-Wright affine on the interval
I, where

p :=
γ − β

α− β
.

Proof. The transformation

u = αx+ (1− α)y, v = βx+ (1− β)y if (x, y) ∈ I2

leads us to equation (3.1) again. Using the notations

p :=
γ − β

α− β
and q :=

δ − β

α− β
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it follows that p+q = 1 because α+β = γ+δ. It is also clear that if α < γ < δ < β
then p, q ∈ (0, 1). Therefore equation (3.1) can be written in the form

f
(
pu+ (1− p)v

)
+ f

(
(1− p)u+ pv

)
= f(u) + f(v) (u, v) ∈ P4(I

2) (3.7)

where p := γ−β
α−β

. So we get that f is p-Wright affine but it is only on the set

P4(I
2) at this moment. According to Remark 1.4 for any ξ ∈ I there is an ε > 0

such that equation (3.7) holds on Jξ := (ξ − ε, ξ + ε) ⊂ I. Then we can apply
Theorem 1.3. Therefore we have that f is p-Wright affine on the interval I, where
p := γ−β

α−β
. �

Finally we can formulate the main result of (II) as follows.

Theorem 3.8. Let α, β, γ, δ ∈ (0, 1) be pairwise different real numbers and α +
β = γ + δ. The function f : I → R satisfies the functional equation

f
(
αx+ (1− α)y

)
+ f

(
βx+ (1− β)y

)
= f

(
γx+ (1− γ)y

)
+ f

(
δx+ (1− δ)y

)
for all x, y ∈ I if and only if there exist symmetric k-additive functions Ak : Rk →
R (k = 0, 1, 2) with the property

A2(αx, βx) = A2(γx, δx) (x ∈ R)

such that

f(x) = A2(x, x) + A1(x) + A0 (x ∈ I).

Proof. Taking into consideration Theorem 1.2 we have to prove the equivalence
of the conditions

(a) A2(px, (1− p)x) = 0 and (b) A2(αx, βx) = A2(γx, δx) (x ∈ R)

where p := γ−β
α−β

. To see that (a) implies (b) replace x by (α − β)x and use the

symmetry and the biadditivity of A2. Recall that α− γ = δ− β. To see that (b)
implies (a) replace x by x

α−β
and use the symmetry and the biadditivity of A2.

Conversely, the condition

A2(αx, βx) = A2(γx, δx) (x ∈ R)

implies the identity

A2(γy, δx) + A2(γx, δy) = A2(αy, βx) + A2(αx, βy)

by replacing x by x+y. After a straightforward calculation we have that f is the
solution of equation (1.1). �

4. Examples

To construct examples for the existence of solutions with non-zero biadditive
part we use the following Lemma. This is the direct consequence of Lemma 1
and 2 in [11] based on Daróczy’s known theorem [1], see also Kuczma [6].

Lemma 4.1. There exists a not identically zero symmetric biadditive function
A2 : R2 → R with the property

A2(λx, x) = 0 (x ∈ R)
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if and only if λ is transcendental or if λ is algebraic and −λ is an algebraic
conjugate of λ.

Using the equivalence of (a) and (b) from the proof of Theorem 3.8 we can
easily calculate that

A2

(
1− β

γ

1− α
γ

x, x

)
= 0 (x ∈ R)

if α < γ < δ < β. It easy to prove that if exactly one of the numbers β
γ

and

α
γ

is transcendental then
1−β

γ

1−α
γ

is transcendental. Combining these facts with the

condition α < γ < δ < β one can easily check that, in the case

α =
1

2ce
, β =

1

c
, γ =

1

ce
, δ =

2e− 1

2ce
,

where c > 1 is a real constant and e is the Euler number, there exists a solution
of (1.1) with non-zero biadditive part.

5. Summary

Omitting the trivial cases α = γ and β = δ or α = δ and δ = γ all solutions of
functional equation (1.1) have the general form

f(x) = A2(x, x) + A1(x) + A0,

where Ak : Rk → R are symmetric k-additive functions and k=0,1,2.
Theorems 2.1, 2.2 (ii), 3.1 and 3.5 imply that

(I) in the case α + β 6= γ + δ the solutions of (1.1) are only the constant
functions.

Theorems 2.2 (i), 3.8 and Lemma 4.1 imply that

(II) in the case α+ β = γ + δ
(1) the solutions are Jensen affine if α = β or γ = δ,
(2) there exsist solutions with nonzero biadditive part such that

A2(αx, βx) = A2(γx, δx)

if and only if λ :=
1−β

γ

1−α
γ

transcendental or if λ algebraic and -λ is an

algebraic conjugate of λ.
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