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ABSTRACT. In this paper we solve the functional equation

flaz + (1 —a)y) + f (B + (1= B)y) = f(yz+ (1= 7)y) + f (62 + (1 - d)y)
which holds for all z,y € I, where I C R is a non-void open interval, f: I — R
is an unknown function and «, 3,7v,d € (0, 1) are arbitrarily fixed.

1. INTRODUCTION AND PRELIMINARIES

Consider the functional equation

f(oz:n +(1- a)y) + f(ﬁ:c +(1- ﬂ)y) = f(’yw +(1- v)y) + f(éx + (1 - 5)y) (1.1)

which holds for all x,y € I, where I C R is a non-void open interval, f: I — R
is an unknown function and the parameters a, 3,7, € [0, 1] are arbitrarily fixed.
The particular case v = 1, 6 = 0 has been investigated in Daréczy-Maksa-Pales
[3], Dardczy-Lajko-Lovas-Maksa-Pales [11], and also in Maksa [12] in connection
with the equivalence of certain functional equations involving means. The purpose
of this paper is to extend these results for arbitrary possible values of the weights
a, B, v, 6. The paper is organized as follows. First of all we study the spe-
cial cases when at least two parameters are the same. The condition that a =
vand 3 =4 (or « = ¢ and 3 = 7) do not hold at the same time is natural to avoid
the trivialities. To investigate the general case with pairwise different parameters
we use a relation to divide the space of the parameters into regions. By the help
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22 A. VARGA

of these regions we can discuss the possible cases easier. As we shall see, the

solutions of (1.1]) have the general form
f(x) = As(z,x) + Ar1(z) + Ay (z € 1),
where A;: R¥ — R are symmetric k-additive functions (k = 0,1,2) with the

property
Ay(ax, fr) = Ay(vyx,0x) (z € R).

The existence of the solutions with non-zero biadditive part depends on the al-

gebraic properties of the parameters. Here we introduce some basic notions we
need in the following. Throughout the paper I denotes a non-void open interval.

Definition 1.1. For a fixed p € (0, 1) the function f: I — R is called p- Wright
affine on I if

floz+ 1 =py) + [((1=p)z+py) = )+ f(y)
holds for every z,y € I. If p = % then f is called Jensen affine.

It is well-known that every Jensen affine function on the interval I has the form
flx) =A(x)+b (xel),

where A: R — R is an additive function and b € R is a constant, see Lajké [§].
As a basic result for p-Wright affine functions in general we need the following
theorem due to Lajké [7] (for the terminology see Székelyhidi [10]).

Theorem 1.2. The function f is p-Wright affine on the interval I if and only
if there exist symmetric k-additive functions A: R¥ — R (k = 0,1,2) with the

property
Ag(pz,(1-p)2) =0 (2 €R)

such that
f(x) = As(z,2) + Ay (z) + Ay (x € 1).

We also need the localizability theorem due to Gilanyi-Péles [4].

Theorem 1.3. The function f is p-Wright affine on the interval I if and only if
for any £ € I there is an € > 0 such that (§ — e, +¢) C I and the restriction
fle—cete) is p-Wright affine function on the interval (§ —e,& +¢€).

We will use the following simple remarks very frequently .

Remark 1.4. Let (z,y) € I? and a, 3 € (0, 1) are different real numbers. Consider
the linear transformation having the matrix

[ a l-«
pe (2170,

Then det P = a — 3 # 0. Since every regular linear transformation is an open

mapping and
x x

diag I := {(§,€) | € € T}

every point of
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is an interior point of the set P(I?) (the image of I? under P). Thus for any
point £ € I there is an € > 0 such that

(E—e,&+¢e)* C P(I?).

Remark 1.5. Every locally constant function on an open interval is constant. This
means that f is constant on the interval I if and only if for any point £ € I there
is an € > 0 such that ({ —e,{ 4 ¢) C I and the restriction f|¢_c¢4e) is constant
on (£ — e, + ¢). Indeed, if f is constant on (§ — €,£ + €) then there exists the
derivate of f at the point £ and f'(§) = 0 for all £ € I. Therefore f is constant
on I. The converse is trivial.

2. SPECIAL CASES

The scheme below shows the special and trivial cases in terms of the parameters.
Following the arrows we can find the classes of the solutions:

a=0 — y#6 — a# VTJ”S —  constant functions

a = ”’TJ“S — Jensen affine functions
a=0f — =0 — a«a#~vy —  constant functions
!
a=7vy — all functions

A similar method can be used to illustrate the case v = ¢, i.e. when the weights
on the same side coincide. Another possible special cases are considered in the
next scheme:

a=~v — [#0 — constant functions

l

=0 — all functions

A similar method can be used to illustrate the cases a =0 or f =~y or f =9. As
we can see it is a natural condition to avoid the trivialities that o = v and 3 =
d (or @« =46 and B =) do not hold at the same time. For simplicity we shall
restrict our consideration to the following special cases:

(i) @ = and v = §; then our equation
flaz+ (1 -a)y) =flrz+ (1 —-7)y) (z.yel),

(ii) o =  and v # 6; then our equation

2f(cx+ (1 —a)y) = f(yva+ (1 =7)y) + f(0z+ (1= 0)y) (z,ycl).

It is easy to see that in the further special cases listing in the schemes above
we get a similar form of our equation as in (i) and (ii).
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Theorem 2.1. Let o,y € (0,1) be fized such that o # ~y. The function f: [ — R
satisfies the equation

flaz+ (1 =a)y) = f(va+(1—7)y) (z,yel)

if and only if f is constant on I.

Proof. Consider the transformation
u=ar+(1—a)y, v=qz+1—7)y if (z,y)el’
which takes any point (z,y) € I? to the point (u,v) € P;(I?) (the image of I?

under Py), where
a l—-ao
pe(t170)

It is easy to see that f(u) = f(v) holds for all (u,v) € P;(I?). Since every point
of diag I? is an interior point of the set P (I?), for any u € I there exists an & > 0
such that

{u} x (u—e,u+¢e) C P (I?).
This means that f(u) = f(v) holds for all v € (u — e, u +€) from which it follows
that f is constant on (v — €,u + ). According to Remark 1.5 the statement
follows easily. The converse is trivial. O

Theorem 2.2. Let a,v,0 € (0,1) be pairwise different real numbers. Suppose
that f: I — R satisfies the equation

2f(ax+ (1 —a)y) = flye+ 1 =7)y) + f(6z+ (1 =08)y) (z,yel).
(i) If a = 7;—5 then f is Jensen affine.
(ii) If o # # then f is constant.
Proof. The proof is similar to that of Theorem 2.1. Using the transformation
u=vyr+(1—7)y, v=0x+(1-0y if (z,y)ecl?
we get that

Qf(?;:gujt :yy:?v) = f(u) + f(v) if (u,v) € Py(I?), (2.1)

(7 1=
P2'—<5 1—5)'

With the notation p := f{“—:g equation 1} goes over into

2f(pu+ (1 —p)) = fu) + f(v) i (u,0) € P(I?).
Ifp= % then we have that a = VTJ“‘S. Then the equation above is
1 1
f<§u+ 5"0) = M it (u,v) € Po(I?).

Using Remark 1.4 and the localizability theorem we get that f is Jensen affine
on [ if a = VTM.

where



ON A FUNCTIONAL EQUATION 25

If p # % then we repeat the argumentation as above. Since for all £ € I there
is an € > 0 such that
(5 _57§+5)2 C PQ(Iz)a

for all (u,v) € I* := (€ —&,& +£)? the role of u and v is commutable. Therefore
we have

flou+ (1 —pv) = fpo+ (1 —pu) if (u,v) € I

Consider the transformation
t=pu+(l—ph, s=pv+(1—-pu
we get that f(t) = f(s) for any (¢,s) € Ps(I*) N I:%, where

._ p 1-p
(12,157,

Since every point of diag I¢* is an interior point of the set P3(I*) N I¢*, for any
t € I¢ there is an € > 0 such that

{t} x (t —e, t+e) C Ps(I3) N T2

This means that f(¢) = f(s) holds for all s € (t—e, t+¢) from which it follows that
f is constant on (t — e,t 4 ). Therefore f is locally constant and, consequently,
constant on I¢. Since { € I was arbitrary we can use Remark 1.5 again to prove
that f is constant on I. O

Remark 2.3. Note that the converse statements of Theorem 2.2 are also valid.

3. THE GENERAL CASE

Now we may restrict the consideration of the functional equation (|1.1)) to the
case of pairwise different parameters «, (3,7, 9.
Having fixed (a,b) € (0,1)? consider the relation on the set (0,1)? by

(a,b) < (a,b) if a<a, b<b.
The sets
G = {(@b) € (0,1)* | (@b) < (a,0) or (a,b) <1 (a,0)}
and the interior of its complement F° with respect to (0,1)? will be important

for us. The point (a, b) is called the appointed pair. We distinguish two cases:

(I) The case o+ 3 # v + 0,
(IT) The case oo+ 3 = v + 0.

(I) Without loss of generality we may assume that o < 3. Using the relation
with the appointed pair («, ) introduced above, we have to investigate the cases
(7,0) € G and (v,0) € F°, where the parameters are pairwise different.

(i) It is easy to see that (7,0 ) € F° if and only if one of the following cases
holds:
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min{v,d} < a < f <max{v,d} or a <min{y,0} < max{v,d} <f
i.e. the parameters a, 3 are between v, § or the parameters ~, § are between «, 3.
It is enough to investigate the case a < v < d < 3. Using the transformation

u=ar+(1-a)y, v=p0r+(1-083)y (x,y)€l?
we get the equation
B v —p a—7 o— 0 a—90
s+ 10 =1 (T00r S0 ) (S 220 e
where (u,v) € Py(I?) (the image of I? under P,) and

a 1—«

The coefficients of u and v are between 0 and 1 as one can easily check.
According to the conditions (I) and (i) equation ([L.1)) has the form

flou+ (1 =p) + fqu+ (1= q)v) = fu) + f(v) (u,v) € Py(I?)
where p,q € (0,1) and p+ ¢ # 1.
Using Remark 1.4 for any £ € I there is an € > 0 such that

flpu+ (L =p)v) + flqu+ (1 —q)v) = f(u) + f(v)
holds on the interval Je := (§ — e, +¢) C I. Let £ € I be fixed. Results in
Maksa [12], see also Theorem 1 in Daréezy [2], imply that f is constant on .J; for
any £ € I. Using Remark 1.5 we get that f is a constant function on the entire
interval . We have just proved the following result.

Theorem 3.1. Let o, 3,7,0 € (0,1) be pairwise different parameters such that
a+ 3 # v+ 0. Suppose that f: I — R satisfies the equation

flaz + (1 =a)y) + f(Br+ (1= B)y) = f(ye + (L =7)y) + f(oz + (1 = d)y)
for all x,y € I. If the parameters o, 3 are between v,d or the parameters v,0 are
between «, 3 then f is constant.

(ii) Now we investigate the case (v,0) € G.

Note that in the case of pairwise different parameters «, 3,7, the property
(7,6) € G means that at most one of the parameters v and ¢ is between the
parameters o and 3. Without loss of generality we may assume that

a<f<y<d or a<y<f<o.
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At first we prove the following lemma.

Lemma 3.2. Let o, 3,7, € (0,1) be pairwise different real numbers, (v,9) € G
such that o < <y <dora<~y<pf <9, and p := Zy—:‘;, q = g:g. Suppose
that f: I — R satisfies functional equation (1.1). Then p, q € (0,1) and for all

& € I there exists € > 0 such that
flu) = f(v) = f(pu+ (1 =p)v) — fqu+ (1= q)v), (3.2)
holds for allu, v € Je == (§ —e,{+¢) C 1.

Proof. Let the least and the highest parameters be on the same side of equation

. Then
flaz+(1—a)y) — f0x+ (1 —08)y) = f(ya+ (L —7)y) — f(Bz+ (1 - B)y)

holds for all z,y € I. Using the transformation v = az + (1 — a)y and v =
dx + (1 — d0)y we have

(-9 a—y\ (B0 a—pf
)= 1) = 1 (T o) - (B =)
for all (u,v) € P5(I?) (the image of I? under Pj), where

a 11—«

Let & € I be arbitrarily fixed. According to Remark 1.4 there exists € > 0 such
that (¢ —e,& +¢)? C Ps(I?) and the equation can be written in the form

fw) = fv) = flpu+ (1 —pv) — flqu+ (1 —q)
for all u,v € Jg¢, where p, g € (0,1) because of (7,9) € Gsuchthat o < f <y < §
ora <y <pf<o. O

Lemma 3.3. Let & € I be arbitrarily fized and assume that f satisfies the func-
tional equation 1’ for all u,v € Je. Then there exists f: R — R such that f
satisfies 1} for all u,v € R and f|;, = f.

Proof. The lemma is a simple consequence of Theorem 5 in Péles [5] in the fol-
lowing setting

F=X=R, K=1, p9=0, p;:R—-R 1=1,2,3
p1(z) = pa(x) =@, p3(x) = -,
a1 =0, by=1, aga=p, bo=1—p az=4¢q, b3=1—q.
O

Lemma 3.4. Let ¢;,9;: R — R be homomorphisms of R onto itself such that
Rg (wjowi_l—gpjogoi_l) =R for i#j (i,j=1,2,3). (3.3)
If the functions f;: R — R (i =0,1,2,3) satisfy the functional equation

3

fo(z) + Zfi (%(x) + %‘(y)) =0 (r,yeR)

=1
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then there erist Al: R* — R (k = 0,1,2; i = 0,1,2,3) k-additive symmetric
functions such that
fi(z) = AY(z,2) + Al(x) + A) (i=0,1,2,3) (v €R).
Proof. The lemma is an easy consequence of Theorem 3.9 in Székelyhidi [9]. O

Theorem 3.5. Let «, 3,7, € (0,1) be pairwise different real numbers and
(7,0) € G such that a < B <y < ora<~vy<f<6. The function f: I — R

satisfies equation (1.1)) if and only if f is constant.

Proof. We prove only the nontrivial part. Let f: I — R be a solution of equation
(1.1) and & € I be arbitrarily fixed. According to Lemma 3.2 and Lemma 3.3

there exists f: R — R such that
flu) = f(v) = f(pu+ (1 =p)) = flgu+ (1 - q)v),
for all u,v € R, where p := Zc_:fs €(0,1) and ¢q := % € (0, 1); moreover, f‘J‘E =f
where Je 1= (§ —¢,§ +¢) C [ for some € > 0. Using the substitutions
u=z+y and v=y (z,y €R)
it follows that
Fo)+ fly+pr)— fly+aqz)— fla+y) =0 (z,y €R). (3.4)

If we show, that f: R — R is constant then we have that f is locally constant
because ¢ was arbitrarily fixed. Applying Remark 1.5 we are ready with the
proof. To prove this, apply Lemma 3.4 for equation (3.4)) in the following setting

fo=1, hi=F f=-f fi=-]
p1(x) = pr, ¢ao(x) = qr, @s3(r) =1,
1/11(55) =, 1/12@) =, %(x) =T (SL’ S R)
It is easy to check that conditions (3.3)) hold because p, ¢ € (0,1) and «, 3,7, 6 are
pairwise different. Thus we get that there exist symmetric k-additive functions
A R¥ - R (k=0,1,2) such that
f(x) = Ay(z,2) + Ay (z) + Ay (z € R).
Substituting this form of f into 1} we get that
Az (pr, pr) — As(qu, qz) — Az(2, ) + 2A2(p, ) + Ar(pr)—
—2A5(qx,y) — Ai(qz) — 2A5(z,y) — Ai(z) =0 (z,y ER).

Since x is an arbitrary real number we can replace x by —x. Because of the
rational homogeneity it follows that

As(px,px) — As(qr, qr) — Ag(w, ) — 2A5(px,y) — Ar(pr)+
+2A5(qx,y) + A1(qr) + 2A2(z,y) + Air(x) =0 (2,5 € R).
According to and we get that
2A5(px,y) + Ar(pr) — 2A45(qz,y) — Ai(qr) — 2A5(2,y) — Ar(x) =0

(3.5)

(3.6)
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for all x,y € R, or equvivalently

245((p—q—Dz,y) + Ai((p—q—1)z) =0 (z,y €R).
If y = 0 then we obtain that
Ai((p—q—1)z) =0 (z €R) and thus Ay((p—q—1)z,y) =0
for all x,y € R. The condition a4  # v+ ¢ with pairwise different real numbers
implies that p — ¢ # 1. Thus we get that A;(z) = 0 and As(z,2) =0 (z € R),
that is f is constant. OJ

(IT) The case a+ 3 = v+ 4. The following lemma shows that the investigation
of the parameters is simplier than in the case of (I).

Lemma 3.6. If o, 3,7,0 are pairwise different real numbers, a + 3 =+ ¢ and
(cv, B) is the appointed pair then (v,9) € F°.

Proof. Tt is sufficient to show that the statement holds for the case of o < 3 and
~v < d. In this case the lemma says that if a + § = v+ 0 then

a<y<o<f or y<a<pf<i.
In contrast with our assertion suppose that

a<f<y<d or y<d<a<f or

a<y<pB<d or y<a<i<}p.
If a < <7y <6 then

a+B<pBH+B<y+y<~v+9

which is a contradiction. In the case of v < § < a < (3 the method of the
argumentation is the same. If a <y < 8 < ¢ then adding the inequalities a < 7
and 3 < § we get a contradiction. In the case of v < av < § < 3 the method of
the argumentation is the same. O

Without loss of generality we may assume that o < v < § < [ because of
Lemma 3.6. After proving the following lemma our equation can be reduced to
the functional equation of p-Wright affine functions.

Lemma 3.7. If the function f: I — R satisfies the functional equation (1.1)) and
a <7y <d<f such that o+ 3 =+ 9 then f is p-Wright affine on the interval
1, where

-0

a—pf

Proof. The transformation
u=ar+(1—-a)y, v=pz+(1-BR)y if (z,y)el’
leads us to equation (3.1)) again. Using the notations
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it follows that p+¢ = 1 because a+3 = v+4. It is also clear that ifa < v < d < 3
then p,q € (0,1). Therefore equation (3.1)) can be written in the form

flou+ (1 =p) + f((1—plu+pv) = fu)+ flv) (u,v) € P(I%)  (3.7)

where p = Zé;_g So we get that f is p-Wright affine but it is only on the set

Py(I?) at this moment. According to Remark 1.4 for any & € I there is an € > 0

such that equation (3.7)) holds on Je := ({ — ¢, +¢) C I. Then we can apply

Theorem 1.3. Therefore we have that f is p-Wright affine on the interval I, where

pi= g;j |
Finally we can formulate the main result of (II) as follows.

Theorem 3.8. Let a, 3,7,6 € (0,1) be pairwise different real numbers and o +
B8 =~40. The function f: I — R satisfies the functional equation

flaz + (1= a)y) + f(Br + (1= B)y) = (v + (L —)y) + f(dz + (1 - d)y)
for all x,y € I if and only if there exist symmetric k-additive functions Ay : RF —
R (k=0,1,2) with the property

Ay(ax, fr) = Ay(vyx,0x) (z € R)
such that
f(z) = As(z,2) + Ar(z) + Ay (z € 1).

Proof. Taking into consideration Theorem 1.2 we have to prove the equivalence
of the conditions

(a) Ay(pzr, (1 —p)x) =0 and (b) As(az,px) = As(yz,0x) (z € R)

where p := % To see that (a) implies (b) replace = by (o — 3)x and use the
symmetry and the biadditivity of As. Recall that o — vy = § — 3. To see that (b)
implies (a) replace x by —* 3 and use the symmetry and the biadditivity of As.
Conversely, the condition

Ay(ax, Br) = Ag(yx,dz) (v € R)

implies the identity
As(vy, 6z) + Az (v, 6y) = Az(ay, fz) + Ax(aw, By)

by replacing x by x +y. After a straightforward calculation we have that f is the
solution of equation (|1.1]). O

4. EXAMPLES

To construct examples for the existence of solutions with non-zero biadditive
part we use the following Lemma. This is the direct consequence of Lemma 1
and 2 in [IT] based on Dardczy’s known theorem [I], see also Kuczma [6].

Lemma 4.1. There exists a not identically zero symmetric biadditive function
Ay R? — R with the property

Ay(Ax,z) =0 (z € R)
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if and only if \ is transcendental or if \ is algebraic and —\ is an algebraic
conjugate of \.

Using the equivalence of (a) and (b) from the proof of Theorem 3.8 we can

easily calculate that
B

A2< _;xﬂﬁzzo (x € R)

1@
v
if o < v <9< (. It easy to prove that if exactly one of the numbers g and

_8
% is transcendental then ;—2 is transcendental. Combining these facts with the

condition a < v < d < f3 one can easily check that, in the case
1 1 1 2¢e — 1
o= —-—, ﬁ = 7= 6 = ‘ )
2ce c ce 2ce

where ¢ > 1 is a real constant and e is the Euler number, there exists a solution

of (|1.1)) with non-zero biadditive part.

5. SUMMARY

Omitting the trivial cases a« =~y and # =0 or &« = ¢ and = ~y all solutions of
functional equation ([1.1)) have the general form

f(x) = Ag(z, ) + Ay() + Ao,

where A;: R¥ — R are symmetric k-additive functions and k=0,1,2.
Theorems 2.1, 2.2 (ii), 3.1 and 3.5 imply that

(I) in the case a + 3 # v + § the solutions of (1.1)) are only the constant
functions.

Theorems 2.2 (i), 3.8 and Lemma 4.1 imply that

(II) in the case o+ =v+0
(1) the solutions are Jensen affine if o = 3 or v =4,
(2) there exsist solutions with nonzero biadditive part such that

As(ax, fr) = Ax(vz, o)

1_8

if and only if A := ;=& transcendental or if A algebraic and -\ is an

algebraic conjugate of .
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