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Abstract. In this paper, we use the auxiliary principle technique to study
the existence of a solution of the extended general variational inequalities,
which were introduced and studied by the author. Several special cases are
also discussed.

1. Introduction

Variational inequalities, which were introduced in 1960’s, represent the optimality
conditions for the differentiable convex functions on the convex sets in normed
space. It is known that the properties of the solutions of the variational inequal-
ities may not hold, in general, when the convex set is nonconvex. In the recent
years, the concept of convexity has been generalized in several directions, see, for
example, [2] and the references therein. Noor [15, 16] introduced the nonconvex
set, which is called the (h, g)-convex set, using the idea of a segmental type of
non-connected convexity for sets by taking into account only convex combinations
of special types of points, see also [2]. Noor [15] has shown that the minimum
of a differentiable (h, g)-convex function on a (h, g)-convex set can be character-
ized by a class of variational inequalities. This fact has motivated Noor [13] to
introduce and consider a new class of variational inequalities, which is called the
extended general nonlinear variational inequality involving three operators. It
has been shown [15] that the extended general variational inequalities are equiv-
alent to the fixed point problems. This alternative equivalence has been used to
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suggest a wide class of iterative methods for solving the extended general varia-
tional inequalities. It is known that it is very difficult to find the projection of
the operator except in very special cases. To overcome this drawback, on uses the
auxiliary principle technique. This technique is mainly due to Glowinski, Lions
and Tremolieres [4]. This technique is more flexible and has been used to develop
several numerical methods for solving the variational inequalities and the equi-
librium problems. In this paper, we again use the auxiliary principle technique
to study the existence of a solution of the extended general variational inequal-
ities. Since the extended general variational inequalities include various classes
of variational inequalities and complementarity problems as special cases, results
proved in this paper continue to hold for these problems. Results proved in this
paper may be viewed as important and significant improvement of the previously
known results. It is interesting to explore the applications of these extended gen-
eral variational inequalities in mathematical and engineering sciences with new
and novel aspects.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖, respectively. Let K be a nonempty closed and convex set in H.

For given nonlinear operators T, g, h : H → H, consider the problem of finding
u ∈ H, h(u) ∈ K such that

〈Tu, g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K. (2.1)

Inequality of type (2.1) is called the extended general variational inequality in-
volving three operators, which was introduced and studied by Noor [15].

We now show that the minimum of a class of differentiable nonconvex functions
on (h, g)-convex set K in H can be characterized by extended general variational
inequality (2.1). For this purpose, we recall the following well known concepts,
see [2].

Definition 2.1. Let K be any set in H. The set K is said to be (h, g)-convex,
if there exist functions g, h : H −→ H such that

h(u) + t(g(v)− h(u)) ∈ K, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1].

Note that every convex set is (h, g)-convex, but the converse is not true, see
[2]. If g = h, then the (h, g)-convex set K is called the g-convex set, which
was introduced by Youness [21]. See also Cristescu and Lupsa [2] for its various
extensions and generalization.

Definition 2.2. The function F : K −→ H is said to be (h, g)-convex on the
(g, h)-convex set K, if there exist two functions h, g such that

F (h(u) + t(g(v)− h(u))) ≤ (1− t)F (h(u)) + tF (g(v)) ,

∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1].
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Clearly every convex function is (h, g)-convex, but the converse is not true. For
g = h, Definition 2.2 is due to Youness [21].

It is known [15] that the minimum of a differentiable (h, g)-convex function
on a (h, g)-convex set K in H can be characterized by the extended general
variational inequality (2.1). For the sake of completeness and to convey an idea
of the technique, we include its proof.

Lemma 2.3. Let F : K −→ H be a differentiable (h, g)-convex function on the
(g, h)-convex set K. Then u ∈ H : h(u) ∈ K is the minimum of (h, g)-convex
function F on K if and only if u ∈ H : h(u) ∈ K satisfies the inequality

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.2)

where F ′(u) is the Frechet differential of F at h(u) ∈ K.

Proof. Let u ∈ H : h(u) ∈ K be a minimum of hg-convex function F on K. Then

F (h(u)) ≤ F (g(v)) , ∀v ∈ H : g(v) ∈ K. (2.3)

Since K is a hg-convex set, so, for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], g(vt) =
h(u) + t(g(v)− h(u)) ∈ K. Setting g(v) = g(vt) in (2.3), we have

F (h(u)) ≤ F (h(u) + t(g(v)− h(u)) ≤ F (h(u)) + t(F (g(v))− F (h(u))).

Dividing the above inequality by t and taking t −→ 0, we have

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,

which is the required result (2.2).
Conversely, let u ∈ H : h(u) ∈ K satisfy the inequality (2.2). Since F is a

hg-convex function, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], h(u) + t(g(v) −
h(u)) ∈ K and

F (h(u) + t(g(v)− h(u))) ≤ (1− t)F (h(u)) + tF (g(v)) ,

which implies that

F (g(v))− F (h(u)) ≥ F (h(u) + t(g(v)− g(u)))− F (h(u))

t
.

F (g(v))− F (h(u)) ≥ 〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, using (2.2),

which implies that

F (h(u)) ≤ F (g(v)) , ∀v ∈ H : g(v) ∈ K

showing that u ∈ K is the minimum of F on K in H.
�

Lemma 2.3 implies that hg-convex programming problem can be studied via
the extended general variational inequality (2.1) with Tu = F ′(h(u)). In a similar
way, one can show that the extended general variational inequality is the Fritz-
John condition of the inequality constrained optimization problem.

We now list some special cases of the extended general variational inequalities.



36 M. ASLAM NOOR

I. If g = h, then problem (2.1) is equivalent to finding u ∈ H : g(u) ∈ K such
that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.4)

which is known as general variational inequality, introduced and studied by Noor
[5] in 1988. It turned out that odd order and nonsymmetric obstacle, free, mov-
ing, unilateral and equilibrium problems arising in various branches of pure and
applied sciences can be studied via general variational inequalities.

II. For g ≡ I, the identity operator, the extended general variational inequality
(2.1) collapses to: find u ∈ H : h(u) ∈ K such that

〈Tu, v − h(u)〉 ≥ 0, ∀v ∈ K, (2.5)

which is also called the general variational inequality, see Noor [6].

III. For h = I, the identity operator, the extended general variational in-
equality (2.1) is equivalent to finding u ∈ KI such that

〈Tu, g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, (2.6)

which is also called the general variational inequality involving two nonlinear
operators which was introduced and studied by Noor [16, 17].

We would like to emphasize the fact that general variational inequalities (2.4),
(2.5) and (2.6) are quite different from each other and have different applications.

VI. For g = h = I, the identity operator, the extended general variational
inequality (2.1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K,

which is known as the classical variational inequality and was introduced in 1964
by Stampacchia [22]. For the recent applications, numerical methods, sensitivity
analysis, dynamical systems and formulations of variational inequalities, see [1]–
[22] and the references therein.

V. If K∗ = {u ∈ H; 〈u, v〉 ≥ 0, ∀v ∈ K} is a polar (dual) convex cone of a
closed convex cone K in H, then problem (2.1) is equivalent to finding u ∈ H
such that

g(u) ∈ K, Tu ∈ K∗, 〈g(u), Tu〉 = 0, (2.7)

which is known as the general complementarity problem, see [12, 18]. If g = I, the
identity operator, then problem (2.7) is called the generalized complementarity
problem. For g(u) = u − m(u), where m is a point-to-point mapping, then
problem (2.7) is called the quasi(implicit) complementarity problem, see [12, 18]
and the references therein.

From the above discussion, it is clear that the extended general variational
inequalities (2.1) is most general and includes several previously known classes of
variational inequalities and related optimization problems as special cases. These
variational inequalities have important applications in mathematical program-
ming and engineering sciences.

We also need the following concepts and results.
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Definition 2.4. For all u, v ∈ H, an operator T : H → H is said to be:

(i)strongly monotone, if there exists a constant α > 0 such that

〈Tu− Tv, u− v〉 ≥ α||u− v||2

(ii) Lipschitz continuous, if there exists a constant β > 0 such that

||Tu− Tv|| ≤ β||u− v||.

From (i) and (ii), it follows that α ≤ β.

Remark 2.5. It follows from the strongly monotonicity of the operator T, that

α‖u− v‖2 ≤ 〈Tu− Tv, u− v〉 ≤ ‖Tu− Tv‖‖u− v‖, ∀u, v ∈ H,

which implies that

‖Tu− Tv‖ ≥ α‖u− v‖, ∀u, v ∈ H.

This observation enables us to define the following concept.

Definition 2.6. The operator T is said to firmly expanding if

‖Tu− Tv‖ ≥ ‖u− v‖, ∀u, v ∈ H.

3. Main Results

In this Section, we use the auxiliary principle technique of Glowinski, Lions
and Tremolieres [4] to study the existence of a solution of the extended general
variational inequality (2.1).

Theorem 3.1. Let T be a strongly monotone with constant α > 0 and Lipschitz
continuous with constant β > 0. Let g be a strongly monotone and Lipschitz
continuous operator with constants σ > 0 and δ > 0 respectively. If the operator
h is firmly expanding and there exists a constant ρ > 0 such that

|ρ− α

β2
| <

√
α2 − β2k(2− k)

β2
, α > β

√
k(2− k), k < 1, (3.1)

where

θ = k +
√

1− 2ρα + ρ2β2

(3.2)

k =
√

1− 2σ + δ2 .

then the extended general variational inequality (2.1) has a unique solution.

Proof. We use the auxiliary principle technique to prove the existence of a solution
of (2.1). For a given u ∈ H : g(u) ∈ K satisfying the extended general variational
inequality (2.1), we consider the problem of finding a solution w ∈ H : h(w) ∈ K
such that

〈ρTu + h(w)− g(u), g(v)− h(w)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K , (3.3)
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where ρ > 0 is a constant.
The inequality of type (3.3) is called the auxiliary extended general variational

inequality associated with the problem (2.1). It is clear that the relation (3.3)
defines a mapping u 7→ w. It is enough to show that the mapping u 7→ w defined
by the relation (3.3) has a unique fixed point belonging to H satisfying the general
variational inequality (2.1). Let w1 6= w2 be two solutions of (3.3) related to
u1, u2 ∈ H respectively. It is sufficient to show that for a well chosen ρ > 0,

‖w1 − w2‖ ≤ θ‖u1 − u2‖ ,

with 0 < θ < 1, where θ is independent of u1 and u2. Taking v = w2(respectively
w1) in (3.3) related to u1 (respectively u2), adding the resultant, we have

〈h(w1)− h(w2), h(w1)− h(w2)〉 ≤ 〈g(u1)− g(u2)− ρ(Tu1 − Tu2), h(w1)− h(w2)〉 ,

from which we have

‖h(w1)− h(w2)‖ ≤ ‖g(u1)− g(u2)− ρ(Tu1 − Tu2)‖
≤ ‖u1 − u2 − (g(u1)− g(u2))|+ ‖u1 − u2 − ρ(Tu1 − Tu2)‖

. (3.4)

Since T is both strongly monotone and Lipschitz continuous operator with con-
stants α > 0 and β > 0 respectively, it follows that

‖u1 − u2 − ρ(Tu1 − Tu2)‖2 ≤ ‖u2 − u2‖2 − 2ρ〈u1 − u2, Tu1 − Tu2〉
+ρ2‖Tu1 − Tu2‖2

≤
(
1− 2ρα + ρ2β2

)
‖u1 − u2‖2. (3.5)

In a similar way, using the strongly monotonicity with constant σ > 0 and Lips-
chitz continuity with constant δ > 0, we have

‖u1 − u2 − (g(u1)− g(u2))‖ ≤
√

1− 2σ + δ2‖u1 − u2‖. (3.6)

From (3.4), (3.5) and (3.6) and using the fact that the operator h is firmly ex-
panding, we have

‖w1 − w2‖ ≤
{

k +
√

1− 2ρα + ρ2β2
}
‖u1 − u2‖

= θ‖u1 − u2‖,

From (3.1) and (3.2), it follows that θ < 1 showing that the mapping defined by
(3.3) has a fixed point belonging to K, which is the solution of (2.1), the required
result. � �
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