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ON DIFFERENT PRODUCTS OF CLOSED OPERATORS
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Abstract. The purpose of this work is to give different products of closed
operators together with their faults and assets.

1. Introduction

Let H be a complex Hilbert space. All operators are assumed to be linear
and defined from H into H. The domain of an operator A is denoted by D(A)
which we assume to be dense. The operator A is said to be closed if its graph
G(A) = {(x, Ax)|x ∈ D(A)} is closed in H ×H. The adjoint of A is denoted by
A∗. The identity operator is denoted by I. The set of bounded operators on H is
denoted by B(H) while C(H) denotes the set of closed operators (by the closed
graph theorem B(H) ⊂ C(H)). C0(H) is the set of all contractions A on H (i.e.,
‖A‖ ≤ 1) such that ker(I − A∗A) = {0}.
If A and B are two closed operators, then denote the projections onto G(A)
(respectively G(B)) by PG(A) (respectively PG(B)). If

δ(A, B) = ‖(1− PG(B))PG(A)‖,
then

g(A, B) = max(δ(A, B), δ(B, A))

is a metric on C(H).
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Any other result or notion about unbounded operators that has not been men-
tioned and which will be used is assumed to be known by the reader. The litera-
ture on this subject is vague. We cite [6], [13] and [15] among others.

The product of closed operators plays a major role in the theory of partial differ-
ential equations since by factorization theorems for real valued analytic functions,
it was shown (cf. [5, 8, 9]) that the problems of local solvability of partial differ-
ential equations reduce to the existence and the uniqueness of local solutions of
ordinary differential equations in a Hilbert space. So we give different definitions
of a product of closed operators. The first one is the usual product which we will
recall shortly together with its major deficiencies. Then, we give a definition due
to J. Dixmier [4], which we believe to the best of our knowledge, it is not known
to many authors. Then we give a new definition of a product in the last section
which has properties not shared by the usual product.

For a start the standard and the known definition of the product of two oper-
ators A and B with domains respectively D(A) and D(B) is just

Definition 1.1. Let A and B be two operators with domains respectively D(A)
and D(B). Then (AB)f := A(Bf) for f ∈ D(AB) = B−1(D(A)).

This definition, although being the most natural, has some faults and we will
show that the product of two closed operators can behave cantankerously even if
stronger conditions are imposed on them.

First, the most notable deficiency perhaps, is that the set C(H) cannot be
given a structure of a group since, as a matter of fact, the product of two closed
operators is not always closed. In fact, it is seldom closed unless we impose
strong conditions. One of which is that the ”left” operator in the product has
bounded inverse. Another possibility is to assume that both closed operators are
also Fredholm (for this particular result, the interested reader might consult [12]).
It is worth noticing that B. Messirdi and G. Djellouli are working on a condition
that makes the product (of two closed operators) closed. They have found so far
that if the distance g(A, B) is sensible then AB is closed.

Now, if both operators are even self-adjoint, then their product need not be
closed, see e.g. [10] and assuming that the ”left” operator is bounded does not
make the result true as will be shown in the next section.

If we talk about adjoints, then the results are not better. For instance, the
adjoint of AB if both operators are unbounded (and closed as well) does not
equal to B∗A∗ (we have equality though if A is bounded in this order).

The product of closed operators can behave in such an awkward way so that
the product of a closed (and symmetric) operator with itself can have a domain
that reduces to {0}. This was first done by Naimark [11] who gave a non-explicit
way of constructing such operators. Then Chernoff [1] gave simpler and more
explicit operators A satisfying D(A2) = {0} (they are also semibounded in his
case). About this precise question, some credit should also be given to J. Dixmier
[4] as he gave in the end of his paper a way of constructing symmetric operators
whose squares (and even their adjoint’s squares) have trivial domain.

Getting back to P.R. Chernoff, his idea was based on the Cayley transform (see
[15]) and the operator A was given by multiplication by F = i(Ω + 1)(Ω − 1)−1
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(where Ω is some complex function, see [1]) on the domain D(A) = (Ω−1)H2(S)
where H2(S) denotes the Hardy space on the unit circle S (see [16]).

This example can further be exploited to show another deficiency of this prod-
uct as regards to the distributive law. For example, the inclusion A(B + C) ⊃
AB +AC may be strict. For if it were true then one would have on the one hand
D(A(A− A)) = D(A) and on the other hand D(A2 − A2) = D(A2) = {0}.

Last but not least, the operator AB can just not make any sense if D(A) ∩
Ran(B) = {0} (“Chernoff” again is an example of that).

Now if we talk about adjoints, then the results are not better. For instance,
the adjoint of AB if both operators are unbounded does not equal to B∗A∗ (one
only has A∗B∗ ⊂ (BA)∗ and equality if B is bounded in this order).

2. The Dixmier Product

J. Dixmier [4] gave another definition of a product. For the sake of convenience
of the reader we recall it and the noteworthy results he obtained.

Definition 2.1. The product A · B of two operators A and B is defined in the
following way. We say that f ∈ D(A · B) and g := A · Bf if there exist two
sequences, (fn)n in D(B) and (gn)n in RanA, fn → f and gn → g, such that
A−1gn −Bfn −→ 0 (for some well-chosen A−1gn and Bfn).

By adopting this definition he obtained

Theorem I. The operator A ·B is closed.

Theorem II. (1) The two products AB and A ·B coincide if either of the following
occurs:
(a) A closed and B bounded;
(b) A−1 bounded and B closed.
(2) A · B coincide with the closure of AB if the roles of A and B in a) or b) are
inverted.

In the previous theorem, Property 1) is no longer true if A is bounded and B
is closed since in this case AB may not be closed. There is a nice example due
to A.M. Davie [3] which is as follows: on L2(U), where U is the strip 0 < x < 1
in the (x, y) plane, let Bf(x, y) = yf(x, y) and Af(x, y) = xf(x, y). Then if f is
such that xyf(x, y) is in L2 but yf(x, y) is not then f is in the closure of D(AB)
(in the graph norm) but f is not in D(B), and whence not in D(AB).

J. Dixmier also got a formula for adjoints which is

Theorem III. If A and B are closed , then (AB)∗ = B∗ · A∗; and in general,
(A ·B)∗ = B∗A∗.

3. The MM-Product

As alluded to in the introduction we now give a new definition of a product of
two closed operators on a Hilbert space. If A is a densely defined closed operator
in a Hilbert space with domain D(A). Then, it is known (cf. [2, 15]) that the
operator B = (1+A∗A) is closed (it is even self-adjoint) and has bounded inverse.
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Its inverse, which we denote by RA, is also positive. Hence by the square root
lemma (see [15]), we know that there exists a unique positive operator C such
that C2 = RA. Hence, it is legitimate to consider the operator

SA = (1 + A∗A)−
1
2

(as denoted by Labrousse–Mercier [7]).
It is also known (cf. [2, 15]) that ARA is bounded as long as A is closed.

Besides ranRA is equal to D(A∗A) and A∗ARA = I −RA. And for x ∈ D(A) one
has RA∗Ax = ARAx so that (ARA)∗ = A∗RA∗ . We also have

∀x ∈ H ,

∥∥∥∥(
1

2
−RA

)
x

∥∥∥∥2

+ ‖ARAx‖2 =
1

4
‖x‖2.

Hence ‖RA‖ ≤ 1 and ‖ARA‖ ≤ 1
2
. Another property is ker(ARA) = ker A. Now

we give some properties of SA that will be needed.

Proposition 3.1. For all x ∈ H one has

‖SAx‖2 + ‖ASAx‖2 = ‖x‖2. (3.1)

The range of SA is ranSA = D(A).

Proof. From
‖RAx‖2 + ‖ARAx‖2 =< x,RAx > , ∀x ∈ H,

we obtain
‖SASAx‖2 + ‖ASASAx‖2 = ‖SAx‖2 , ∀x ∈ H. (3.2)

Hence ASA is bounded on ran(RA) with a norm smaller than 1. Now since
ran(RA) ⊂ ran(SA) ⊂ D(A) is dense in D(A) with respect to the graph norm
and since Equation 3.2 shows that ran(SA) is dense in D(A) then it follows that
ran(SA) = D(A). �

Remark 3.2. From the last proposition one obtains ‖SA‖B(H) ≤ 1 and ‖ASA‖B(H) ≤
1.

Proposition 3.3. The following properties hold
1) If x ∈ D(A), SA∗Ax = ASAx,
2) (ASA)∗ = A∗SA∗,
3) ker(ASA) = ker(A).

Proof. 1) Since RA is a positive contraction, then there exists a sequence of poly-
nomials Pn(RA) (see [14]) such that the degree of Pn(RA) is 2n−1 and

Pn(0) = 0 , Pn(RA∗)A = APn(RA) and lim
n→+∞

‖Pn(RA)− SA‖B(H) = 0.

So if x ∈ D(A) then

SA∗Ax = lim
n→+∞

Pn(RA∗)Ax = lim
n→+∞

APn(RA)x = ASAx.

2) Let x ∈ D(A). Then

∀y ∈ H, < ASAx, y >=< SA∗Ax, y >=< x,A∗SA∗y > .

Hence ASA = (A∗SA∗)∗ on D(A) and hence on all H since D(A) is dense in H.
3) This property is trivial. �
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Definition 3.4 (Labrousse–Mercier [7]). Let A ∈ C(H). Then the bisecting
of A is the operator Ã defined as

Ã = ASA(1 + SA)−1.

Proposition 3.5. Let A ∈ C(H). Then
1) Ã ∈ C0(H).

2) (Ã)∗ = Ã∗.
3) RÃ = I+SA

2
.

4) ÃRÃ = ASA

2
.

Proof. Let A ∈ C(H). Then

‖Ã‖B(H) ≤ ‖ASA‖B(H)‖(I + SA)−1‖B(H) ≤ 1

which proves 1). Then by the previous proposition, propriety 2) we have (Ã)∗ =
(I + SA)−1A∗SA∗ . But if x ∈ D(A∗) then A∗SA∗x = SAA∗x and hence

(A∗ + A∗SA∗)x = (A∗ + SAA∗)x.

So

A∗(I + SA∗)x = (I + SA)A∗x

or

(I + SA)−1A∗x = A∗(I + SA∗)−1x.

Accordingly,

(Ã)∗ = A∗(I + SA∗)−1SA∗ = A∗SA∗(I + SA∗)−1 = Ã∗,

establishing 2).
To prove 3) we do the following

I + Ã∗Ã = I + (I + SA)−1A∗SA∗ASA(I + SA)−1.

Since

A∗SA∗ASA = SAA∗ASA = SA(I + A∗A)SA −RA = SAR−1
A SA −RA = I −RA,

then

I + Ã∗Ã = I + (I + SA)−1(I −RA)(I + SA)−1.

Therefore

I + Ã∗Ã = (I + SA)−1[(I + SA) + (I − SA)(I + SA)(I + SA)−1] = 2(I + SA)−1.

Thus

RÃ = (I + Ã∗Ã)−1 =
I + SA

2
.

The last property is proved straightforwardly. �

Our approach in defining a new product is based upon the following result (also
due to Labrousse–Mercier [7])
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Theorem 3.6. 1) If A ∈ B(H) then

‖Ã‖B(H) =
‖A‖B(H)

1 +
√

1 + ‖A‖2
B(H)

(in particular ‖Ĩ‖B(H) = 1
1+
√

2
). Conversely, if ‖Ã‖B(H) < 1 then A ∈ B(H) and

‖A‖ =
2‖Ã‖B(H)

1− ‖Ã‖2
B(H)

.

2) The map F : A −→ F (A) = Ã from (C(H), g) onto (C0(H), ‖ · ‖B(H)) is
bijective and open.

Remark 3.7. For any closed T in C0(H) one has

(F−1(T ))∗ = F−1(T ∗).

So the definition we give in this paper is the following

Definition 3.8. Let A, B ∈ C(H). Then we define the product • of A and B by

A •B = F−1(F (A)F (B))

where F (A)F (B) is the usual product defined on H.

The first result we have got is the following

Theorem 3.9. Let A, B ∈ C(H).
1) if ‖F (A)F (B)‖B(H) < 1, then

A •B = 2F (A)F (B) (1− F (B∗)F (A∗)F (A)F (B))−1 ,

i.e., A •B is bounded on H and

‖A •B‖ =
2‖F (A)F (B)‖B(H)

1− ‖F (A)F (B)‖2
B(H)

.

2) If ‖F (A)F (B)‖B(H) = 1, then A • B is an unbounded densely defined closed
operator with domain D(A •B) = ran(I − F (B∗)F (A∗)F (A)F (B)).

And for y = [I − F (B∗)F (A∗)F (A)F (B)]x ∈ D(A •B) we have

(A •B)y = 2F (A)F (B)x.

Proof. 1) If ‖F (A)F (B)‖B(H) < 1, then the operator (I−F (B∗)F (A∗)F (A)F (B))
is invertible with bounded inverse given by the Neumann series

∞∑
n=0

(F (B∗)F (A∗)F (A)F (B))n.

Accordingly, 2F (A)F (B)(I − F (B∗)F (A∗)F (A)F (B))−1 ∈ B(H) and it is easy
to check that

F [2F (A)F (B)(I − F (B∗)F (A∗)F (A)F (B))−1] = F (A)F (B)

and the B(H)-norm of A •B is easily computed.
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2) First, the operator A•B is densely defined since ran(I−F (B∗)F (A∗)F (A)F (B))
is dense in H. It is also closed. For if (yn)n is a sequence in D(A • B) which
converges to y in H for which A •Byn converges to z in H then by setting

xn = [I − F (B∗)F (A∗)F (A)F (B)]−1yn and tn = R−1
F (A)F (B)xn,

one gets

yn = [I−F (B∗)F (A∗)F (A)F (B)]xn = (2RF (A)F (B)−I)R−1
F (A)F (B)xn = (2RF (A)F (B)−I)tn

which converges to y and

(A •B)yn = 2F (A)F (B)xn = 2F (A)F (B)RF (A)F (B)tn −→ z.

By virtue of Equation (3.1), (tn)n is a Cauchy sequence that converges to x in H
with

RF (A)F (B)x = ω , y = [I − F (B∗)F (A∗)F (A)F (B)]ω ∈ D(A •B)

and

z = 2F (A)F (B)ω = (A •B)y.

Now one easily shows that F (A•B) = F (A)F (B) and finally A•B is unbounded
since D(A •B) is strictly contained in H.

To show this assume D(A • B) = H then (I − F (B∗)F (A∗)F (A)F (B)) would
then be invertible which would in turn lead to ‖F (A)F (B)‖B(H) < 1 which is a
contradiction. �

Remark 3.10. The law • is not commutative (unless Ã and B̃ commute!). It is,
however, associative but it does not have an identity element. Nevertheless, this
law has a fundamental property about adjoints that is no shared by the usual
product in the unbounded case.

We have

Proposition 3.11. We have (B • A)∗ = A∗ •B∗.

Proof. We have

(A •B)∗ =
(
F−1(F (A)F (B))

)∗
.

Hence, by Remark 3.7, we get

(A •B)∗ = F−1 [(F (A)F (B))∗] .

Then since F (A) and F (B) are bounded and by Proposition 3 we deduce that

(A •B)∗ = F−1 [F (B∗)F (A∗)] = B∗ • A∗.

�

The last result in this paper is again a property that is not always true for
arbitrary closed operators in the usual product.

Corollary 3.12. If either A or B is in B(H), then so is A •B.

Proof. We only prove the result for A. If A ∈ B(H), then ‖F (A)‖B(H) < 1 and
hence ‖F (A)F (B)‖B(H) < 1. Thus A •B ∈ B(H). �
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