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Abstract. We survey some old and new results concerning weighted norm
inequalities of sum and product form and apply the theory to obtain limit-
point conditions for second order differential operators of Sturm-Liouville form
defined in Lp spaces. We also extend results of Anderson and Hinton by giving
necessary and sufficient criteria that perturbations of such operators be rela-
tively bounded. Our work is in part a generalization of the classical Hilbert
space theory of Sturm-Liouville operators to a Banach space setting.

1. Introduction

Let w, v0, v1 be positive a.e. measurable or “weights” on the interval Ia =
[a,∞), a > −∞. We are interested in obtaining conditions which guarantee the
validity of the weighted “sum” inequality:∫

Ia

w|y(j)|p ≤ K1(ε)

∫
Ia

v0|y|p + ε

∫
Ia

v1|y(n)|p (1.1)

for 0 ≤ j < n where 1 ≤ p ≤ ∞ and ε ∈ (0, ε0). The space of functions
Dp(v0, v1; Ia) on which (1.1) holds is defined by

Dp(v0, v1; Ia) :=

{
y : y ∈ ACn−1(Ia);

∫
Ia

v0|y|p,
∫

Ia

v1|y(n)|p < ∞
}
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where ACj(Ia) denotes the class of functions whose j-th derivative is locally
absolutely continuous on Ia. We shall also show the inequality (1.1) often implies
the “product” inequality∫

Ia

v1|y(j)|p ≤ K2

(∫
Ia

v1|y|p
)n−j

n
(∫

Ia

v1|y(n)|p
) j

n

.

It will turn out that (1.1) has a number of interesting applications to problems in
concerning second-order differential operators determined by symmetric expres-
sions of the form −(ry′)′ + qy and defined in Lp spaces. The results generalize
both some aspects of the Hilbert theory presented in the book of Naimark [23]
and criteria obtained by Anderson and Hinton in [1] that perturbations of such
operators in the L2 setting be relatively bounded. We close this section with a few
remarks on notation. Upper case letters such as K or C denote constants whose
value may change from line to line. We distinguish between different constants by
writing K1, K2, C, C1, . . . , etc. K(·) indicates dependence on a parameter, e.g.,
K1(ε). Lp(Ia) signifies the (complex) Lp space on Ia having the norm

||u||p,Ia :=

(∫
Ia

|u|p
)1/p

.

C∞(Ia) and Cj(Ia) respectively denote the infinitely or j-fold differentiable func-
tions having continuous j-th derivative on Ia and C∞

0 (Ia) or Cj
0(Ia) consists of

the subspace of C∞(Ia) or Cj(Ia) having compact support. A local property is
indicated by the subscript “loc”, e.g., f ∈ Lp

loc(I), etc. Also, we write AC0(Ia)
as AC(Ia) and L1(Ia) as L(Ia), and when the context is clear we abbreviate
Dp(v0, v1; Ia) by “Dp.” If T : X → Y is an operator where X and Y are Banach
spaces D(T ), R(T ), G(T ), and N (T ) respectively denote the domain, range,
graph, and null space of T . Finally, if f and g are two functions the notation
f ≈ g means that there are constants C1 and C2 such that f ≤ C1g and g ≤ C2f .

2. Some weighted norm inequalities of sum form

Suppose that f is a positive continuous function on Ia. Let Jt,ε := [t, t+ εf(t)].
For 1 < p < ∞ set

S1(t) := f−jp

[
(εf)−1

∫
Jt,ε

w

][
(εf)−1

∫
Jt,ε

v
−p′/p
0

]p/p′

(2.1)

S2(t) := f (n−j)p

[
(εf)−1

∫
Jt,ε

w

][
(εf)−1

∫
Jt,ε

v
−p′/p
1

]p/p′

(2.2)

where p′ = p/(p − 1). In the case that p = 1 or ∞ some modifications in these
definitions are required. If p = 1 we substitute the L∞ norm of v−1

i , i = 0, 1, on
Jt,ε for the integral term. For instance,

S1(t) := f−j

[
(εf)−1

∫
Jt,ε

w

]
‖v−1‖∞,Jt,ε .
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And when p = ∞ we write

S1(t) := f−j‖w‖∞,Jt,ε

[
(εf)−1

∫
Jt,ε

v−1
0

]
.

Similar changes apply to S2(t).

Theorem A. Suppose 1 ≤ p ≤ ∞. If there exists f and ε0 ∈ (0,∞] such that

S1(ε0) := sup
t∈Ia, 0<ε≤ε0

S1(t) < ∞ (2.3)

S2(ε0) := sup
t∈I, 0<ε≤ε0

S2(t) < ∞, (2.4)

then the inequality∫
Ia

w|y(j)|p ≤ K1

{
ε−jη

∫
Ia

v0|y|p + ε(n−j)η

∫
Ia

v1|y(n)|p
}

(2.5)

where η = p if 1 ≤ p < ∞, η = 1 if p = ∞ holds on Dp(v0, v1; Ia) for ε ≤ ε0, and
K1 ≈ max{S1(ε0), S2(ε0)}.

Proof. For 1 ≤ p < ∞ this was shown in [4]. The main idea in the proof of
Theorem A is to partition Ia in the following way. Let t0 := a and set tj+1 =
tj + εf(tj). On each interval Jtj ,ε we start with the basic interpolation inequality
(see [4, Lemma 2.1])

|y(j)(t)| ≤ K1

{
(εf)−(j+1)

∫
Jtj ,ε

|y|+ (εf)n−(j+1)

∫
Jtj ,ε

|y(n)|

}
. (2.6)

We then raise both sides to the p-th power, apply the inequality (A + B)p ≤
2p−1(Ap + Bp) to the right hand side, and use Hölder’s inequality to introduce
the weights v0, v1. Next, we multiply both sides by w and integrate over Jt,ε.
The functions S1(t) and S2(t) will naturally appear. We bound them by S1 and
S2 and add the resulting inequalities over all the intervals to obtain (2.5). A
requirement of this argument is that the sequence {tj} have no finite limit point.
This is guaranteed by the continuity and positivity of f . For p = ∞ Hölder’s
inequality, multiplication by w in (2.6), and an easy estimate gives

w|y(j)(t)| ≤ K1

{
(εf)−j‖w‖∞,Jtj ,ε

[
(εf)−1

∫
Jtj ,ε

v−1
0

]
‖v0y‖∞,Jtj ,ε

+ (εf)(n−j)‖w‖∞,Jtj ,ε

[
(εf)−1

∫
Jtj ,ε

v−1
1

]
‖v1y

(n)‖∞,Jtj ,ε

}
≤ K1 max{S1, S2}

(
‖v0y‖∞,Ia + ‖v0y

(n)u‖∞,Ia

)
.

Taking the L∞ norm of the left side completes the argument. �

Since the integrals or L∞ norms in the definitions of S1(t) and S2(t) may be
difficult to handle we can replace S1(t) and S2(t) by simpler expressions provided
the weights satisfy a certain condition.
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Theorem 2.1. Let f and Jt,ε be as above. Suppose that there is a constant K
not depending on t (but possibly on ε) such that

v0(s)

v0(t)
,
v1(s)

v1(t)
≥ K (2.7)

a.e. on Jt,ε. If p = 1,∞ assume also that

w(s)

w(t)
≤ K1 (2.8)

a.e. on Jt,ε. Then the sum inequality (2.5) holds on Dp for 1 ≤ p < ∞ if

T1(ε0) := sup
t∈Ia,0<ε≤ε0

f−jpwv−1
0 < ∞ (2.9)

T2(ε0) := sup
t∈Ia,0<ε≤ε0

f (n−j)pwv−1
1 < ∞. (2.10)

Proof. To prove this for 1 < p < ∞ we proceed as in the proof of Theorem A
beginning with the basic interpolation inequality (2.6). We then raise both sides
of this inequality to the p-th power, etc., and multiply by w. Next, using (2.7)

to move v
−1/p
0 and v

−1/p
1 out of the integrals we get that

w|y(j)|p ≤ K2 max{T1(ε0), T2(ε0)}2p−1

{
(ε−jp

(
(εf)−1

∫
Jt,ε

v
1/p
0 |y|

)p

+ε(n−j)p

(
(εf)−1

∫
Jt,ε

v
1/p
1 |y(n)|

)p}
.

Finally, we integrate both sides over Ia and apply the Hardy-Littlewood Maximal
Theorem (cf. [21, Theorem 21.76] to the two integral terms on the right-hand
side. This gives (2.5). The cases p = 1,∞ amount to special cases of Theorem A,
where we use (2.7) and (2.8) to replace S1(ε0) and S2(ε0) by T1(ε0) and T2(ε0). �

Remark 2.2. Using a different argument it was shown in [4] that (2.5) also remains
true if f is nondecreasing and the “semi-pointwise” averages

R1(ε0) := sup
t∈Ia, 0<ε≤ε0

f(t)−pjw(t)

[
(εf)−1

∫
Jt,ε

v
−p′/p
0

]p/p′

(2.11)

R2(ε0) := sup
t∈Ia, 0<ε≤ε0

f(t)p(n−j)w(t)

[
(εf)−1

∫
Jt,ε

v
−p′/p
1

]p/p′

(2.12)

are finite.

Remark 2.3. Another possibility lies in the application of the Besicovitch covering
theorem. Let I be some finite or infinite interval. Suppose that each t ∈ I is the
center of an interval ∆t,ε := [t − εf(t)/2, t + εf(t)/2] contained in Ia where f is
bounded if I is infinite. Let Jε denote the collection of these intervals. It is then
possible (see [19, Theorem 1.1, p.2]) to extract from Jε finitely many families
Γ1, . . . , Γl of disjoint intervals in Jε whose union covers I. If we redefine S1(t)
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and S2(t) by replacing the intervals Jt,ε by ∆t,ε, then (2.5) is readily seen to hold
on each Γj, 1 ≤ j ≤ l. Hence,∫

Γj

w|y(j)|p ≤ K1

{
ε−jη

∫
I

v0|y|p + ε(n−j)η

∫
I

v1|y(n)|p
}

,

so that ∫
I

w|y(j)|p ≤ lK1

{
ε−jη

∫
I

v0|y|p + ε(n−j)η

∫
I

v1|y(n)|p
}

.

How can conditions like (2.3), (2.4), (2.9), (2.10), or (2.11), (2.12) be verified?
Essentially, as we have already in part done in Theorem 2.1, we will want to
choose f so that vi(s) ≈ vi(t), i = 0, 1, and w(s) ≈ w(t) on Jt,ε. In a very general
case this can always be done as we now demonstrate.

Proposition 2.4. Suppose that w, v0, and v1 are continuous on Ia. Then there
exists a positive function f ∗ depending on t and possibly ε such

1

2
≤ w(s)

w(t)
,
v0(s)

v0(t)
,
v1(s)

v1(t)
≤ 3

2
(2.13)

on Jt,ε. Moreover, the sequence {tj} defined as in Theorem A using f ∗ has no
finite limit point.

Proof. Given t ≥ a, ε > 0, and for i = 0, 1 let fi(t, ε) := (si(t)− t)/ε where

si(t) = min{t + ε, sup{z > t : 3vi(t)/2 ≥ vi(u) ≥ vi(t)/2 for u ∈ (t, z]}. (2.14)

Define s2(t) and f2(t, ε) similarly for w and set f ∗(t, ε) = min{fi(t, ε)}, i = 0, 1, 2.
With this construction of f ∗ (2.13) follows. To prove the second assertion Set

s∗,0 := a < · · · < s∗,j+1 := s∗,j + εf∗(s∗,j, ε) ≡ s0(s∗,j)

and suppose that {s∗,j} converges to s̄∗ < ∞. We show that for all sufficiently
large j and for u ∈ (s∗,j, s̄∗] that 3vi(s∗,j)/2 ≥ vi(u) ≥ vi(s∗,j)/2. If this is not
so then for every j there is a k > j and a u∗ ∈ [s∗,k, s̄∗] such that for one of the
weights, say, v0 either (i) v0(s∗,k)/2 > v0(u

∗) or (ii) 3v0(s∗,k)/2 < v0(u
∗). But

from the continuity and positivity of v0, given, say, 1/10 > µ > 0 there is a j
such that for any k > j and all u ∈ [s∗,k, s̄∗] we have that

(1− µ)v0(s̄∗) < v0(u) < (1 + µ)v0(s̄∗).

If (i) is true then

(1− µ)v0(s̄∗) < v0(u
∗) < v0(s∗,k)/2 < (1 + µ)v0(s̄∗)/2

so that 9/10 < (1/2)(11/10) which is false. Similarly, if (ii) holds we have

(3/2)(1− µ)v0(s̄∗) < (3/2)v0(s∗,k) < v0(u
∗) < (1 + µ)v0)(s̄∗)

so that 27/20 < 11/10 which is also false. This argument shows that

s̄∗ ≤ s∗(s∗,k) = s∗,k+1 < s∗(s∗,k+1),

and so s̄∗ cannot be a limit point of the sequence {s∗,j}. �
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Remark 2.5. With this definition of f ∗ we see that

S1(t) ≈ f ∗−jpwv−1
0 (2.15)

S2(t) ≈ f ∗(n−j)pwv−1
1 . (2.16)

It is even simpler to define f ∗ so that (2.7) holds in Theorem 2.1 since we can omit
w and only consider the lower bounds in (2.14). We omit the details. In particular,
this means that if the weights are continuous then the integral expressions (2.1)
and (2.2) in Theorem A can in theory always be replaced by the point evaluation
expressions (2.15) and (2.16). Also, in Theorem 2.1 if the weights are continuous
then the conditions (2.7) will be satisfied if f ∗ is chosen. But while Proposition
2.4 is of some theoretical interest it is usually not of much practical use since it is
difficult to characterize f ∗ in a convenient fashion from its definition. Fortunately,
a satisfactory substitute for f ∗ is often suggested by the particular weights w, v0,
and v1.

Example 2.6. Let a = 1, w(t) = tβ, v0(t) = tγ, v1(t) = tα and f(t) = tδ where
δ ≤ 1. Then

1 ≤ sup
s∈Jt,ε

st−1 ≤ 1 + εtδ−1 ≤ 1 + ε.

A calculation shows that S1(ε0), S2(ε0) are finite if

β ≤ min {δpj + γ,−δ(n− j)p + α} , (2.17)

and any fixed ε0 (say ε0 = 1). In (2.17) β will be as large as possible relative to
α and γ if δ is chosen by “equality”, i.e.,

δ = (α− γ)/np ≤ 1. (2.18)

With this choice of δ

β ≤ γ

(
n− j

n

)
+ α

(
j

n

)
.

Example 2.7. Let w(t) = v0(t) = v1(t) = et, a ≥ 0, and f(t) = 1. Then
1 ≤ es/et ≤ ε on Jt,ε. (2.5) follows.

It was demonstrated in [7, Theorem 3.2] that either of the conditions (2.3) or
(2.4) is necessary as well as sufficient for (2.5) provided the weights are chosen
so that S1(t) ≈ S2(t). The choice of δ according to (2.18) forces this in Example
2.6.

Example 2.8. Let v0 = v1 = w and take f(t) = 1. Then (2.5) is true if and only
if

sup
t∈Ia,0<ε≤ε0

(
ε−1

∫ t+ε

t

w

)(
ε−1

∫ t+ε

t

w−p′/p

)p/p′

< ∞.

A necessary and sufficient condition for (2.5) can also be stated in a more
general setting if the weights satisfy certain growth conditions.
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Theorem 2.9. Let w, v0, v1 be weights such that w, v
−p′/p
0 , v

−p′/p
1 ∈ Lloc(Ia) and

the following conditions are satisfied:

|v′1| ≤ Kv
1−1/np
1 v

1/np
0 ,

|v′0| ≤ npv
−1/np
1 v

1+1/np
0 (2.19)

on Ia. Then the sum inequality (2.5) holds for 1 < p < ∞ and j = 0, . . . , n − 1
if and only if

S(ε0) := sup
t∈Ia,ε∈(0,ε0)

1

εf(t)

∫ t+εf(t)

t

wv
−j/n
1 v

(j−n)/n
0 < ∞ (2.20)

where f(t) = (v1/v0)
1/np.

Before proving this we need a lemma showing that our choice of f works like
f ∗ in Proposition 2.4.

Lemma 2.10. There are constants K2, K3 > 0 possibly depending on ε so that

K2 ≤
f(s)

f(t)
,
v1(s)

v1(t)
,
v0(s)

v0(t)
≤ K3 (2.21)

on the intervals Jt,ε for sufficiently small ε > 0.

Proof. First, we note that

|f ′| =
∣∣∣((v1/v0)

1/np
)′∣∣∣ =

∣∣(1/np)(v1/v0)
1/np−1v−2

0 (v0v
′
1 − v1v

′
0)
∣∣

≤ (1/np)v
1/np−1
1 v

−1/np
0 |v′1|+ (1/np)(v1/v0)

1/np−1v−2
0 v1|v′0|

≤ K/np + 1.

Hence for t < s ≤ t + εf(t),

|f(s)− f(t)| =
∣∣∣∣∫ s

t

f ′
∣∣∣∣ ≤ ∫ s

t

|f ′| ≤ εf(t)(K/np + 1),

so that f(s)/f(t) ≤ 1 + ε(K/np + 1) and f(s)/f(t) ≥ 1 − ε(K/np + 1). Next,
consider v0. Since

|fv′0| ≤ (v1/v0)
1/npnpv

1+1/np
0 v

−1/np
1 ,

= npv0

and by the previous result we obtain that

v′0/v0 ≤ |v′0/v0| ≤ np(1− ε(K/np + 1))f(t))−1.

Integrating this over Jt,ε implies that

v0(s)/v0(t) ≤ exp(K4(ε)(s− t)/f(t))

≤ exp(K4(ε)). (2.22)

But also since

−v′0/v0 ≤ |v′0/v0| ≤ np(1− ε(K/np + 1))f(t))−1,
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we get by integration that

v0(s)/v0(t) ≥ (exp(K4(ε)))
−1. (2.23)

(2.21) for v0 follows from (2.22) and (2.23). That (2.21) holds also for v1 is a
consequence of the identity

v1(s)/v1(t) = (v0(s)/v0(t)(f(s)/f(t))np

and (2.21) for v0 and f . �

Proof of Theorem 2.9. We know by Theorem A that the sum inequality (2.5)
holds if (2.3) and (2.4) hold. However because of the conditions (2.21) allowing
f, v0, and v1 to be taken in and out of integrals over the interval Jt,ε both condi-
tions are found to be equivalent to (2.20). Since the assumptions on the weights
guarantee that S1(t) = S2(t) we could apply [7, Theorem 3.2] to conclude that
(2.20) is a necessary condition; but we choose to give an explicit argument. Let
φ ≥ 0 be a C∞

0 function such that φ(t) = 1 on [0, 1] and φ has support on (−2, 2).
Define

Hj(t) = φ(t)(tj/j!).

Then H
(j)
j (t) = 1 on [0, 1] and Hj(t) has support on (−2, 2). Set u = (s− t)/εf(t)

for t− 2εf(t) ≤ s ≤ t + 2εf(t) and define

Hj,t(s) = (εf(t))jHj(u).

Note that

H
(k)
j,t (s) = H

(k)
j (u)(εf(t))j−k

so that in particular H
(j)
j,t (s) = 1. Next, choose t and sufficiently small ε such

that t− 2εf(t) > a and consider the function

S(t) := (εf(t))−1

∫ t+εf(t)

t

wv
−j/n
1 v

j/n−1
0

= (εf(t))−1

∫ t+εf(t)

t

wv
−j/n
1 v

j/n−1
0 |H(j)

j,t |p

≈ (εf(t))−1(v
−j/n
1 v

j/n−1
0 )(t)

×
∫ t+εf(t)

t

w|H(j)
j,t |p.

Therefore if (2.5) holds we have

S(t) = O
{

(εf(t))−1(v
−j/n
1 v

j/n−1
0 )(t)

[
ε−jp

∫ t+2εf(t)

t−2εf(t)

v0|Hj,t|p

+ε(n−j)p

∫ t+2εf(t)

t−2εf(t)

v1|H(n)
j,t |p

]}
.
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However

(εf(t))−1(v
−j/n
1 v0(t)

j/n−1)(t)

(∫ t+2εf(t)

t−2εf(t)

v0|Hj,t|p
)

≈ f(t)−jp(εf(t))−1

(∫ t+2εf(t)

t−2εf(t)

|Hj,t|p
)

=

∫ 2

−2

|Hj(u)|p,

and

(εf(t))−1(v
−j/n
1 v

j/n−1
0 )(t)

(∫ t+2εf(t)

t−2εf(t)

v1|H(n)
j,t |p

)

≈ f(t)−jp(v1/v0)(εf(t))−1)

(∫ t+2εf(t)

t−2εf(t)

|H(n)
j,t |p

)

=

∫ 2

−2

|H(n)
j (u)|p.

Putting these two estimates together shows that S(t) is uniformly bounded for
t ∈ Ia and ε ∈ (0, ε0] which is equivalent to (2.20) as was to be proved. �

Our next result extends an inequality of Anderson and Hinton [1, Theorem 3.1]
from L2(Ia) to the Lp case.

Corollary 2.11. Suppose v0, v1 ∈ Lp
loc(Ia), v

1/2
1 |v′0| ≤ 2v

3/2
0 , and |v′1| ≤ (K/p)

√
v0v1

then the sum inequality

‖v′1y′‖p,Ia ≤ K(ε)‖v0y‖p,Ia + ε‖v1y
′′‖p,Ia (2.24)

holds for all 1 < p < ∞ and ε > 0.

Proof. Here the weights (v′1)
p, vp

0, and vp
1 replace the weights w, v0, and v1. The

conditions on v′1 and v′0 are equivalent to (2.19) for this choice of weights. f(t) is

given by (vp
1/v

p
0)

1/2p ≡
√

v1/v0. We have also that

S1(t) ≡ S2(t) = ε−1

√
v0

v1

∫ t+ε
√

v1/v0

t

|v′1|p(v1v0)
−p/2 ≤ (K/p)p.

(2.24) follows by Theorem 2.9. �

Example 2.12. Suppose w = v0 = v1 and |v′1| ≤ npv1. Then f = 1 and
S1(∞) = S2(∞) = 1. By Theorem 2.9 we have the inequality∫

Ia

w|y(j)|p ≤ K1

(
ε−jp

∫
Ia

w|y|p + ε(n−j)p

∫
Ia

w|y(n)|p
)

. (2.25)

In this example unlike Examples 2.7 and 2.8 since the inequality holds for all
ε > 0.
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Remark 2.13. If a sum inequality of the form (2.5) holds for arbitrary ε > 0 we
can minimize the right-hand side of the inequality as a function of ε provided
j 6= 0 and

∫
Ia

v1|y(n)|p 6= 0. This procedure applied to (2.25) in the previous
example will yield the product inequality∫

Ia

w|y(j)|p ≤ K2

(∫
Ia

w|y|p
)n−j

n
(∫

Ia

w|y(n)|p
) j

n

.

Note that v1 can be taken as e±bt where 0 < b ≤ np.

Remark 2.14. So far we have supposed because of the applications we have in
mind that each of the terms in our weighted sum or product inequalities have a
common Lp norm. However, versions of these inequalities exist when the three
norms are different. One can have, for instance, an inequality of the form∫

Ia

w|y(j)|p ≤ K1

{
ε−µ1

[∫
Ia

v0|y|s
]p/s

+ εµ2

[∫
Ia

v1|y(m)|t
]p/t
)

where 1 ≤ p, s, t < ∞,

µ1 = p(j + s−1 − p−1)

µ2 = p(n− j − t−1 + p−1),

and n, j, p, s, t satisfy various relationships. Also generalizations exist in Rn, n >
1. For information on these more general cases see [5], [7], [6], [9], and [11]. There
are additionally other approaches to weighted norm inequalities similar to (2.5).
See for example Wojteczek-Laszczak [26] and Kwong and Zettl [22].

3. Some Applications to Relative Boundedness and Limit-point
conditions for differential operators in Lp spaces

In [11] we gave applications of sum and product inequalities to various spectral
theoretic problems involving Sturm-Liouville operators in L2(Ia). In this section
we look at applications to operators determined by expressions of Sturm-Liouville
form but defined in Lp spaces. We first require some preliminary definitions and
abstract results. In what follows ‖(·)‖ will denote the norm in an arbitrary Banach
space.

Definition 3.1. Suppose A and T are operators from a Banach space X to a
Banach space Y . Then A is said to be T bounded if the domain of T is contained
in the domain of A and the inequality

‖A(x)‖ ≤ K(‖x‖+ ‖T (x)‖) (3.1)

holds for all x in the domain of T . Furthermore A is said to have T bound 0 if A
is T bounded and the inequality (3.1) has the form

‖A(x)‖ ≤ K(ε)‖x‖+ ε‖T (x)‖)

for all ε ∈ (0, ε0) for some ε0 ∈ (0,∞).
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Lemma 3.2. Suppose A, B, C, and L are operators from a Banach space X to
a Banach space Y . Suppose that A is L-bounded and B, C are L-bounded with L
bound 0. Then A is L + B + C bounded.

Proof. By the triangle inequality

‖x‖+ ‖L(x)‖ ≤ ‖x‖+ ‖(L + B + C)(x)‖+ ‖B(x)‖+ ‖C(x)‖. (3.2)

¿From the hypotheses on B and C we also have the estimates

‖B(x)‖ ≤ K1(ε/2)‖x‖+ (ε/2)‖L(x)‖ (3.3)

‖C(x)‖ ≤ K2(ε/2)‖x‖+ (ε/2)‖L(x)‖. (3.4)

Substituting (3.3) and (3.4) into (3.2 gives that

(1− ε)(‖x‖+ ‖L(x)‖) ≤ (1 + K1(ε/2) + K2(ε/2))‖x‖+ ‖(L + B + C)(x)‖.(3.5)

But since A is L bounded ‖A(x)‖ ≤ K(‖x‖+‖L(x)‖). Combining this with (3.5)
yields that

‖A(x)‖ ≤ K(1− ε)−1[(1 + K1(ε/2) + K2(ε/2))‖x‖+ ‖(L + B + C)(x)‖].
�

Lemma 3.3. Let A, B, C and L be operators from a Banach space X to a
Banach space Y . Suppose the inequalities

‖A(y)‖ ≤ K(ε)‖B(y)‖+ ε‖L(y)‖) (3.6)

‖B(y)‖ ≤ K(ε)‖C(y)‖+ ε‖L(y)‖ (3.7)

‖C(y)‖ ≤ K(‖y‖+ ‖T (y)‖) (3.8)

where T (y) = (A + B + L)(y). Then A is T bounded with relative bound 0.

Proof. By (3.7) and the triangle inequality

‖B(y)‖ ≤ K(ε)‖C(y)‖+ ε‖(L + B)(y)‖+ ε‖B(y)‖.
Hence,

‖B(y)‖ ≤ K(ε)(1− ε)−1‖C(y)‖+ ε(1− ε)−1‖(L + B)(y)‖.
Substituting this into (3.6) after noting again that ‖L(y)‖ ≤ ‖(L + B)(y)‖ +
‖B(y)‖ gives the inequality

‖A(y)‖ ≤ K(ε)(1 + ε(1− ε)−1)‖C(y)‖+ ε2(1− ε)−1‖(L + B)(y)‖. (3.9)

Finally,

‖(L + B)(y)‖ ≤ ‖T (y) + ‖C(y)‖
≤ K‖y‖+ (K + 1)‖T (y)‖.

Substitution into (3.9) now gives the desired conclusion. �

Given a Banach space X with dual X∗, [x, x∗] signifies the complex conjugate

x∗(x) for x ∈ X and x∗ ∈ X∗. If T is an operator on X we consider the set of
pairs G(T ∗) := (z, z′) ∈ X ×X∗ such that

[T (y), z] = [y, z′]. (3.10)
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The density of D(T ) implies that (3.10) determines an operator T ∗ called the
adjoint of T such that T ∗(z) = z′. If T : X∗ → X∗ has a domain D(T ) which is
total over X (i.e., [x, x∗] = 0 for a fixed x ∈ X and all x∗ ∈ D(T ) ⇒ x = 0) the
set G(∗T ) of pairs (y′, y) ∈ X ×X satisfying

[y′, z] = [y, T (z)]

also determines an operator which we denote by ∗T and call the adjoint of T in
X.1 Both T ∗ and ∗T are closed and [T (y), z] = [y, T ∗(z)] or [∗T (y), z] = [y, T (z)]
for all y ∈ D(T ) or D(∗T ) ⊂ X and z ∈ D(T ∗) or D(T ) ⊂ X∗ . In the particular
case X = Lp(Ia) and X∗ = Lp′(Ia) where 1 ≤ p ≤ ∞ the pairing [(·), (·)] on
Lp(J)× Lp′(J) for some interval J is given by [y, z]J :=

∫
J
yz̄. Consider now the

differential expression M [y] := −(ry′)′ + qy. Assume that r > 0, r ∈ C1(Ia), and
q ∈ C(Ia). Define

{y, z}(t) := r(t)(y(t)z̄′(t)− y′(t)z̄(t)).

for y, z ∈ ACloc(Ia) and the following operators and domains in Lp(Ia).

Definition 3.4. For p ∈ [1,∞] let let T ′0,p, Tp, T0,p, and be the operators with
domain and range in Lp(Ia) determined by M on

D′0,p := {y ∈ C∞
0 (Ia)},

Dp := {y ∈ Lp(Ia) : y′ ∈ ACloc(Ia); M [y] ∈ Lp(Ia)},
D0,p := {y ∈ Dp : y(a) = y′(a) = 0; lim

t→∞
{y, z}(t) = 0,∀z ∈ Dp′}.

We call T ′0,p, T0,p respectively the “preminimal” and “minimal” operators, and Tp

the “maximal” operator determined by M .

Theorem B. If 1 ≤ p < ∞ the operators T ′0,p, T0,p, and Tp have the following
properties:

(i) T0,p and Tp are closed densely defined operators.
(ii) [Tp(y), z][a,t] = {y, z}(t)− {y, z}(a) + [y, Tp′(z)][a,t].
(iii) T ∗p = T0,p′ and T ∗0,p = Tp′.

(iv) T ′0,p is closable and T ′0,p = T0,p.

Moreover, T0,∞ and T∞ are closed, the closure of T ′0,∞ is T0,∞, ∗T0,∞ = T1, and
∗T∞ = T0,1.

Proofs of (i)–(iii), the last statement, as well as more general results may be found
in one of [18, Chapter VI], [25], or [13]). The L2 theory is thoroughly treated
in Naimark [23, §17]. It is almost certain that by extending the procedure of
Naimark given in the L2 case that q, r and r−p′/p need only be locally integrable
for Theorem B to hold. However, the verification of this is technically complicated
and will be omitted here.

Definition 3.5. The operators T0,p or Tp are separated if on D0,p or Dp (ry′)′ ∈
Lp(Ia)

1Goldberg calls this operator the preconjugate of T . Its properties are studied in [18, VI.I].
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Remark 3.6. By the triangle inequality the separation of T0,p or Tp is equivalent
to qy ∈ Lp(Ia) on the domains of these operators. The closed graph theorem in
turn implies that separation is equivalent to the existence of an inequality of the
form

‖(ry′)′‖p,Ia + ‖qy‖p,Ia ≤ K{‖y‖p,Ia + ‖M [y]‖p,Ia}.
Necessary and sufficient conditions for separation in Lp when M [y] = −y′′ + qy
have been given by Chernyavskaya and Shuster [14]. However their conditions
can be difficult to verify. For p = 2 various sufficient conditions may be found in
[12], [10], [2], [16]. The simplest condition guaranteeing separation for all p is to
require that q be essentially bounded.

Limit-point Results in Lp spaces.

Definition 3.7. We say that Tp is p-limit-point (p-LP) at ∞ if limt→∞{y, z}(t) =
0 for all y ∈ Dp and z ∈ Dp′

Theorem 3.8. Consider the following conditions:

(i) Tp is p-LP.
(ii) There do not exist linearly independent solutions yp ∈ Lp(Ia) and zp′ ∈

Lp′(Ia) of M [y] = 0.
(iii) dimDp/D0,p = 2.

Then (i) and (iii) are equivalent conditions and (i) ⇒ (ii).

Proof. Suppose that (i) is true and that there were linearly independent solutions
yp ∈ Lp(Ia) and zp′ ∈ Lp′(Ia). Let t ∈ Ia By (ii) of Theorem B {y, z}(t) =
{y, z}(a) and the fact that Tp is p-LP we have

0 = lim
t→∞

{yp, zp′}(t) = {yp, zp′}(a) = r−1(a){yp, zp′}(a).

But this is impossible since r−1{y, z} is just the Wronskian of of the solutions
yp, zp′ and its zero value at a or t contradicts their assumed linear independence.
Turning now to (iii), let φ1 and φ2 be C∞

0 (Ia) functions such that φ1(a) = 1,
φ′1(a) = 0 and φ2(a) = 0, φ′2(a) = 1. Since φ1, φ2 ∈ Dp and are linearly inde-
pendent, we see that dimDp/D0,p ≥ 2. Suppose there exists u ∈ Dp such that
{φ1, φ2, u} is linearly independent mod D0,p. Let h be a linear combination of
these functions such that h(a) = h′(a) = 0. Let Gp and G0,p respectively be Dp

or D0,p endowed with the graph norm. Now the dual G∗
p of Gp can be identified

with the space of pairs ξ = (z, z∗) in Lp′(Ia)× Lp′(Ia) such that ξ(y), y ∈ Gp, is
given by ∫

Ia

yz̄ +

∫
Ia

M [y]z̄∗.

Since h /∈ G0,p and G0,p is closed in Gp there exists an element ξ ∈ G∗
p such that

ξ(h) = 1 and ξ(y) = 0 for all y ∈ G0,p, implying that ξ = (−M [z∗], z∗) for some
z ∈ Dp. It follows that

1 = ξ(h) =

∫
Ia

h(−M [z] +

∫
Ia

M [h]z̄

= {h, z}(∞),
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contradicting (i). We conclude that dimD/D0 = 2. In the above argument we
have shown that (i)⇒ (ii) and that (i)⇒ (iii). It is clear that (iii) ⇒ (i). For if
Dp is a two dimensional extension of D0,p then span{φ1, φ2,D0,p} = Dp. Since φ1

and φ2 have compact support and by the definition of D0,p, (i) will hold. �

Remark 3.9. For p 6= 2 Theorem 3.8 represents an extension of the well-known
limit point concept for differential operators in L2(Ia). In particular (ii) is a
generalization of the fact that if M is 2-LP at ∞ then M has at most one L2

solution. In the limiting case p = 1, p′ = ∞, if there is a solution y in D1

in L(Ia), (ii) says that that there cannot be another solution independent of y
which is bounded. As in the Hilbert space case we have also shown that Tp is
p-limit-point if and only if Dp/D0,p = 2.

Remark 3.10. If any one of T0,p, Tp, T0,p′ and Tp′ has closed range then more can be
said. Specifically all the other minimal and maximal operators also have closed
range. In particular, the minimal operators are one-to-one and have bounded
inverses while the maximal operators are surjective and

dim (Dp/D0,p) = dimN (Tp) + dimN (Tp′).

For the proof in a considerably more general setting see Goldberg [18] Theorems
VI.2.7 and VI.2.11. Furthermore, since the dimensions of both null spaces do not
exceed 2 and since as we have seen Dp is at least a two dimensional extension of
D0,p we have that

2 ≤ dim (Dp/D0,p) ≤ 4.

Brown and Cook [13, Corollary 2.9] have shown that T0,p defined on Ia has a
bounded inverse and thus closed range for 1 ≤ p ≤ ∞ if both

∫
Ia

r−1 < ∞ and∫
Ia

q−1 < ∞

Remark 3.11. If q ≥ 0 then M is disconjugate and by by Corollary 6.4 and Theo-
rem 6.4 of Hartman [20] there is a fundamental set of of positive linearly indepen-
dent solutions y1 and y2 of M [y] = 0, called respectively the principal and nonprin-
cipal solutions, such that y′1 ≤ 0 and y′ > 0 on Ia. Additionally, limt→∞ y1/y2 = 0.
It follows at once in our setting that dimN (Tp) = dimN (Tp′) ≤ 1. In [3] it is
furthermore shown that if r = 1, q ≥ 0, and there exists b ∈ (0,∞) such that

inf
x∈Ia,x−b>a

∫ x+b

x−b

q > 0, (3.11)

then

(i) Tp has closed range.
(ii) dim (Dp/D0,p) = 2 and dim (R(Tp)/R(T0,p) = 1,
(iii) dimN (Tp) = 1,
(iv) If y1 denotes the principal or “small” solution of M [y] = 0 then y1 ∈ Lp(Ia)

for all p ∈ [1,∞].

The condition (3.11) was shown by Chernyavskya and Shuster [15] to be necessary
and sufficient for Tp defined on R to have a bounded inverse. In the case when q ≥
k > 0 one can show that M [y] = 0 has exponentially growing and exponentially
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decaying solutions. Read [24] has extended this by showing that the same is true
if

lim inf
x→∞

∫ x+a

x

q1/2 dt > 0

for some a > 0.

Relative Boundedness for perturbations of Differential Opera-
tors in Lp spaces.

The following two results are generalizations to Lp of relative boundedness criteria
given by Anderson and Hinton [1] in the L2 setting.

Theorem 3.12. Let Aj : Lp → Lp be given by
∫

Ia
ajy

(j), j = 0, 1, on Dp where

the aj are locally integrable functions. Let T0,p be the minimal operator in Lp(Ia)
determined by M [y] = −(ry′)′ + qy and Assume that |r′| ≤ (K/p)

√
r and that

sup
t∈Ia

1√
r

∫ t+ε
√

r

t

|q|p < ∞. (3.12)

Then the Aj are T0,p-bounded if and only if

1√
r

∫ t+ε
√

r

t

|aj|pr−jp/2 < ∞, j = 0, 1, (3.13)

is bounded on Ia. If Tp is p-LP at ∞ then the Aj are also Tp bounded.

Proof. This is an application of Theorem 2.9 and Lemma 3.2. Define the operators
L, B, C : Lp(Ia) → Lp(Ia) on C∞

0 (Ia) by L(y) = ry′′, B(y) = r′y′, and C(y) = qy
where y ∈ D0,p. Then T ′0,r = L + B + C. Let f =

√
r, and take v0 = 1,

The condition on r′ is just the first condition in (2.19) with rp replacing v1. By
Theorem 2.9 the Aj are L-bounded or equivalently the sum inequalities

‖Aj(y)‖p,Ia ≤ K(‖y‖p,Ia + ‖ry′′‖p,Ia), j = 0, 1,

hold if and only if (3.13) is true. By Corollary 2.11 (with v0 = 1) B is L-bounded
with relative bound 0. Finally, another application of Theorem 2.9 using (3.12)
gives that C is L-bounded with relative bound 0. The fact that the Aj are T ′0,p

bounded now now follows from Lemma 3.2. A closure argument shows that the
Aj are T0,p bounded. Finally, if Tp is p-LP at ∞, then Tp is a two dimensional
extension of T0,p via the functions φ1 and φ2. Hence, if y ∈ Dp, y = y0 + z where
z = c1φ1 +c2φ2. Since Aj is T0 bounded and by an elementary inequality we have

‖Aj(y0)‖p
p,Ia

≤ Kp2p−1{‖y0‖p
p,Ia

+ ‖T (y0)‖p
p,Ia
}.

The same inequality is true for z since the p-th root of each side defines two
norms on Z := span {φ1, φ2} and the mapping j : Z → Z given by j(z) = z is
continuous with respect to these norms since Z is finite (2!) dimensional. Hence,

‖Aj(y0 + z)‖p
p,Ia

≤ 2p−1[‖Aj(y0)‖p
p,Ia

+ Aj(z)‖p
p,Ia

≤ K1[‖y0‖p
p,Ia

+ ‖z‖p
p,Ia

+ ‖T (y0)‖p
p,Ia

+ ‖T (z)‖p
p,Ia

]

≤ K1[‖y0 + z‖p
p,Ia

+ ‖T (y0 + z)‖p
p,Ia

]

= K1{‖y‖p
p,Ia

+ ‖T (y)‖p
p,Ia
}.
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�

Theorem 3.13. Suppose that T0,p is separated Additionally suppose that

|r′| ≤ (K/p)
√

r|q|
|q′| ≤ 2|q|3/2r−1/2.

Let Aj, j = 0, 1, be as in Theorem 3.12. Then Aj is T0,p-bounded with Tp-bound
0 if and only if

S(t) =

√
|q|
r

∫ t+ε
√

r/q

t

|aj|pr−jp/2|q|p(j−2)/2 (3.14)

is bounded on Ia.

Proof. As before we begin with the C∞
0 functions. Let C(y) = qy, B(y) = r′y′

and L(y) = ry′′. By the hypothesis of separation (3.8) holds. By Theorem 2.9

where f(t) = (rp/qp)1/2p =
√

r/q (3.6) holds if and only if (3.14) is true. By
Corollary 2.11 (3.7) is true. The conclusion that Aj is T ′0,p bounded follows from
Lemma 3.3. �
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