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VOLTERRA COMPOSITION OPERATORS ON LOGARITHMIC
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Abstract. Let ϕ be a holomorphic self-map and g a fixed holomorphic func-
tion on the unit ball B. The boundedness and compactness of the Volterra
composition operator

Tg,ϕf(z) =
∫ 1

0

f(ϕ(tz))<g(tz)
dt

t

on the logarithmic Bloch space and little logarithmic Bloch space are studied
in this paper.

1. Introduction

Let B denote the unit ball of Cn. Let z = (z1, . . . , zn) and w = (w1, . . . , wn)
be points in Cn, we write

〈z, w〉 = z1w̄1 + · · ·+ znw̄n, |z| =
√
|z1|2 + · · ·+ |zn|2.

Thus B = {z ∈ Cn : |z| < 1}. We denote by H(B) the space of all holomorphic
functions in B. Let

<f(z) =
n∑

j=1

zj
∂f

∂zj

(z)
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represent the radial derivative of f ∈ H(B). Recall that the Bloch space B =
B(B), is the space of all f ∈ H(B) for which (see [14])

b(f) = sup
z∈B

(1− |z|2) |<f(z)| < ∞.

The little Bloch space B0 = B0(B), comprises of all f ∈ H(B) such that

lim
|z|→1

(1− |z|2) |<f(z)| = 0.

Under the norm ||f ||B = |f(0)|+ b(f), B is a Banach space. It is easy to see that
B0 is a closed subspace of B.

Let LB = LB(B) stand for the class of all f ∈ H(B) such that

β(f) = sup
z∈B

(1− |z|2)
(

ln
e

1− |z|2

)
|<f(z)| < ∞.

It is easy to see that LB is a Banach space with the norm ‖f‖LB = |f(0)|+β(f).
LB is called the logarithmic Bloch space.

Let LB0 denote the class of f ∈ LB such that

lim
|z|→1

(1− |z|2)
(

ln
e

1− |z|2

)
|<f(z)| = 0.

In [13] (see also [14, Theorem 3.21]) was shown that f is a multiplier of B if and
only if f ∈ H∞ and f ∈ LB. Hence the space LB is appeared naturally.

Let ϕ be a holomorphic self-map of B. The composition operator Cϕ is defined
by

(Cϕf)(z) = (f ◦ ϕ)(z), f ∈ H(B).

It is interesting to provide a function theoretic characterization of when ϕ induces
a bounded or compact composition operator on various spaces. Recall that a
linear operator is said to be bounded if the image of a bounded set is a bounded
set, while a linear operator is compact if it takes bounded sets to sets with compact
closure. The book [2] contains plenty of information on this topic.

Suppose that g : B → C1 is a holomorphic map, define

Tgf(z) =

∫ 1

0

f(tz)
dg(tz)

dt
=

∫ 1

0

f(tz)<g(tz)
dt

t
, f ∈ H(B), z ∈ B.

This operator is called the extended Cesàro operator (or the Riemann-Stieltjes
operator), which was introduced in [3], and studied in [1, 3, 4, 6, 7, 8, 9, 11, 12].

Motivated by the definition of operators Cϕ and Tg, in [15] we define a more
general operator as follows

Tg,ϕf(z) =

∫ 1

0

f(ϕ(tz))<g(tz)
dt

t
, f ∈ H(B), z ∈ B. (1.1)

The operator Tg,ϕ is called the Volterra composition operator. In the setting of
the unit disk D, this operator has the following form

Tg,ϕf(z) =

∫ z

0

(f ◦ ϕ)(ξ)g′(ξ)dξ, f ∈ H(D), z ∈ D,

which was first defined and studied in [5]. It is easy to see that Tg,z = Tg.
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In this paper, we study the operator Tg,ϕ on the logarithmic Bloch space and
little logarithmic Bloch space. The sufficient and necessary conditions for the
operator Tg,ϕ to be bounded and compact are given. As a corollary, we obtain
the characterization of the boundedness and compactness of the extended Cesàro
operator on the logarithmic Bloch space and little logarithmic Bloch space.

Throughout the paper, constants are denoted by C, they are positive and may
not be the same in every occurrence.

2. Auxiliary results

In order to prove the main results of this paper, we need some auxiliary results,
which are incorporated in the lemmas which follows.

Lemma 2.1. Let ϕ be a holomorphic self-map of B and g ∈ H(B). Then Tg,ϕ :
LB(or LB0) → LB is compact if and only if Tg,ϕ : LB(or LB0) → LB is bounded
and for any bounded sequence (fk)k∈N in LB(or LB0) which converges to zero
uniformly on compact subsets of B as k → ∞, we have ‖Tg,ϕfk‖LB → 0 as
k →∞.

Proof. The result follows by standard arguments similar to those outlined in
Proposition 3.11 of [2]. We omit the details. �

Lemma 2.2. A closed set K in LB0 is compact if and only if it is bounded and
satisfies

lim
|z|→1

sup
f∈K

(1− |z|2) ln
e

1− |z|2
|<f(z)| = 0.

Proof. The proof is similar to the proof of [10, Lemma 1]. We omit the details. �

Lemma 2.3. Let f ∈ LB. Then there exists a positive constant C such that

|f(z)| ≤ C ln ln
4

1− |z|2
‖f‖LB.

Proof. Assume that f ∈ LB. Let |z| > 1/2, z = rζ and ζ ∈ ∂B. We have

|f(z)− f(rζ/2)| ≤
∫ 1

1/2

∣∣∣∣<f(tz)

t

∣∣∣∣ dt ≤ 4‖f‖LB
∫ 1

0

|z|dt

(1− t|z|) ln e
1−t|z|

.

By the standard estimate of the last integral, we have

|f(z)| ≤ max
|z|≤1/2

|f(z)|+ 4‖f‖LB ln ln
e

1− |z|2
. (2.1)

Let |z| ≤ 1/2. From [7] we see that

max
|z|≤1/2

|f(z)− f(0)| ≤ C max
|z|≤3/4

|<f(z)|.

Hence,

max
|z|≤1/2

|f(z)| ≤ |f(0)|+ C‖f‖LB. (2.2)

Then the result follows from (2.1) and (2.2). �
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Lemma 2.4. Let f ∈ LB0. Then

lim
|z|→1

|f(z)|
ln ln e

1−|z|2
= 0.

Proof. Since f ∈ LB0, it follows that for any ε > 0 there is a δ ∈ (1/2, 1) such
that

(1− |z|) ln
e

1− |z|
|<f(z)| < ε, (2.3)

whenever δ < |z| < 1.
From (2.3), when 1/2 < δ < |z| < 1, we have that

|f(z)| =
∣∣∣∣f(z/2|z|) +

∫ 1

1/(2|z|)
<f(tz)

dt

t

∣∣∣∣
≤ M∞(f, 1/2) + 2

∫ δ
|z|

1/(2|z|)
|<f(tz)| |z|dt + 2

∫ 1

δ
|z|

|<f(tz)| |z|dt

≤ M∞(f, 1/2) + 2‖f‖LB
∫ δ

|z|

0

|z|dt

(1− t|z|) ln e
1−t|z|

+ 2ε

∫ 1

δ
|z|

|z|dt

(1− t|z|) ln e
1−t|z|

≤ M∞(f, 1/2) + 2‖f‖LB ln ln
e

1− δ
+ 2ε ln ln

e

1− |z|
− 2ε ln ln

e

1− δ
,

where M∞(f, r) = supz∈B |f(rz)|. Dividing the above inequality by ln ln e
1−|z| ,

using the fact that the quantity M∞(f, 1/2) is finite, and letting |z| → 1, we
obtain

|f(z)|
ln ln e

1−|z|
≤ 2ε, as |z| → 1,

from which the lemma follows. �

3. Main results and proofs

Now we are in a position to state our main results and proofs in this paper.

Theorem 3.1. Let ϕ be a holomorphic self-map of B and g ∈ H(B). Then the
following statements are equivalent.

(1) Tg,ϕ : LB → LB is bounded;
(2) Tg,ϕ : LB0 → LB is bounded;
(3)

M = sup
z∈B

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| < ∞. (3.1)

Proof. (3) ⇒ (1). Suppose that (3.1) holds. A calculation with (1.1) gives the
following fundamental and useful formula (see e.g. [3])

<[Tg,ϕ(f)](z) = f(ϕ(z))<g(z).
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For any f ∈ LB, using Lemma 2.3 we have

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕf)(z)|

= (1− |z|2) ln
e

1− |z|2
|<g(z)||f(ϕ(z))|

≤ C(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)|‖f‖LB. (3.2)

Using the fact that Tg,ϕ(f)(0) = 0 and the condition (3.1), the boundedness of
the operator Tg,ϕ : LB → LB follows by taking the supremum in (3.2) over B.

(1) ⇒ (2) is clear.
(2) ⇒ (3). Assume that Tg,ϕ : LB0 → LB is bounded. For a ∈ B, set

fa(z) = ln ln
4

1− 〈z, a〉
.

It is easy to check that fa ∈ LB and supa∈B ‖fa‖LB < ∞. Moreover,

(1− |z|) ln
e

1− |z|
|<fa(z)| = (1− |z|) ln

e

1− |z|
1

ln 4
|1−〈z,a〉|

|〈z, a〉|
|1− 〈z, a〉|

≤ (1− |z|) ln
e

1− |z|
1

ln 2

1

1− |a|
→ 0

as |z| → 1. Therefore fa ∈ LB0. For b ∈ B, we have

∞ > ‖Tg,ϕfϕ(b)‖LB = sup
z∈B

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕfϕ(b))(z)|

= sup
z∈B

(1− |z|2) ln
e

1− |z|2
|<g(z)||fϕ(b)(ϕ(z))|

≥ (1− |b|2) ln
e

1− |b|2
ln ln

4

1− |ϕ(b)|2
|<g(b)|,

from which we obtain that (3.1) holds. The proof of this theorem is completed.
�

Theorem 3.2. Let ϕ be a holomorphic self-map of B and g ∈ H(B). Then the
following statements are equivalent.

(1) Tg,ϕ : LB → LB is compact;
(2) Tg,ϕ : LB0 → LB is compact;
(3) g ∈ LB and

lim
|ϕ(z)|→1

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| = 0. (3.3)

Proof. (1) ⇒ (2) is clear.
(2) ⇒ (3). Suppose that Tg,ϕ : LB0 → LB is compact. Then it is obvious that

Tg,ϕ : LB0 → LB is bounded. Taking the function f(z) = 1, and employing the
boundedness of Tg,ϕ : LB0 → LB we obtain that g ∈ LB. Let (ϕ(zk))k∈N be a
sequence in B such that limk⇀∞ |ϕ(zk)| = 1. Set

fk(z) =
(

ln ln
4

1− 〈z, ϕ(zk)〉

)2(
ln ln

4

1− |ϕ(zk)|2
)−1

.
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Similarly to the proof of Theorem 3.1 we see that fk is a bounded sequence in
LB0. Moreover, fk → 0 uniformly on compact subsets of B as k → ∞. By
Lemma 2.1,

lim
k→∞

‖Tg,ϕfk‖LB = 0. (3.4)

We have

‖Tg,ϕfk‖LB = sup
z∈B

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕfk)(z)|

= sup
z∈B

(1− |z|2) ln
e

1− |z|2
|fk(ϕ(z)<g(z)|

≥ (1− |zk|2) ln
e

1− |zk|2
ln ln

4

1− |ϕ(zk)|2
|<g(zk)|,

which together with (3.4) imply

lim
k→∞

(1− |zk|2) ln
e

1− |zk|2
ln ln

4

1− |ϕ(zk)|2
|<g(zk)| = 0.

This proves that (3.3) holds.
(3) ⇒ (1). Suppose that g ∈ LB and (3.3) holds. Let (fk)k∈N be a sequence in

LB with supk∈N ‖fk‖LB ≤ L and suppose fk → 0 uniformly on compact subsets
of B as k →∞. By Lemma 2.1 we only to show that

‖Tg,ϕfk‖LB → 0 as k →∞.

By (3.3) we have that if given ε > 0, there is a constant δ(0 < δ < 1), such
that when δ < |ϕ(z)| < 1 we have

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| < ε. (3.5)

Let G = {w ∈ B : |w| ≤ δ}. (3.5) along with the fact that g ∈ LB shows that

‖Tg,ϕfk‖LB = sup
z∈B

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕfk)(z)|

= sup
z∈B

(1− |z|2) ln
e

1− |z|2
|<g(z)fk(ϕ(z))|

≤
(

sup
{z∈B: |ϕ(z)|≤δ}

+ sup
{z∈B: δ≤|ϕ(z)|<1}

)
(1− |z|2) ln

e

1− |z|2
|<g(z)||fk(ϕ(z))|

≤ ‖g‖LB sup
w∈G

|fk(w)|

+C‖fk‖LB sup
{z∈B: δ≤|ϕ(z)|<1}

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)|

≤ ‖g‖LB sup
w∈G

|fk(w)|+ CLε.

Observe that G is a compact subset of B, then it gives that

lim
k→∞

sup
w∈G

|fk(w)| = 0.

By letting k →∞ in the last inequality, we can deduce that

lim sup
k→∞

‖Tg,ϕfk‖LB ≤ CLε.
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Since ε > 0 is an arbitrary positive number it follows that the last limit is equal
to zero. Therefore, Tg,ϕ : LB → LB is compact. The proof is finished. �

Theorem 3.3. Let ϕ be a holomorphic self-map of B and g ∈ H(B). Then
Tg,ϕ : LB0 → LB0 is bounded if and only if Tg,ϕ : LB0 → LB is bounded and
g ∈ LB0.

Proof. Suppose that Tg,ϕ : LB0 → LB0 is bounded. It is obvious that Tg,ϕ :
LB0 → LB is bounded. Taking the function f(z) = 1, and employing the bound-
edness of Tg,ϕ : LB0 → LB0 we see that g ∈ LB0.

Conversely, assume that Tg,ϕ : LB0 → LB is bounded and g ∈ LB0. Then, for
each polynomial p(z), we have that

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕp)(z)| ≤ (1− |z|2) ln

e

1− |z|2
|<g(z)|‖p‖∞,

from which it follows that Tg,ϕp ∈ LB0. Since the set of all polynomials is dense
in LB0, we have that for every f ∈ LB0 there is a sequence of polynomials (pk)k∈N
such that ‖f − pk‖LB → 0, as k →∞. Hence

‖Tg,ϕf − Tg,ϕpk‖LB ≤ ‖Tg,ϕ‖‖f − pk‖LB → 0

as k → ∞, since the operator Tg,ϕ : LB0 → LB is bounded. Since LB0 is closed
subset of LB, we obtain

Tg,ϕ(LB0) ⊂ LB0.

Therefore Tg,ϕ : LB0 → LB0 is bounded. �

Theorem 3.4. Let ϕ be a holomorphic self-map of B and g ∈ H(B). Assume
that Tg,ϕ : LB → LB0 is bounded. Then the following statements are equivalent

(1) Tg,ϕ : LB → LB0 is compact;
(2) Tg,ϕ : LB0 → LB0 is compact;
(3)

lim
|z|→1

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| = 0. (3.6)

Proof. (1) ⇒ (2). It is obvious.
(2) ⇒ (3). Suppose that Tg,ϕ : LB0 → LB0 is compact. Then it is clear that

Tg,ϕ : LB0 → LB0 is bounded. Taking f(z) ≡ 1 we obtain

g ∈ LB0. (3.7)

By the compactness of Tg,ϕ : LB0 → LB0 we see that Tg,ϕ : LB0 → LB is
compact. From Theorem 3.2 we have

lim
|ϕ(z)|→1

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| = 0. (3.8)

In terms of (3.8), for every ε > 0, there exists an r ∈ (0, 1), such that when
r < |ϕ(z)| < 1,

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| < ε (3.9)
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According to (3.7), there exists a δ ∈ (0, 1), such that when δ < |z| < 1,

(1− |z|2) ln
e

1− |z|2
|<g(z)| ≤ ε

ln ln 4
1−r2

. (3.10)

Therefore, if δ < |z| < 1 and r < |ϕ(z)| < 1, by (3.9) we have

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)| < ε. (3.11)

If δ < |z| < 1 and |ϕ(z)| ≤ r, by (3.10) we obtain

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)|

< ln ln
4

1− r2
(1− |z|2) ln

e

1− |z|2
|<g(z)| < ε. (3.12)

Combining (3.11) with (3.12), we obtain (3.6), as desired.
(3) ⇒ (1). From the proof of Theorem 3.1 we have

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕf)(z)|

≤ C(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |ϕ(z)|2
|<g(z)|‖f‖LB. (3.13)

Taking the supremum in (3.13) over all f ∈ LB such that ‖f‖LB ≤ 1, by letting
|z| → 1, we arrive at

lim
|z|→1

sup
‖f‖LB≤1

(1− |z|2) ln
e

1− |z|2
|<(Tg,ϕf)(z)| = 0.

Combining this with Lemma 2.2 we see that Tg,ϕ : LB → LB0 is compact. The
proof is completed. �

Let ϕ(z) = z. From Theorems 3.1, 3.2, 3.3, 3.4, we immediately get the
following results.

Corollary 3.5. Assume that g ∈ H(B). Then the following statements are
equivalent.

(1) Tg : LB → LB is bounded;
(2) Tg : LB0 → LB is bounded;
(3)

sup
z∈B

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |z|2
|<g(z)| < ∞.

Corollary 3.6. Assume that g ∈ H(B). Then Tg : LB0 → LB0 is bounded if
and only if Tg : LB0 → LB is bounded and g ∈ LB0.

Corollary 3.7. Assume that g ∈ H(B). Then the following statements are
equivalent.

(1) Tg : LB → LB is compact;
(2) Tg : LB0 → LB is compact;
(3) Tg : LB0 → LB0 is compact;
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(4) Tg : LB → LB0 is compact;
(5)

lim
|z|→1

(1− |z|2) ln
e

1− |z|2
ln ln

4

1− |z|2
|<g(z)| = 0.
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